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as far as the image processing time is over the capturing period. In gen-
eral, current 30 fps cameras are good enough for the visual alignment
applications. If a high-performance image processing system with the
maximum computing power is available, the update rate for the cen-
troid measurements in the Kalman filter can be increased as much.
Then, the look-and-move period in Fig. 4(b) will get faster and the
coarse-to-fine alignment would be more promising. Another consid-
eration can be taken into the design of joint servos for the alignment
stage to follow the error compensation trajectory. Although we have
applied PID control for each active joint, a model-based control design
to reflect the friction characteristics of the moving axes would be more
effective in the precision control.
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Abstract—In this paper, a neuro-optimal control scheme for a class of
unknown discrete-time nonlinear systems with discount factor in the cost
function is developed. The iterative adaptive dynamic programming algo-
rithm using globalized dual heuristic programming technique is introduced
to obtain the optimal controller with convergence analysis in terms of cost
function and control law. In order to carry out the iterative algorithm,
a neural network is constructed first to identify the unknown controlled
system. Then, based on the learned system model, two other neural net-
works are employed as parametric structures to facilitate the implementa-
tion of the iterative algorithm, which aims at approximating at each itera-
tion the cost function and its derivatives and the control law, respectively.
Finally, a simulation example is provided to verify the effectiveness of the
proposed optimal control approach.

Note to Practitioners—The increasing complexity of the real-world in-
dustry processes inevitably leads to the occurrence of nonlinearity and high
dimensions, and their mathematical models are often difficult to build. How
to design the optimal controller for nonlinear systems without the require-
ment of knowing the explicit model has become one of the main foci of con-
trol practitioners. However, this problem cannot be handled by only re-
lying on the traditional dynamic programming technique because of the
"curse of dimensionality". To make things worse, the backward direction
of solving process of dynamic programming precludes its wide application
in practice. Therefore, in this paper, the iterative adaptive dynamic pro-
gramming algorithm is proposed to deal with the optimal control problem
for a class of unknown nonlinear systems forward-in-time. Moreover, the
detailed implementation of the iterative ADP algorithm through the glob-
alized dual heuristic programming technique is also presented by using
neural networks. Finally, the effectiveness of the control strategy is illus-
trated via simulation study.

Index Terms—Adaptive dynamic programming, approximate dynamic
programming, globalized dual heuristic programming, intelligent control,
neural networks, optimal control.

I. INTRODUCTION

A S IS KNOWN, nonlinear optimal control is a difficult and chal-
lenging area since it often requires solving the Hamilton–Ja-

cobi–Bellman (HJB) equation instead of the Riccati equation. For ex-
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ample, the discrete-time HJB (DTHJB) equation is more difficult to
solve than the Riccati equation because it involves dealing with non-
linear partial difference equations.

Though dynamic programming has been a useful technique in
solving optimal control problems for many years, it is often computa-
tionally untenable to run it to obtain optimal solution, due to the “curse
of dimensionality” [1]. Thus, based on dynamic programming and
neural networks (NNs), adaptive/approximate dynamic programming
(ADP) was proposed in [2]–[4] as a method to solve optimal control
problems forward-in-time. There are several synonyms used for ADP,
including “adaptive dynamic programming” [5]–[8], “approximate
dynamic programming” [9], [10], “neuro-dynamic programming”
[11], “neural dynamic programming” [12], “adaptive critic designs”
[13], and “reinforcement learning” [14]–[16].

In recent years, ADP and related research have gained much atten-
tion from researchers [2]–[28]. In [2], Werbos defined “intelligence” as
the general-purpose ability of brain to learn to maximize some kind of
“utility function” over time, in a complex, unknown, and nonlinear en-
vironment. ADP is the only general-purpose scheme to learn to approx-
imate optimal strategy of action in the general case. Therefore, it can be
considered as one of the key methods to be able to design truly brain-
like general-purpose intelligent systems. According to [4] and [13],
ADP approaches were classified into several main schemes: heuristic
dynamic programming (HDP), action-dependent HDP (ADHDP), also
known as Q-learning, dual heuristic programming (DHP), ADDHP,
globalized DHP (GDHP), and ADGDHP. Al-Tamimi et al. [10] de-
rived a greedy HDP iteration algorithm to solve the DTHJB equation.
Fu et al. [7] investigated the adaptive learning and control for mul-
tiple-input-multiple-output system based on ADP.

Since the mathematical models of most real-world plants are often
difficult to build, how to design the optimal controller for nonlinear
systems with unknown dynamics has become one of the main foci of
control practitioners. However, there are still no results to solve the op-
timal control problems for unknown discrete-time nonlinear systems
with discount factor in the cost function based on iterative ADP algo-
rithm using GDHP technique (iterative GDHP algorithm for brief). In
this paper, for the first time, we will solve these problems via the iter-
ative GDHP algorithm.

The main contributions of this paper can be summarized as follows.
(1) By introducing identification section, we generalize the iterative
ADP algorithm to nonlinear optimal control problems with discount
factor and unknown system dynamics. (2) We show more clearly that
the limit of the cost function sequence equals to its optimal value. (3)
When implementing the iterative algorithm, we make use of the GDHP
technique in order to output the cost function and its derivative simul-
taneously and obtain more satisfactory results.

II. PROBLEM STATEMENT

In this paper, we study the discrete-time nonlinear systems described
by

���� � ����� � ���������� (1)

where �� � � is the state vector and ����� �
� is the control

vector, and ���� and ���� are differentiable in their arguments with
���� � �. Assume that � � �� is Lipschitz continuous on a set �
in � containing the origin, and that the system (1) is controllable in
the sense that there exists a continuous control law on � that asymp-
totically stabilizes the system. In the following part, ����� is denoted
by �� for simplicity.

Let �� be an initial state and define ����� � ���� ��� � � � � ����� be
a control sequence with which the system (1) gives a trajectory starting
from ��: �� � ����� � �������, �� � ����� � �������, � � �, �� �
������� � �����������. We call the number of elements in the

control sequence ����� the length of ����� and denote it as ����� .

Then, ����� � � . The final state under control sequence ����� can

be denoted as ���� ��� �
���
� � �� . When the control sequence

starting from�� has infinite length, we denote it as��� � ���� ��� � � ��.
Then, the corresponding final state can be written as �������� ��� � �
�	
��� �� .

Let ��� � ���� ����� � � �� be the control sequence starting at �. It is
desired to find the control sequence ��� which minimizes the infinite
horizon cost function given by

����� �
�

� � �

�

���

	
���


���� ��� (2)

where 
 is the utility function, 
��� �� � �, 
���� ��� � � for
���� ��, and 	 is the discount factor with � � 	 � �. The discount
factor mirrors the fact that we are less concerned about costs acquired
further into the future. Generally speaking, the utility function can be
chosen as the quadratic form 
���� ��� � ��� ��� � ��� 
���

For optimal control problems, the designed feedback control must
not only stabilize the system on � but also guarantee that (2) is finite,
i.e., the control must be admissible.

Definition 1 (cf. [10]): A control sequence ��� is said to be admis-
sible for a state �� � � with respect to (2) on �, if � is continuous on
a compact set �� � �, ���� � �, �������� ��� � � � and ����� ��� �
is finite.

Let 	 � ��� � �������� �
�

� � � � be the set of all infinite
horizon admissible control sequences of �� . Define the optimal cost
function as

�
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Note that (2) can be written as
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According to Bellman’s optimality principle, the optimal cost function
������ satisfies the DTHJB equation
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The optimal control �� is given by
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In (5) and (6), ������ is the optimal cost function corresponding to the
optimal control ������. When dealing with the linear quadratic regu-
lator problems, the DTHJB equation reduces to the Riccati equation
which can be solved efficiently. For general nonlinear problems, how-
ever, it is not the case.
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III. NEURO-OPTIMAL CONTROL SCHEME BASED ON THE

ITERATIVE ADP ALGORITHM

A. NN Identification of the Unknown Nonlinear System

For the NN identifier, a three-layer NN is employed as the function
approximation structure in this paper. Let the number of hidden layer
neurons be denoted by �, the ideal weight matrix between input layer
and hidden layer be denoted by ���, and the ideal weight matrix be-
tween hidden layer and output layer be denoted by ���. According to
the universal approximation property of NN, the system dynamics (1)
has an NN representation on a compact set �, which can be written as

���� � �
��
� � �

��
� �� � ��	 (7)

Let ��� � ���� ��, ��� � �. In (7), �� � ���� 

�
� �
� is the NN input,

�� is the bounded NN functional approximation error according to the
universal approximation property, and ������� � ��� � ��� �
��� �
��� � are the activation functions selected in this work, where � � �,
� � �� 	� 
 
 
 � �. Additionally, the NN activation functions are bounded
such that �������� � �� for a constant �� .

During the system identification process, we keep the weight ma-
trix between input layer and hidden layer constant while only tune the
weight matrix between hidden layer and output layer. Hence, we define
the NN identification scheme as

����� � ������������ (8)

where ��� is the estimated system state vector, and ����� is the esti-
mation of the constant ideal weight matrix ���.

Denote ��� � ��� � �� as the system identification error. Then, by
combining (7) with (8), we can obtain the identification error dynamics
as

����� � �������������� �� (9)

where ������ � ������ ���. Let �� � �������������. Then, (9) can
be rewritten as

����� � �� � ��	 (10)

The weights in the system identification process are updated to min-
imize the performance measure ���� � �����������
		 Using the gra-
dient-based adaptation rule, the weights can be updated by

���� � �� ������� ��
�����
������

������� ����������
�
��� (11)

where �� � 
 is the NN learning rate.
Assumption 1: The NN approximation error term �� is assumed to

be upper bounded by a function of the state estimation error ��� such
that ��� �� � ��� � ����� ��� , where � is the constant target value with
�� as its upper bound, i.e., ��� � �� .

Theorem 1: Let the identification scheme (8) be used to identify the
nonlinear system (1), and let the parameter update law (11) be used to
tune the NN weights. Then, the state estimation error dynamics ��� is
asymptotically stable while the parameter estimation error ������ is
bounded.

Proof: We consider the positive definite Lyapunov function can-
didate �� � ���� ��� � �����������������
��. Taking its first differ-
ence, we can obtain
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Define �� � ��
�	����, then (12) becomes
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From (13), we can conclude that ��� � 
 if 
 � �� � � and
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where � �� 
. As long as the parameters are selected as above, ��� �

 which shows stability in the sense of Lyapunov. Therefore, ��� and
������ are bounded, provided ��� and ����
� are bounded in the com-
pact set �. Furthermore, by summing both sides of (13) to infinity and
taking account of ��� � 
, we have

�
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���

�� � �� ��	

This implies that

�

���

���� �������������
�

� ��������
� �����

� ��	

Hence, it can be concluded that the estimation error approaches zero,
i.e., ����� 	 
 as � 	�.

Remark 1: According to Theorem 1, after a sufficient learning ses-
sion, the NN identification error converges to zero, i.e., we have

����� � ������
� � ������������ (14)

where ������ denotes the estimated value of the control coefficient ma-
trix �����. Taking the partial derivative of both sides of (14) with re-
spect to 
� yields

������ �
� ������������

�
�

�������
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����
����
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where �� is an � 
� identity matrix.

B. Derivation of the Iterative ADP Algorithm

In this section, we present the iterative ADP algorithm. First, we start
with the initial cost function ����� � 
 and solve the initial control
������ as

������ � ������
	

��� �� � 

�
�!
� � "�������� 	 (16)
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Then, we update the cost function as

������ � ���
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Next, for 	 � �
 	
 
 
 
, the iterative ADP algorithm is implemented
between the control law
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and the cost function
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In the above recurrent process, 	 is the iteration index of control law
and cost function, while 
 is the time index of system’s control and state
trajectories. The cost function and control law are updated until they
converge to the optimal ones. Next, we will provide the convergence
proof of the iterative ADP algorithm to show that the cost function
�� � �� and the control law �� � �� as 	 � �.

C. Convergence Analysis of the Iterative ADP Algorithm

Before presenting our main theorem, we first give the following two
lemmas.

Lemma 1 (cf. [23]): Let ���� be the control law sequence described
in (18) and ���� be an arbitrary sequence of control laws. Define �� as
in (19) and �� as

�������� � �
�
���� � �

�
� ����������� � ���������� (20)

If ����� � ����� � �, then ����� � �����, �	.
Lemma 2 (cf. [23]): Let the cost function sequence ���� be defined

as in (19). If the system is controllable, then there is an upper bound �
such that � � ������ � � , �	.

Then, we conclude that the cost function sequence ���� is a mono-
tonically nondecreasing one with an upper bound, and therefore, its
limit exists. Define ������ ������ � ������. Hence, the following
equation holds:

������ � ���
�
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���� � �

�
���� � ��������� � (21)

These results can be obtained according to [23], only noting that the
discount factor should be considered.

Next, we will prove that the cost function sequence converges to its
optimal value.

Theorem 2: Define the cost function sequence ���� as in (19) with
����� � �. If the system state �� is controllable, then �� is the limit of
the cost function sequence ����, i.e., ������ ������ � �������

Proof: Let �
���
� be the �th admissible control law sequence. We

construct the associated sequence �
���
� ���� as follows:
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������� � �

�
����� �

���
� ����

�

��
���
� �������

���
� ������ (22)

with �
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� ��� � �. By expanding (22), we can obtain
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Using Lemmas 1 and 2, we have
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where �� is the upper bound associated with the sequence �
���
� ���� .

Denote ������ �
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� ���� � �

���
� ����. Then, we can obtain
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Let the corresponding control sequence associated with (23) be
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(26)
Letting 	 � �, and denoting the admissible control sequence related
to �

���
� ���� with length � as ������� , we get
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�
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�
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��� ����� � �
���
�

����� (27)

Then, according to the definition of ������ in (3), for any � � �,

there exists a sequence of admissible control laws �
���
� such that

the associated cost function

� ��

��� ���� �

�
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�
�
� ���� 


��� ����� � �
���
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satisfies � ��

��� ���� � ��������. Combining with (25), we have

������ � �
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�

���� � �
����� � �� (29)

Since � is chosen arbitrarily, we get

������ � �
������ (30)

On the other hand, considering �������� � �
���
������� � ��
 ��
 	,

we can obtain ������ � ��� �����. According to the definition
of admissible control law sequence, the control law sequence asso-
ciated with the cost function ������ must be an admissible one.

Hence, there exists a sequence of admissible control laws �
���
�

such that ������ � �
���
� ����. Combining with (27), we get

������ � � ��

��� ���� . Because ������ is the infimum of

all cost functions associated with the admissible control sequences
starting at 
 with length �, we can obtain

������ 	 �
������ (31)

Based on (30) and (31), we can acquire that �� is the limit of se-
quence ����, i.e., ������ � ������.

From the aforementioned conclusions, we derive that the limit
of the cost function sequence ���� satisfies the DTHJB equation,
which can be seen in (21). In addition, based on Theorem 2, we get
������ � ������. Therefore, we can obtain that the cost function
sequence �������� converges to the optimal cost function ������ of
the DTHJB equation, i.e., �� � �� as 	 � �. Then, according to
(6) and (18), we can conclude the convergence of the corresponding
control law sequence, i.e., ������ ������ � �������
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Fig. 1. The structural diagram of the iterative GDHP algorithm.

D. NN Implementation of the Iterative ADP Algorithm Using GDHP
Technique

In the iterative GDHP algorithm, there are three NNs, which are
model network, critic network, and action network. All the networks
are chosen as three-layer feedforward NNs. The diagram of the whole
structure is shown in Fig. 1, where

��� �
������
���

�
������
��������

��������

���

�

�

The training of the model network is completed after the system
identification process and its weights are kept unchanged. Then, ac-
cording to Theorem 1, when given �� and �������, we can compute
����� by (8), i.e., ����� � ������������ 	��� ���� ����


� �� As a result,
we avoid the requirement of knowing 	���� and 
���� during the im-
plementation process of the iterative GDHP algorithm.

Next, the learned NN system model will be used in the process of
training critic network and action network.

The critic network is used to approximate both ������ and its deriva-
tive ����������� , which is named costate function and denoted as

�����. The output of the critic network is

�������
�
�����

�
�����
�����

� ������ � ����� ������ (32)

where ��� � ���� ���� . Then, we have

������� � ����� � ������ (33)

and

�
����� � ����� � ������ � (34)

The target function can be written as

�������� � ������ � ��� ����������� � � ���������� (35)

and
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(36)

We define the error function for training the critic network as

����� � �������� �������� (37)

and

����� � �
������ 
�������� (38)

Then, the objective function to be minimized is ���� � �������
����

���
���, where ��

��� � �������
�
����� and ��

��� � �������
�
������ The weight

updating rule for training the critic network is also gradient-based adap-
tation given by

�������� ���������� �����
���

���

�������
��

���
���

�������
(39)

�������� � ��������� �����
���

���

�������
��

���
���

�������
(40)

where �� � 
 is the learning rate of the critic network, � is the inner-
loop iteration step for updating the weight parameters, and 
 � � � �
is a parameter that adjusts how HDP and DHP are combined in GDHP.
For � � 
, the training of the critic network reduces to a pure HDP,
while � � � does the same for DHP.

In the action network, the state �� is used as input to obtain the
control vector as its output, which can be expressed by

������� � ����� ������ � (41)

The target control input is given by

������ � �
�

�
����
� ����

� ����������

������
� (42)

The error function of the action network can be defined as

���� � �������� ������� (43)

The weights of the action network are updated to minimize the per-
formance measure ���� � ������������ Similarly, the weight updating
algorithm is

����� � �� �������� ��
�����

�������
(44)

����� � �� � ������� ��
�����

�������
(45)

where �� � 
 is the learning rate of the action network, and � is the
inner-loop iteration step for updating the weight parameters.

Remark 2: According to Theorem 2, ������ � ������ as � �
�. Since 
����� � �����������, we can conclude that the costate
function sequence �
������ is also convergent with 
������ 
�����
as � � �.

IV. SIMULATION STUDY

Consider the following discrete-time nonlinear system:

���� �
� ����
������

� ����������� ����
������
�




�
��

where �� � 	��� ���

� � � and �� � are the state and control

variables, respectively. The cost function is chosen as ����� ��� �
��� �� � ��� �� .

We choose three-layer feedforward NNs as model network, critic
network, and action network with the structures 3–8–2, 2–8–3,
and 2–8–1, respectively. In the system identification process, the
initial weights between input layer and hidden layer, and between
hidden layer and output layer are chosen randomly in 	�
��� 
��
 and
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Fig. 2. Simulation results. (a) The convergence process of the cost function and
its derivative of the iterative GDHP algorithm. (b) The control input .

Fig. 3. Simulation results. (a) The state trajectory . (b) The state trajectory
.

������ ����, respectively. We apply the NN identification scheme for
100 steps under the learning rate �� � ����. The NN identifier can
learn the unknown nonlinear system successfully. Then, we finish the
training of the model network and keep its weights unchanged.

The initial weights of the critic network and action network are all
set to be random in ������ ����. Then, let the discount factor � � � and
the adjusting parameter � � ���, we train the critic network and action
network for 10 training cycles with each cycle of 2000 steps. In the
training process, the learning rate �� � �� � ����. The convergence
process of the cost function and its derivative of the iterative GDHP
algorithm at time instant � � � is shown in Fig. 2(a). We can see that
the iterative cost function sequence does converge to the optimal cost
function quite quickly, which also indicates the effectiveness of the iter-
ative GDHP algorithm. In addition, if we compare the results obtained
by using different discount factors, we can find that smaller discount
factor can insure quicker convergence of the cost function sequence.

Moreover, in order to make comparison with the iterative ADP al-
gorithm using HDP and DHP technique (iterative HDP algorithm and
iterative DHP algorithm for brief), we also present the controllers de-
signed by iterative HDP algorithm and iterative DHP algorithm, respec-
tively. Then, for given initial state ��� � ��� and ��� � ���, we apply
the optimal control laws designed by iterative GDHP, HDP, and DHP
algorithm to the controlled system for 20 time steps, respectively, and
obtain the control curves are shown in Fig. 2(b). The corresponding
state curves are shown in Fig. 3(a) and (b). It can be seen from the sim-
ulation results that the controller designed by the iterative GDHP algo-
rithm has better performance than iterative HDP algorithm and iterative
DHP algorithm. The most important property that the iterative GDHP
algorithm is superior to the iterative DHP algorithm is that the former
can show us directly the convergence process of the cost function se-
quence. Besides, the time that the iterative GDHP algorithm takes in
the entire computation process is much less than that of HDP. For the
same problem, the iterative GDHP algorithm takes about 26.6 s, while
the iterative HDP algorithm takes about 61.3 s before satisfactory re-
sults are obtained.

V. CONCLUSION

An effective iterative algorithm is investigated in this paper to design
the near optimal controller for a class of unknown discrete-time non-
linear systems with discount factor in the cost function. The NN-based
GDHP technique is introduced for the purpose of implementing the it-
erative ADP algorithm. The simulation study demonstrates the validity
of the derived optimal control scheme.
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