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Abstract—In this paper, a novel strategy is established to design the
robust controller for a class of continuous-time nonlinear systems with
uncertainties based on the online policy iteration algorithm. The robust
control problem is transformed into the optimal control problem by prop-
erly choosing a cost function that reflects the uncertainties, regulation,
and control. An online policy iteration algorithm is presented to solve the
Hamilton–Jacobi–Bellman (HJB) equation by constructing a critic neural
network. The approximate expression of the optimal control policy can be
derived directly. The closed-loop system is proved to possess the uniform
ultimate boundedness. The equivalence of the neural-network-based HJB
solution of the optimal control problem and the solution of the robust
control problem is established as well. Two simulation examples are
provided to verify the effectiveness of the present robust control scheme.

Note to Practitioners—Since the increasing complexity of industrial pro-
cesses leads to the wide occurrence of nonlinearities and uncertainties, how
to design the robust controller for nonlinear systems with uncertainties is
a matter of great significance to control practitioners. In this paper, an
optimal learning control approach is employed to handle the robust con-
trol problem by using the online policy iteration algorithm. Only a critic
neural network needs to be constructed to approximate the cost function.
The training of the action network is not required since the closed-form
solution is available. The uniform ultimate boundedness of the closed-loop
system based on the developed control policy is provided. The validity of
the robust control strategy is illustrated through simulation study.

Index Terms—Adaptive dynamic programming, neural networks, op-
timal control, policy iteration, robust control, uncertain nonlinear systems.

I. INTRODUCTION

Practical control systems are always subject to model uncertainties,
exogenous disturbances or other changes in their lifetime. They are
necessarily considered during the controller design process in order to
avoid the deterioration of nominal closed-loop performance. We say a
controller is robust if it works even if the actual system deviates from its
nominal model on which the controller design is based. The importance
of the robust control problem is evident, and it has been recognized by
control scientists for several decades [1]–[3]. In [3], it was shown that
the robust control problem can be solved by studying the corresponding
optimal control problem, but the detailed procedure was not discussed.
When studying the nonlinear optimal control problem, we have to

solve the Hamilton–Jacobi–Bellman (HJB) equation instead of the Ric-
cati equation. Though dynamic programming is a useful method of op-
timal control, it is often computationally difficult to run it because of the
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“curse of dimensionality.” Based on function approximators, such as
neural networks, adaptive/approximate dynamic programming (ADP)
was proposed in [4] and [5] as a method to solve optimal control prob-
lems forward-in-time. The ADP and related research have gained much
attention from scholars of automatic control, artificial intelligence, op-
erational research, and so on [6]–[21]. The ADP technique is closely
related to the filed of reinforcement learning [13], one of whose funda-
mental algorithms is policy iteration [22]–[25].
Recently, Adhyaru et al. [26] proposed aHJB equation based optimal

control algorithm for robust controller design for nonlinear systems.
The algorithm is constructed using the least square method and per-
formed offline. The stability analysis of the closed-loop optimal con-
trol system is not presented. In this paper, we employ an online policy
iteration algorithm to tackle the robust control problem. The robust
control problem is transformed into an optimal control problem with
the cost function modified to account for uncertainties. Then, an online
policy iteration algorithm is developed to solve the HJB equation by
constructing and training a critic network. It is shown that an approxi-
mate closed-form expression of the optimal control policy is available.
Hence, there is no need to build an action network. The uniform ul-
timate boundedness (UUB) of the closed-loop system is analyzed by
using the Lyapunov approach. Since the ADP method is effective to
solve optimal control problem and neural networks can be constructed
to facilitate the implementation process, it is convenient to employ the
policy iteration algorithm to handle robust control problem. Thus, the
developed robust control approach is easy to understand and imple-
ment. It can be used to solve a broad class of nonlinear robust control
problems.

II. PROBLEM STATEMENT

In this paper, we study the continuous-time nonlinear systems de-
scribed by

(1)

where is the state vector and is the control
vector, and are differentiable in their arguments with
, and is the unknown perturbation. Here, we let
be the initial state.
Denote . Suppose that the function

is known only up to an additive perturbation, which is bounded by a
known function in the range of . Note that the condition for the
unknown perturbation to be in the range space of is called the
matching condition. Thus, we write with
, which represents the matched uncertainty of the system dynamics.

Assume that the function is bounded by a known function ,
i.e., with .We also assume that ,
so that is an equilibrium.
For system (1), in order to deal with the robust control problem, we

should find a feedback control policy , such that the closed-loop
system is globally asymptotically stable for all admissible uncertain-
ties . Here, we will show that this problem can be converted into
designing an optimal controller for the corresponding nominal system
with appropriate cost function.
Considering the nominal system

(2)

we assume that is Lipschitz continuous on a set in con-
taining the origin, and that the system (2) is controllable in the sense
that there exists a continuous control policy on that asymptotically
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stabilizes the system. It is desired to find the control policy which
minimizes the infinite horizon cost function given by

(3)

where is a positive constant, is the utility function, ,
and for all and . In this paper, the utility function is
chosen as the quadratic form , where
and are positive definite matrices with and .
The cost function described in (3) gives a modification with respect to
the ordinary optimal control problem, which appropriately reflects the
uncertainties, regulation, and control simultaneously.
When dealing with the optimal control problem, the designed feed-

back control must be admissible. For any admissible control policy
, where is the set of admissible controls on , if the

associated cost function

(4)

is continuously differentiable, then an infinitesimal version of (4) is the
so-called nonlinear Lyapunov equation

(5)

with . In (5), the term denotes the partial derivative
of the cost function with respect to , i.e., .
Define the Hamiltonian function of the problem and the optimal cost

function as

(6)

and

(7)

The optimal cost function satisfies the HJB equation

(8)

where . Assume that the minimum on the right-
hand side of (8) exists and is unique. Then, the optimal control policy
for the given problem is

(9)

Substituting the optimal control policy (9) into the nonlinear Lyapunov
(5), we can obtain the formulation of the HJB equation in terms of

as follows:

(10)

with .

III. ROBUST CONTROL SCHEME BASED ON THE

ONLINE POLICY ITERATION ALGORITHM

A. Equivalence of Problem Transformation

Theorem 1: For the nominal system (2) with the cost function (3),
assume that the HJB (8) has a solution . Then, using this solution,

the optimal control policy obtained in (9) ensures closed-loop asymp-
totic stability of the uncertain nonlinear system (1), provided that the
following condition is satisfied:

(11)

Proof: Let be the optimal solution of the HJB (8) and
be the optimal control policy defined by (9). Now, we prove that
is a solution to the robust control problem, namely, the equilib-

rium point of system (1) is asymptotically stable for all possible
uncertainties . To do this, it is shown that is a Lyapunov
function.
According to (7), for any and when
. This means that is a positive definite function. Using (8),

we have

(12)
Formula (9) implies that

(13)

Considering (12) and (13), we find that

(14)

By adding and subtracting the term , (14) can further be
changed to

(15)

Observing (11), we can conclude that for any
. Then, the conditions for Lyapunov local stability theory are

satisfied. Thus, there exists a neighborhood for
some such that if , then .
However, cannot remain forever outside . Otherwise,

for all . Denote . Clearly,
. Then

(16)

From (16), we obtain that as
. This contradicts the fact that for any

. Therefore, no matter where the trajectory starts
from.
Remark 1: According to Theorem 1, if we set and
, where denotes the identity matrix, then (11) becomes

. Hence, in this special case, the
robust control problem is equivalent to the optimal control problem
without introducing any additional conditions. Otherwise, the formula
(11) should be satisfied in order to ensure the equivalence of problem
transformation.
In light of Theorem 1, by acquiring the solution of the HJB (10) and

then deriving the optimal control policy (9), we can obtain the robust
control policy for system (1) in the presence of matched uncertainty.
However, due to the nonlinear nature of the HJB equation, finding its
solution is generally difficult. In the following, we will introduce an
online policy iteration algorithm to solve the problem based on neural
network techniques.
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B. Online Policy Iteration Algorithm

According to [27], the policy iteration algorithm consists of policy
evaluation based on (5) and policy improvement based on (9). Its iter-
ation procedure can be described as follows.
Step 1) Choose a small positive number . Let and .

Then, start with an initial admissible control policy .
Step 2) Based on the control policy , solve the nonlinear

Lyapunov equation

(17)

with .
Step 3) Update the control policy via

(18)

Step 4) If , stop and obtain the approx-
imate optimal control; else, let and go back to
Step 2.

The algorithmwill converge to the optimal cost function and optimal
control policy, i.e., and as
. The convergence proofs of the policy iteration algorithm have been

given in [22] and the related references therein.

C. Neural Network Implementation

Assume that the cost function is continuously differentiable.
According to the universal approximation property of neural networks,

can be reconstructed by a single-layer neural network on a com-
pact set as

(19)

where is the ideal weight, is the activation func-
tion, is the number of neurons in the hidden layer, and is the
approximation error of the neural network. Then

(20)

where and
are the gradient of the activation function and neural network ap-

proximation error, respectively. Based on (20), the Lyapunov (5) takes
the following form:

(21)

Assume that the weight vector , the gradient , and the
approximation error and its derivative are all bounded
on a compact set . We also have and as

[23].
Since the ideal weights are unknown, a critic neural network can be

built in terms of the estimated weights as

(22)

to approximate the cost function. In (22), is selected such that
for any and when . Then, we have

(23)

where .
The approximate Hamiltonian function can be derived as

(24)

Fig. 1. The structural diagram of the algorithm (the solid line represents the
signal and the dashed line represents the back-propagating path).

For training the critic network, it is desired to design to minimize the
objective function . We employ the standard steepest
descent algorithm to tune the weights of the critic network, i.e.,

(25)

where is the learning rate of the critic network.
Using (21), the Hamiltonian function becomes

(26)

where is the residual error due to the neural
network approximation.
Denote , assume that there exists a positive constant
such that , and let the weight estimation error of the

critic network be . Then, considering (24) and (26), we
have . Therefore, the dynamics of weight estimation
error is

(27)

The persistency of excitation condition is required to tune the
critic network ensuring , where is a positive constant.
A probing noise will be added to the system in order to satisfy the
persistency of excitation condition.
When implementing the online policy iteration algorithm, for the

purpose of policy improvement, we should obtain the policy that can
minimize the current cost function in (19). Hence, according to (9) and
(20), we have

(28)

The approximate control policy can be formulated as

(29)

The (29) implies that based on the trained critic network, the approx-
imate control policy can be derived directly. The actor-critic architec-
ture is maintained but training of the action network is not required in
this case since we have closed form solution available. The structural
diagram of the online policy iteration algorithm is depicted in Fig. 1.

D. Stability Analysis

Theorem 2: For the controlled system (2), the weight update law for
tuning the critic network is given by (25). Then, the dynamics of the
weight estimation error of the critic network is UUB.

Proof: Select the Lyapunov function candidate as
. The time derivative of the Lyapunov function along

the trajectory of error dynamics (27) is

(30)
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After doing some basic manipulations, we have

(31)

Considering the Cauchy–Schwarz inequality and noticing the assump-
tion , we can conclude that as long as
and

(32)

According to the Lyapunov theory, we obtain that the dynamics of the
weight estimation error is UUB. The norm of the weight estimation
error is bounded as well.
Theorem 3: For the controlled system (2), the weight update law of

the critic network given by (25) and the approximate optimal control
policy obtained by (29) ensure that, for any initial state , there exists
a time such that is UUB. Here, the bound is given
by

(33)

where and are positive constants and is the least eigen-
value of .

Proof: Taking the time derivative of along the trajectory
generated by the approximate control policy and substituting the
system dynamics (2), we can obtain

(34)

Using (10), we can find that

(35)

Considering (35), (34) becomes

(36)

Adding and subtracting and using (28) and (29), (36)
becomes

(37)

Substituting (20) and (23) into (37), we can further obtain

(38)

Here, we denote

(39)

Considering the fact that is positive definite, the assumption that
, , and are bounded, and Theorem 2, we can con-

clude that is upper bounded by , where is a positive
constant. Therefore, takes the following form:

(40)

In many cases, we can determine a quadratic bound of . Under
such circumstances, we assume that , where is a
positive constant. Then, (40) becomes

(41)

Hence, we can observe that whenever lies outside the
compact set

(42)

Therefore, based on the approximate optimal control policy, the state
trajectories of the closed-loop system are UUB and .
In the following, the equivalence of the neural-network-based HJB

solution of the optimal control problem and the solution of robust con-
trol problem is established.
Theorem 4: Assume that the neural-network-based HJB solution of

the optimal control problem exists. Then, the control policy defined
by (29) ensures closed-loop asymptotic stability of uncertain nonlinear
system (1) if the formula described in (11) is satisfied.

Proof: Let be the solution of
, and be the

approximate optimal control policy defined by (29). Then, we have
. Now, we show that with the ap-

proximate optimal control , the closed-loop system remains
asymptotically stable for all possible uncertainties . According to
(22) and the selection of , we have and
when . Taking the manipulations similar to the proof of The-

orem 1, we can easily obtain , which implies that

for any . Thus, the proof is completed.

IV. SIMULATION STUDY

Example 1: Consider the following continuous-time nonlinear
system:

(43)

where and are the state and control vari-
ables, respectively, and is an unknown parameter. The term

reflects the uncertainty of the control plant. For sim-
plicity, we assume that . Here, we choose
and we select for the purpose of simulation.
We aim at obtaining a robust control policy that can stabilize system

(43) for all possible . This problem can be formulated into the fol-
lowing optimal control problem. For the nominal system, we need to
find a feedback control policy that minimizes the cost function

(44)

where and . Based on the procedure proposed in [28],
the optimal cost function and the optimal control policy of the problem
are and .
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Fig. 2. Simulation results. (a) Convergence of the weight vector of the critic
network ( , , and represent , , and , respectively).
(b) Evolution of the state trajectory during the implementation process.

Fig. 3. Simulation results. (a) 3D plot of the approximation error of the cost
function, i.e., . (b) 3D plot of the approximation error of the
control policy, i.e., .

We adopt the online policy iteration algorithm to tackle the optimal
control problem, where a critic network is constructed to approximate
the cost function. We denote the weight vector of the critic network
as . During the simulation process, the initial
weights of the critic network are chosen randomly in [0,2] and the
weight normalization is not used. The activation function of the critic
network is chosen as , so the ideal weight is

. Let the learning rate of the critic network be and
the initial state of the controlled plant be .
During the implementation process of the policy iteration algorithm,

we bring in the probing noise to satisfy the persistency of excitation
condition. The exponentially decreasing probing noise and sinusoidal
signals with different frequencies are used. They are introduced into the
control input and thus affect the system states. The weights of the critic
network converge to , as shown in Fig. 2(a),
which displays a good approximation of the ideal ones. Actually, we
can observe that the convergence of the weight has occurred after 750
s. Then, the probing signal is turned off. The evolution of the state
trajectory is depicted in Fig. 2(b). We see that the state converge to
zero after the probing noise is turned off.
According to (22) and (29), the approximate optimal cost function

and control policy are derived. The error between the optimal cost func-
tion and the approximate one is presented in Fig. 3(a). The error be-
tween the optimal control policy and the approximate version is dis-
played in Fig. 3(b). Both approximation errors are close to zero, which
verifies the good performance of the learning algorithm.
Next, the scalar parameter is chosen for evaluating the robust

control performance. Through verification, the condition of Theorem 4
is satisfied, thus the derived control policy can be employed to stabilize
system (43).
Example 2: Consider the following continuous-time system:

(45)

where is the system uncertainty. Choose
, , , , , , and

Fig. 4. Simulation results. (a) Convergence of the weight vector of the critic
network. (b) The state trajectory under the robust control policy .

. Other parameters are selected the same as Example 1. Using the
developed algorithm, the weights of the critic network converge to

, which is shown in Fig. 4(a). Then, the ro-
bust control policy can be established based on the approximate optimal
control. Fig. 4(b) presents the state trajectory of the original system
under the action of the robust control policy when choosing
and . These simulation results authenticate the avail-
ability of the robust control method.

V. CONCLUSION

A novel strategy is developed to solve the robust control problem
of a class of uncertain nonlinear systems. The robust control problem
is transformed into an optimal control problem with appropriate cost
function. The online policy iteration algorithm is presented to solve
the HJB equation by constructing a critic network. Two examples are
given to reinforce the theoretical results.
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A Generalized Result for Degradation
Model-Based Reliability Estimation

Xiao-Sheng Si and Donghua Zhou, Senior Member, IEEE

Abstract—Reliability estimation based on degradation model is a
feasible and low-cost alternative used to estimate reliability for highly
reliable systems when the failure-time data are rare. Based on reliability
estimation by degradation modeling, preventive maintenance work orders
need to be timely triggered to minimize unscheduled downtime. In Trans.
Autom. Sci. Eng., vol. 9, no. 1, pp. 209–212, Jan. 2012, Sun et al., an
approach to dynamically extract maintenance threshold is presented for
maintenance scheduling, in which the reliability threshold for maintenance
is determined by maximizing the expected availability and the reliability
estimation is achieved by a modified two-stage degradation modeling
approach. Although this approach is novel and useful, its reliability
estimation is an asymptotic solution in long time scale. In this paper,
we generalize the above result by considering a general degradation
path model and provide the exact and explicit formulation for reliability
estimation. Additionally, a maximum-likelihood estimation method for
parameters in the presented model is proposed based on the historical
degradation observations. Finally, an example is provided for illustration.

Note to Practitioners—With advances in information and sensing tech-
nologies, the past decade has witnessed an increasingly growing research in-
terest on various aspects of degradation model-based reliability estimation.
In Trans. Autom. Sci. Eng., vol. 9, no. 1, pp. 209–212, Jan. 2012, Sun et al.,
an approach to dynamically extract maintenance threshold is presented for
maintenance scheduling. However, the formulation for reliability estima-
tion by a modified two-stage degradation modeling approach presented in
the above paper is just an asymptotic solution in long-time scale. The main
contribution of this paper is that we provide the exact and explicit formu-
lation for reliability estimation, which accounts for the impact of random
effect parameter on reliability estimation. This is necessary, in general, be-
cause the approximation on reliability estimation will affect the timeliness
of maintenance decision. Therefore, the results in this paper are useful for
engineers and developers to implement dynamic threshold-based mainte-
nance in the above paper.

Index Terms—Brownian motion, degradation, reliability.

I. INTRODUCTION

Traditional methods for estimating system reliability depend on the
time-to-failure data or lifetime data. However, most of critical systems
and new products are forbidden to run to failure, and the cost of ob-
taining the failure data through the accelerated life test is very high.
On the other hand, the system deteriorates over time inevitably since
it operates with certain load under various environments. In contrast
to the failure data, the degradation observations related to the health
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