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Abstract
Knowledge graph embedding techniques can be roughly divided into two mainstream, trans-
lational distance models and semantic matching models. Though intuitive, translational
distance models fail to deal with the circle structure and hierarchical structure in knowl-
edge graphs. In this paper, we propose a general learning framework named TransX-pa,
which takes various models (TransE, TransR, TransH and TransD) into consideration. From
this unified viewpoint, we analyse the learning bottlenecks are: (i) the common assump-
tion that the inverse of a relation r is modelled as its opposite −r; and (ii) the failure
to capture the rich interactions between entities and relations. Correspondingly, we intro-
duce position-aware embeddings and self-attention blocks, and show that they can be
adapted to various translational distance models. Experiments are conducted on different
datasets extracted from real-world knowledge graphs Freebase and WordNet in the tasks
of both triplet classification and link prediction. The results show that our approach makes
a great improvement, showing a better, or comparable, performance with state-of-the-art
methods.
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1 Introduction

A typical knowledge graph (KG) consists of a set of interconnected typed entities and their
attributes. Usually, entities are modelled as nodes, and relations are modelled as different
types of edges, linking from a head entity to a tail entity, denoted as (head, relation, tail)
or (h, r, t). Although it is well defined and structured, KGs retain the underlying symbolic
nature, which makes it difficult to automatically construct or inference on it. To tackle this
issue, lots of work has been carried out on knowledge graph embedding. The key idea
is to use distributed representation, i.e., embed entities and relations into continuous low-
dimensional space, so that manipulation on KG can be simplified as algebraic operations
(Nickel et al. 2016).

Roughly speaking, embedding techniques in this sort can be divided as two groups:
translational distance models and semantic matching models (Wang et al. 2017). Our work
follows the route of the first one, which measures the plausibility of a fact as the distance
between the head and tail entities after a translation. Note that some other methods lever-
age addtional information, e.g., entity type, dependency path and etc. (Toutanova and Chen
2015), but these methods are out of our scope.

Among the translational distance models, TransE (Bordes et al. 2013) is the simplest but
representative one. It models the relation as a translation and enforces the tranlated head
entity to meet with the tail entity, i.e., h + r = t . Later on, TransH (Wang et al. 2014),
TransR (Lin et al. 2015) and TransD (Ji et al. 2015) consider the different semantics of an
entity linked with different relations. However, they all fail to handle some special struc-
tures of KG. We divide these structures into two classes: circle structure and hierarchical
structure.

circle structure: Zhang (2017) noticed that ’One-Relation-Circle’ (ORC) structure leads
to the decline of performance. Take the knowledge graph in Fig. 1a as an example. Follow-
ing the idea of existing translational distance models,X+r = Y and Y +r = X should hold,
resulting a confusion of entities X = Y and a degenerated representation of the relation
r = 0.

In fact, however, the structure with multiple circles composed of different relations (we
call it ’Multiple-Relation-Circles’, or MRC) is also to blame. Consider the example in
Fig. 1b, the facts X + FatherOf = Z,Z + SonOf = X lead to FatherOf = −SonOf ,
and similarly, MotherOf = −SonOf . It comes to an unexpected confusion of relations
that MotherOf = FatherOf . If taking all triplets into account, we will come to a result
that X = Y , hasHusband = hasWif e = 0, and even a false prediction that Y is also a
son of G.

hierarchical structure: Hierarchical structures are common in the knowledge graph,
especially in professional domains. Look into the example in Fig. 1c. Applying trans-
lational distance models, hand + PartOf = limb, limb + PartOf = body and
hand + PartOf = body, which leads to v(PartOf ) = 0, and worse yet, we cannot
distinguish all the entities hand, limb and body.

The reasons that translational distance models fail in these cases are two folds. Firstly,
an entity has the same representation regardless of its position, i.e., whether it acts as a head
or a tail. According to the examples aforementioned, this implies an assumption that the
inverse relation is modelled using an opposite vector. Secondly, the models only consider
the effect that a relation acts on the head and tail entity, but neglect the opposite. However,
there exists complex interactions between the relation and entities.

In this paper, we formulate a more general framework for large-scale knowledge graph
representation. Corresponding to the two drawbacks aforementioned, we introduce two
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Fig. 1 Three kinds of special structure of knowledge graph. a: in ’One-Relation-Circle’ (ORC) structure, the
enforcement of translational distance models leads to r = 0. Note that X can be the same with Y, forming a
self-loop. b: an example of the ’Multiple-Relation-Circles’ (MRC) structure. There are four circles, X-Y-X,
X-Z-X, Y-Z-Y and X-Y-Z-X. The enforcement of translational distance models leads to confusion not only
about entities but also about relations. c Hierarchical structure is the worst case for the translational distance
models, which leads to a conclusion that PartOf = 0, and hand = limb = body

improvements in the framework: 1) position-aware entity embeddings: we enable an entity
to have different semantic when acting as head and tail; 2) attention mechanism: we intro-
duce a self-attention block to capture the rich interactions among relations and entities. For
simplicity, we call it TransX-pa.

The main contributions of this paper are summarized as follows:

– We propose a general framework to unify the translational distance models. We inves-
tigate various models (TransE, TransH, TransR and TransD) and show that they are the
special cases of our framework.

– Under the framework, we introduce positional-aware entity embeddings and self-
attention block to deal with special structures (circle structure and hierarchical struc-
ture) in knowledge graphs. Besides, we introduce l1-norm regularizer to guarantee the
consistence of same entities.

– Extensive experiments have proved that with a little increase of computational cost, our
proposed framework improves the existing models, achieving a better, or comparable,
performance with state-of-the-art methods.

The rest of this paper is organized as follows. Section 2 briefly introduces translational
distance models from a unified view, also it summarizes other state-of-the-art methods.
Section 3 describes our proposed framework mathematically, applies it for different models
and discusses the time and space complexity. Experimental study is presented in Section 4.
We conclude the paper in Section 5.

2 Related work

Knowledge graph embedding (KGE) hires a low-dimensional vector to represent an entity
or a relation in a knowledge graph. Early models for KGE include Structured Embedding
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(SE) (Bordes et al. 2011), Semantic Matching Energy (SME) (Bordes et al. 2014) and so
on. SE sets matrices to project head and tail entities for each relation. SME (linear and
bilinear version) hires a neural network to capture the interactions between entities and
relations via matrix operations. These models suffer from a high computational cost and
low representation capacity.

In the following, we will introduce some representative works that are most relevant to
our work.

2.1 Translational distancemodels

Translational distance models, which exploit distance-based scoring functions, significantly
reduce the computational cost. Before proceeding, we define our notations. A column vector
e is used to represent the embeddings of an entity e, and the column vectors h ∈ Rm, r ∈
Rn, t ∈ Rm for a triplet (h, r, t) (m can be the same with n).

The residual of a triplet is:

δ(h, r, t) = fr(h) + r − fr(t) (1)

in which the function fr(·) is a relational-specific linear transformation. The scoring
function is:

s(h, r, t) = ‖δ(h, r, t)‖p (2)

Usually, the p-norm can be l1-norm or l2-norm. Note that all the models share a common
constraint, i.e., enforcing entities embeddings to have, at most, a unit l2 norm.

TransE (Bordes et al. 2013) simplifies fr(·) as an identity function, and s(h, r, t) =
‖h+r−t‖p. Despite its simplicity and efficiency, TransE cannot handle with 1-to-N, N-to-1,
and N-to-N relations (’N’ represents for ’many’).

To address this problem, an entity is allowed to have distinct representations when
involved in different relations. Typical models include the following:

TransH (Wang et al. 2014) introduces relation-specific hyperplanes. It restricts the rela-
tion as a vector r on a hyperplane, which takes wr as its normal vector. So the entities are
projected onto the hyperplane, i.e., fr(e) = e − w�

r ewr .
TransR (Lin et al. 2015) introduces relation-specific spaces, rather than hyperplanes. It

associates each relation with a specific space and uses a projection matrixMr to project the
entities into the space, i.e., fr(e) = Mre. Though representative, it suffers a large amount
of parameters and so is hard to optimize. To address this problem, TranSparse (Ji et al.
2016) enforces sparseness on the projection matrix. It also varies the matrices for head and
tail entities and find out to achieve a higher performance.

TransD (Ji et al. 2015) considers a more delicate projection method. The model assumes
that the projection is associated not only with the relation but also with the entity itself. It
then decompose the projection matrix in TransR as Mr = wrw�

e + I.
Besides allowing distinct representations of an entity involved in different relations,

some models improve TransE by relaxing the requirement that h + r = t. TransM
(Fan et al. 2014) assigns a relation-specific weight θr for each triplet, i.e., fr(h, t) =
−θr‖h + r − t‖p . With lower weight, it allows t to lie farther away from h + r. Mani-
foldE (Xiao et al. 2016) enlarges the point h+ r into a hyper-sphere with a relation-specific
radius θr , and t is allowed to lie on this manifold. KG2E (He et al. 2015) takes uncer-
tainty into consideration and hence represents an entity and relation with a Gaussian
distribution.
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Although the modified models show higher performance than TransE, they cannot
deal with special structures in knowledge graphs appropriately. Zhang (2017) noticed the
One-Relation-Circle (ORC) structure is to blame and suggest to decompose them.
Ahead, we have pointed out that not only all circle structures but also hierarchical
structures need to be handled carefully. Worse more, all the existing models still only
take into account the effect from relation to entity, but neglect the effect from entity to
relation.

2.2 Semantic matchingmodels and the others

Semantic matching models exploit similarity-based scoring functions instead of distance-
based scoring functions. Yang et al. (2015) argued that additive interactions between the
relation and entities, which is hired in the translational distance models, are lack of rich
representations. Instead, they proposed DistMult, which hires multiplicative interactions
score a triplet. Later on,HolE (Holographic Embeddings) (Nickel et al. 2016) composes the
entity representation into a compact feature space using circular correlation, which can be
treated as a compression of pairwise interactions. ComplEx (Complex Embeddings) (Théo
et al. 2016) extends DistMult by introducing complex-valued embeddings instead of real-
valued. It has been proved that HolE is subsumed by ComplEx as a special case (Hayashi
and Shimbo 2017). ConvE (Dettmers et al. 2018) hires a convolutional neural network to
extract deep representative features for scoring the triplets. These models lead to our idea
that translational distance models should allow bi-directional interactions between entities
and relations.

There exists some other models hiring additional information from knowledge graphs.
For example, PTransE (Path-based TransE) (Lin et al. 2015) composites each relation path
and scores its reliability, NTN (Neural Tensor Network) (Socher et al. 2013) initializes
entity embeddings from the textual information, TEKE (Text-Enhanced KG Embeddings)
(Wang and Li 2016) constructs a co-occurrence network composed of entities and words to
learn a more expressive representation. Additional information can help improve the final
performance, but is out of the scope of this paper.

3 The proposedmethod

According to the analysis above, the improvements of our proposed framework contain two
aspects. First, an entity is allowed to have different representations when acting as head and
tail. This is expanded from the findings stated in Ji’s work (2016) and Zhang’s work (2017).
Second, a self-attention block (Vaswani et al. 2017) is introduced to refine the score of a
triplet. It enables a complicated interactions in a triplet, and hence can solve the problem
that the existing translational distance models only capture additive interactions. To this end,
we have done the following works to present the framework.

3.1 Models

The general framework of translational distance models can be extended as follow. We
use f

(1)
r (·) to transform the head entities and f

(2)
r (·) to transform the tail (the subscript r

indicates that they are relation-specific). Then, the residual of a triplet (h, r, t) is:

δ(h, r, t) = f (1)
r (h) + r − f (2)

r (t) (3)
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Then, before the final score, we employ a self-attention block (Vaswani et al. 2017)
over the residual. The self-attention block is a special case of the multi-head attention
mechanism, which is a collection of multiple attention blocks.

MultiHead(Q,K, V ) = head1 ⊕ head2 ⊕ · · · ⊕ headk

headi = Attention(QW
Q
i ,KWK

i , V WV
i ) (4)

in which ⊕ represents a concatenation of vectors. If Q = K = V , (4) degenerates into a
self-attention block.

Following the experience of Vaswani et al. (2017), each attention cell is scaled by 1/
√

d

to avoid meaningless gradients during training:

Attention(Q,K, V ) = softmax(
QKT

√
d

)V (5)

After that, we come to the final score function:

s(h, r, t) = ‖SelfAttention(δ(h, r, t))‖p (6)

In this paper, we take p = 1.
In addition, although an entity now has different representations when acting as a head or

a tail, we expect the difference is under a certain threshold. And following the disentangle
characteristic of representation learning (Bengio et al. 2013), l1-norm ‖f (1)

r (e) − f
(2)
r (e)‖1

is employed as a regularization term.
Summing up, the training objective is to minimize the following loss function, in which

the first term is a margin-based ranking loss:
∑

(h,r,t)

∑

(h′,r,t ′)

[
γ + s(h, r, t) − s(h′, s, t ′)

]
+ + λ

∑

e∈{h,h′,t,t ′}
‖f (1)

r (e) − f (2)
r (e)‖1 (7)

in which, [·]+ denotes the positive part, γ > 0 is a margin separating positive and negative
triplets, and λ controls the trade-off between the two terms. (h′, r, t ′) is sampled by the ran-
domly corrupting h or t in the positive triplet (h, r, t), but not both of them in the same time.

3.1.1 Applied to TransE

Apply our idea to TransE, we get TransE-pa model. The model maintains two embeddings
for each entity in head and tail position respectively. The residual of a triplet is:

δ(h, r, t) = h(1) + r − t(2) (8)

Then, the score of a triplet is:

s(h, r, t) = ‖SelfAttention(δ(h, r, t))‖p (9)

And the loss function is:
∑

(h,r,t)

∑

(h′,r,t ′)
[γ + s(h, r, t) − s(h′, r, t ′)]+ + λ

∑

e∈{h,h′,t,t ′}
‖e(1) − e(2)‖1 (10)

3.1.2 Applied to TransR

In TransR-pa, the position information is no longer encoded by different entity representa-
tions. Instead, we use two relation-specific matrices, Mh

r to project the head entity into the
relation-specific space, and Mt

r to project the tail. Then, the residual of a triplet is:

δ(h, r, t) = Mh
r h + r − Mt

r t (11)
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And the regularization term ‖f (1)
r (e)−f

(2)
r (e)‖1 = ‖Mh

r e−Mt
re‖1 ≤ ‖Mh

r −Mt
r‖1‖e‖1.

So, for simplicity, we turn to restrict the term ‖Mh
r −Mt

r‖1. Now the loss function becomes:
∑

(h,r,t)

∑

(h′,r,t ′)
[γ + s(h, r, t) − s(h′, r, t ′)]+ + λ‖Mh

r − Mt
r‖1 (12)

3.1.3 Applied to TransH

In TransH-pa, we assign two hyper-planes for each relation, which are determined by normal
vectors wh and wt respectively. The former one is used to project the head entity h⊥ =
h−w�

h hwh, while the latter one is used to project the tail entity t⊥ = t−w�
t twt . Then, the

residual of a triplet is:
δ(h, r, t) = h⊥ + r − t⊥ (13)

As for the regularization term, We also derive its surrogate. Denote w = (wh +
wt )/2,d = (wh − wt )/2, we have

‖f (1)
r (e) − f (2)

r (e)‖1 = ‖w�
h ewh − w�

t ewt‖1
= 2‖d�ew + w�ed‖1
≤ 2|d�e|‖w‖1 + 2|w�e|‖d‖1 (14)

in which d�e,w�e are scalars. As our model has restrict the l2−norm of e,wr
h,w

r
t (see

Section 3.3 for detail), we turn to restrict the term ‖d‖1, i.e., ‖wh
r − wt

r‖1.
The loss function becomes:

∑

(h,r,t)

∑

(h′,r,t ′)
[γ + s(h, r, t) − s(h′, r, t ′)]+ + λ‖wh

r − wt
r‖1 (15)

3.1.4 Applied to TransD

In TransD-pa, the positional encoding parameters are column vectors: (i) wh, together with
the projection vector of entitywe, determines the projection matrix of head entity, i.e.,Mh =
wh·w�

e +I; (ii)wt , together with the projection vector of entitywe, determines the projection
matrix of head entity, i.e.,Mt = wt · w�

e + I. Then, the residual of a triplet is:

δ(h, r, t) = hMh + r − tMt (16)

And the regularization term ‖f (1)
r (e) − f

(2)
r (e)‖1 = ‖ (wh − wt )w�

e e‖1 = ‖wh −
wt‖1|w�

e e| (w�
e e is a scalar), so it is equivalent to use ‖wh − wt‖1 as the penalization. The

loss function becomes:
∑

(h,r,t)

∑

(h′,r,t ′)
[γ + s(h, r, t) − s(h′, r, t ′)]+ + λ‖wh − wt‖1 (17)

3.2 Model complexity

Table 1 lists the complexity of the baselines and our proposed framework. We choose to
use a self-attention block with 4 heads (Section 4.3.2 for detail), and hence cost 12n2 extra
parameters. Given that ne 
 n (usually, ne is in ten thousand level, while n is chosen
to be in hundred level), our framework will not significantly increase the model and time
complexity, so can be applied on large-scale knowledge graphs.

We have also listed the complexity of state-of-the-art models, including HolE (Nickel
et al. 2016) and ComplEx (Théo et al. 2016). Our model shows similar time and space
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Table 1 Comparison of model and time complexity: the number of parameters and the number of
multiplication operations in an epoch of several embedding models

Model #Parameters #Operations

TransE O(Nem + Nrn) (m = n) O(nNt )

TransE-pa O(2Nem + Nrn + 12n2) (m = n) O(4nNt )

TransR O(Nem + Nr(m + 1)n) O(2mnNt )

TransR-pa O(Nem + Nr(2m + 1)n + 12n2) O(2mnNt + 3mNt )

TransH O(Nem + 2Nrn) (m = n) O(2nNt )

TransH-pa O(Nem + 3Nrn + 12n2) (m = n) O(5nNt )

TransD O(2Nem + 2Nrn) O(2nNt )

TransD-pa O(2Nem + 3Nrn + 12n2) (m = n) O(5nNt )

HolE O(Nem + Nrn) (m = n) O(n log n)

ComplEx O(2Nem + 2Nrn) (m = n) O(4nNt )

Ne and Nr represent the number of entities and relations, respectively. Nt represents the number of triplets
in a knowledge graph. m is the dimension of entity embedding space, and n is that of relation embedding
space. In some models, m = n. Our model spends 12n2 parameters for a self-attention block with 4 heads

complexity compared with ComplEx, and HolE needs more computational cost. In KG2E
model (He et al. 2015), it is necessary to calculate the determinant of matrices, resulting
a huge computational cost. As for ConvE (Dettmers et al. 2018), it hires a deep neural
network architecture, while our proposed model is shallow. As a conclusion, our proposed
framework shows advantages in time and space complexity.

3.3 Training, initilization & constraints

The learning process of TransX-pa is carried out using Stochastic Gradient Descent (SGD).
To accelerate training process, we initialize the entity and relation embeddings with results
of TransE. Besides, projection matrices in TransR and TransR-pa are initialized as iden-
tity matrices, following what (Lin et al. 2015) did. Other parameters are initialized using
Xavier’s method (Glorot and Bengio 2010).

Last but not least, the translational distance models usually restrict the l2−norm of the
entity embeddings both before and after transformation. However, their concrete forms vary
slightly, please see the Table 1 in Wang’s review (2017) for detail. What’s more, some of the
them converted the l2-norm constraints as a regularization term during optimization (Wang
et al. 2014), but some unitize them explicitly (Lin et al. 2015; Ji et al. 2015).

In our framework, we unify them into two constraints: 1. constraints on the entities before
transformation, ‖h‖2 ≤ 1, ‖t‖2 ≤ 1; 2. constraints on the entities after transformation:
‖f (1)

r (·)‖2 ≤ 1, ‖f (2)
r (·)‖2 ≤ 1. Note that we have removed any constraints on r. As a

remark, a norm vector of hyper-plane just indicates a direction, so in TransH and TransH-pa,
the norm vectors are naturally to have unit length. For all restriction, we adopt the explicit
way, i.e., letting x = x/‖x‖2.

4 Experimental study

In this section, we first describe the data sets. Then, we discuss how to determine the hyper-
parameters. Finally, we evaluate our model on triplet classification and link prediction tasks,
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for each task, we introduce the evaluation settings, present the experimental results and
analysis them.

Worth mentioning, Akrami’s work (Akrami et al. 2018) has shown a big difference
among the results reported in the original papers and the open source tool-kits, even if the
code is released by the authors (ANALOGY1 (Liu et al. 2017), ComplEx2 (Théo et al.
2016), ConvE3 (Dettmers et al. 2018) and OpenKE4 (Han et al. 2018)). In the following,
this paper reports the results both in the original paper and our re-implementation.

Our code is based on the OpenKE. As a remark, OpenKE has two bugs. First, it neglects
all l2-norm constraints. Second, it makes error when training with several negative triplets
per golden triplet.

4.1 Data sets

We test our framework on two tasks, triplet classification and link prediction, with sev-
eral widely used knowledge graphs, which are extracted from WordNet (Miller 2005) and
Freebase (Bollacker et al. 2008). WordNet is a large lexical knowledge graph, with entities
expressing distinct concepts and relations expressing conceptual-semantic and lexical rela-
tions (like type of ). Freebase contains a large number of facts, such as (barack obama sr,
nationality, Kenya).

For the task of link prediction, we use four datasets FB15k, FB15k-237, WN18 and
WN18RR as the previous work does:

– FB15k and FB15k-237: FB15k, used by TransE (Bordes et al. 2013) and the fol-
lowing researchers, is a subset of Freebase. Unfortunately, 81% of the test triplets
can be directly inferred by inversion (Toutanova et al. 2015), resulting in a test leak-
age. Therefore, FB15k-237 has been proposed with the inverse relations removed.
Since the average number of linked triples for each entity is far smaller than
that of FB15k (see Table 2), it is more challenging to predict unobserved fact on
FB15k-237.

– WN18 and WN18RR : WN18, also adopted to be a standard benchmark (Bordes et al.
2013), is a subset of WordNet. WN18 also contains many inverse relations, and hence,
a more challenging dataset, WN18RR, has been proposed for further study (Dettmers
et al. 2018).

For the task of triplet classification, we use FB13 and WN11 (Socher et al. 2013), as
well as the four datasets aforementioned. The former two have already been released with
negative triplets,5 in order to ensure a fair comparison. As for the other four datasets which
do not contain negative triplets in its test set, we adopt the same settings following Socher’s
work (Socher et al. 2013) to generate negative triplets. Note that FB13 and WN11 con-
tains plenty of triplets but few relations, so there is no need to test link prediction task on
them.

The statistics of the extracted knowledge graphs are summarized into Table 2.

1https://github.com/quark0/ANALOGY
2https://github.com/ttrouill/complex
3https://github.com/TimDettmers/ConvE
4https://github.com/thunlp/OpenKE
5https://www.cs.princeton.edu/∼danqic/data/nips13-dataset.tar.bz2

https://github.com/quark0/ANALOGY
https://github.com/ttrouill/complex
https://github.com/TimDettmers/ConvE
https://github.com/thunlp/OpenKE
https://www.cs.princeton.edu/~danqic/data/nips13-dataset.tar.bz2
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Table 2 Datasets used in the experiments: Avg. #Train/#Ent represents the average number of linked triplets
regarding with each entity in the training set. With a small average linked triplets, it it is more challenging to
learn the semantic of the entities

Dataset #Rel #Ent #Train #Valid #Test Avg. #Train/#Ent

FB15k 1,345 14,951 483,142 50,000 59,071 32.315

FB15k-237 237 14,541 272,115 17,535 20,466 18.714

FB13 13 75,043 316,232 5,908 23,733 4.214

WN18 18 40,943 141,442 5,000 5,000 3.455

WN18RR 11 40,943 86,835 3,034 3,134 2.121

WN11 11 38,696 112,581 2,609 10,544 2.909

4.2 Implementation

We train TransE for each dataset, using a grid search of hyper-parameters: the dimension
of embeddings n = m ∈ {50, 100, 200}, margin γ ∈ {1, 2, 3, 4, 5}, and SGD learning rate
∈ {1e−4, 5e−4, 1e−3, 5e−3}, training epochs ∈ {1000, 2000, 3000, 4000, 5000}. The value
corresponding to highest Hits@10 score will then be applied to all models, in order to ensure
the fairness of comparison.

For FB15k, FB13 and WN11, m = n = 100, γ = 1, with SGD learning rate 1e−3 and
training epochs of 1000; for FB15k-237, m = n = 100, γ = 2, with SGD learning rate
5e−4 and training epochs of 3000; for WN18, m = n = 50, γ = 3, with SGD learning
rate 1e−3 and training epochs of 1000, for WN18RR, m = n = 50, γ = 3, with SGD
learning rate 5e−4 and training epochs of 1000. Besides, the self-attention block uses a 4-
head attention (we will discuss our choice for this hyper-parameter later in Section 4.3.2).
And we set λ = 0.001 to control the trade-off in the loss function.

During training, SGD algorithm is used, with the number of batches is 100. For triplet
classification task, we randomly generates only one negative triplet for each positive triplet,
in order to build an unbiased classifier. As for link prediction task, in order to provide more
guidance for the gradients, we randomly generates 10 negative triplets for each positive
triplet.

As a remark, generating negative triplets involves two settings as follow:

unif : In TransE (Bordes et al. 2013), a pair of entities (h′, t ′) is randomly sampled from
all the entities, which introduces too many false negative labels during training.

bern: To address this problem, followingWang’s opinion (Wang et al. 2014), works there-
after adopt a Bernoulli distribution to sample negative triplets. Specifically speaking,
denote the average number of tail entities per head entity as tph, and the average number
of head entities per tail entity as hpt , then with probability tph

tph+hpt
, h is replaced by h′,

and with probability hpt
tph+hpt

, t is replaced by t ′.

4.3 Results and discussion

4.3.1 Triplet classification

Given a triplet (h, r, t), the task is to judge whether it is correct or not, so is a binary clas-
sification problem. In order to use the score s(h, r, t) for triplet classification, we set a
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relation-specific threshold δr . If s(h, r, t) > δr , it will be classified as positive, and vice
versa. δr is obtained by maximizing the accuracies on the validation set.

We compare our methods with the translational distance models on all datasets. Note that
the recent models (HolE (Nickel et al. 2016), ComplEx (Théo et al. 2016), ConvE (Dettmers
et al. 2018)) do not test on this task, so here we do not compare with them.

Table 3 shows the accuracy for triplet classification. Our re-implementation is nearly the
same compared with results reported in the correspoinding original papers (see the accuracy
in the parentheses). According to the table, we can conclude that our models outperform
the corresponding existing models (TransE (Bordes et al. 2013), TransR (Lin et al. 2015),
TransH (Wang et al. 2014), TransD (Ji et al. 2015)), and TransD-pa achieves the highest
accuracy on all datasets.

To evaluate the significance of the results, we apply Wilcoxon’s test (Demsar 2006) to
compare differences statistically via pairwise comparisons. The Wilcoxon signed-rank test
is applied to calculate the p-values and asymptotic p-values (p∗) corresponding to different
pairs of comparisons for all datasets are obtained. Additionally, for each comparison, the
sum of the ranks in favor of the first algorithm (R+) and the sum of the ranks in favor
of the second algorithm (R−) are provided. In this paper, we consider a difference to be
significant at p < 0.05. The results in Table 4 show that TransX-pa always performs better
than TransX, they are significantly different for both settings.

Besides, we have two more interesting findings.

Comparison under different negative sampling settings For triplets classification task,
TransX-pa performs similarly under the ‘unif ’ and ‘bern’ sampling settings, especially

Table 3 Accuracy of TransX-pa for triplet classification

WN11 FB13 FB15k FB15k-237 WN18 WN18RR

TransE TransE (unif) 77.89 (75.9) 72.98 (70.9) 84.71 (77.3) 78.93 95.49 85.33

TransE-pa (unif) 82.14 83.35 87.68 80.04 96.79 85.69

TransE (bern) 77.33 (75.9) 79.83 (81.5) 85.97 (79.8) 80.28 95.65 85.06

TransE-pa (bern) 82.01 83.96 88.61 81.82 96.80 85.70

TransR TransR (unif) 84.64 (85.5) 78.63 (74.7) 85.51 (81.7) 79.92 95.81 83.72

TransR-pa (unif) 85.89 81.94 87.95 80.74 96.43 85.46

TransR (bern) 84.39 (85.9) 80.17 (82.5) 85.88 (83.9) 81.03 95.77 84.06

TransR-pa (bern) 86.90 83.01 88.77 81.82 96.80 85.68

TransH TransH (unif) 80.82 (77.7) 80.75 (76.5) 86.00 (80.2) 80.33 94.99 84.97

TransH-pa (unif) 84.39 88.21 89.74 83.19 96.93 85.97

TransH (bern) 81.03 (78.8) 84.52 (83.3) 87.78 (87.7) 80.50 95.71 85.11

TransH-pa (bern) 84.98 88.58 89.95 83.64 96.91 85.27

TransD TransD (unif) 86.12 (85.6) 86.01 (85.9) 87.36 (86.4) 80.04 95.88 85.37

TransD-pa (unif) 86.93 89.63 89.82 83.41 96.81 86.57

TransD (bern) 86.31 (86.4) 87.78 (89.1) 88.16 (88.0) 81.43 95.78 85.55

TransD-pa (bern) 86.76 89.51 90.27 83.54 96.80 86.24

a The best results are marked in bold, and the second best results in italic
b Results in the parentheses are from the corresponding original papers
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Table 4 Wilcoxon’s Test after comparing TransX and TransX-pa

Unif Bern

R+ R− p p∗ R+ R− p p∗

TransE-pa / TransE 21.0 0.0 0.03126 0.021098 21.0 0.0 0.03126 0.021098

TransR-pa / TransR 21.0 0.0 0.03126 0.021098 21.0 0.0 0.03126 0.01787

TransH-pa / TransH 21.0 0.0 0.03126 0.021098 21.0 0.0 0.03126 0.021098

TransD-pa / TransD 21.0 0.0 0.03126 0.021098 21.0 0.0 0.03126 0.01787

on WN11 and FB13 datasets, which is different to the findings in the link prediction task
(see Section 4.3.2 for detail). The reason is that the validation and testing set of the three
datasets used here are balanced, i.e., the number of positive triplets is equal to that of neg-
ative triplets. And the number of relations of FB13 and WN11 datasets are only 13 and
11 respectively, so both negative sampling settings will not introduce so many ‘false nega-
tive’ triplets. However, on FB15k dataset, now that the number of relations is much bigger,
TransX-pa performs a litter better under the ’bern’ sampling settings.

Closer look to TransD and TransD-pa The difference of TransD-pa and TransD is not so
obvious on WN11 dataset (only an increment of 0.94% (unif), 0.52% (bern)), compared
to the differences on FB13 (an increment of 4.21% (unif), 1.97% (bern)) and FB15k (an
increment of 2.82% (unif), 2.39% (bern)). This phenomenon indicates there exists a learning
bottleneck for translational distance models on WN11 dataset. In fact, there are 470 entities
appearing in the validation and testing sets but not appearing in the training set of WN11.
And the triplets that contains these ’unseen’ entities accounts 6.4% in the validation and
testing sets. Some previous work, like (Wang et al. 2014), introduced textural resources to
address this ’out-of-kb’ problem. So, though little improvements compared with TransD on
WN11 dataset, we can still declare that TransX-pa outperforms the existing translational
distance models.

4.3.2 Link prediction

Link prediction is a rank problem. In testing phase, for each test triple, we replace the head
or tail entity by all entities in the knowledge graph, then rank them in descending order
according to their scores. There are three acknowledged metrics:

– Mean Reciprocal Rank of correct entities (MRR): the reciprocal rank of a query
response is the multiplicative inverse of the rank of the first correct answer, then MRR
is the mean of it over the test set, saying that MRR = 1

N

∑N
i=1

1
ranki

;

– Mean Rank of correct entities (MR): MR = 1
N

∑N
i=1 ranki , MR is sensitive to a few

bad results.
– Proportion of correct entities in top-n ranked entities (Hits@n). We show the results of

n = 1, 3, 10.

A good link predictor should achieve higher MRR, lower MR or higher Hits@n.
In fact, a corrupted triplet may exist in knowledge graph, and of course is correct. The

evaluation above may under-estimate the models that rank these corrupted but correct triples
high. To enable a fair evaluation, a ’Filter’ evaluation setting filters out these triples are
filtered out. Accordingly, the original setting is called ’Raw’.
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We first compare TransX-pa to TransE (Bordes et al. 2013), TransR (Lin et al. 2015),
TransH (Wang et al. 2014), and TransD (Ji et al. 2015). Tables 5, 6, 7 and 8 summary
the self-comparison results. Because the corresponding original papers only report MR and
Hits@10 for FB15k and WN18 (see the result in the parentheses in Tables 5 and 6), we re-
implement and statistic the performances of all metrics. As for FB15k-237 and WN18RR,
Nguyen (2018) has reported the filtered MR, MRR and Hits@10 of TransE under ’bern’
negative sample setting, which are collected as a reference of our re-implementation (see
results in the parentheses in Tables 7 and 8). According to the tables, it can be seen
that our re-implementation is comparable to, or even much better than (see Hits@10 of
TransE, TransH on FB15k and WN18), the original results, indicating the fairness of the
comparison.

From these tables, we can conclude that: (1) TransX-pa performs better when adapting to
different models, under different negative sample settings and different metrics; (2) under
most circumstances, the ’bern’ negative sampling setting is better for link prediction task
than the ’unif’ setting; (3) TransD-pa (bern) ranks the first under most evaluation metrics,
and in the rest metrics, TransD-pa (bern) also ranks the top. Hence, we choose TransD-pa
(bern) to be the best models and compare it with state-of-the-art methods.

Again, in order to demonstrate the effectiveness of our improvement, we apply
Wilcoxon’s test (Demsar 2006) via pairwise comparisons (Table 9). Now that there are only
four datasets, to ensure a suitable test, we view a dataset under ’unif’ and ’bern’ setting
to be two datasets. For simplicity, we choose filtered MRR and Hits@10 for Wilcoxon’s
test.

With a significant level at 0.05, we find out that except for TransH, TransX-pa always
performs better than TransX. We suggest that it is because that TransH has extra constraints
over the norm vectors of hyper-planes (see Section 3.1.3), which causes the optimization to
be more difficult.

To further illustrate our improvements, we select two pairs, TransE v.s. TransE-pa (see
Fig. 2a), TransD v.s. TransD-pa (see Fig. 2b), to see what the performance will be if we vary
the embedding dimension in the range {5, 10, 20, 30, 50, 100}. According to the figures, our
proposed methods show higher performance for all dimensions, indicating the robustness of
our framework.

Also, to investigate the effect of the number of attention heads, we retrain the TransD and
TransD-pa from scratch. That is to say, we do not use the pre-trained TransE model to ini-
tialize them. We find out that the number of attention heads not only affect the performance
but also affect the convergence rate. According to Fig. 3a, TransD-pa with 4-head attention
block shows highest Hits@10, while TransD-pa with 8-head attention block is hard to train,
obtaining a little worse performance. Taking a closer look to the early training epochs (see

Table 9 Wilcoxon’s Test after comparing MRR and Hits@10 of TransX and TransX-pa

Filter MRR Filter Hits@10

R+ R− p p∗ R+ R− p p∗

TransE-pa / TransE 35.0 1.0 0.015626 0.012626 36.0 0.0 0.007812 0.009583

TransR-pa / TransR 36.0 0.0 0.007812 0.009583 36.0 0.0 0.007812 0.009583

TransH-pa / TransH 28.0 8.0 0.19532 0.141482 30.0 6.0 0.10938 0.080058

TransD-pa / TransD 36.0 0.0 0.007812 0.009583 36.0 0.0 0.007812 0.009583
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Fig. 2 Translational distance models with different embedding dimensions on WN18RR dataset. As the
embedding dimension grows, Hits@10 increases quickly, and tends to over-fit when the dimension is larger
than 50, so we choose m = n = 50 for WN18RR

Fig. 3b), TransE shows the fastest convergences rate, following by TransD-pa with 4-head
attention block. It suggests that the self-attention block with too few or too much heads is
unsatisfactory.

Then, we compare TransX-pa to the state-or-the-art models, including KG2E (He et al.
2015), HolE (Nickel et al. 2016), ComplEx (Théo et al. 2016) and ConvE (Dettmers
et al. 2018). Tables 10 and 11 summary the comparison with state-of-the-art methods.
We choose KG2E (He et al. 2015), HolE (Nickel et al. 2016), ComplEx (Théo et al.
2016) and ConvE (Dettmers et al. 2018) to be the competitors, for they are proposed in
recent years and show great improvements for link prediction. The corresponding origi-
nal papers did not test the models on all the datasets with full metrics (the reported results
are shown with parentheses in the tables), so here we re-implement them to enable a fare
comparison.

From these tables, our proposed model shows a better, or at least comparable perfor-
mance, than state-of-the-art models. Specifically, on FB15k-237 dataset, our model ranks
top under MRR and Hits@10 metrics. And on WN18RR dataset, our model ranks top under
MR and Hits@10 metrics. Given the advantage on running time compared to them (HolE
and ComplEx require to be trained using SGD with AdaGrad (Duchi et al. 2011) for tuning

Fig. 3 TransD-pa with different number of attention heads v.s. TransD on WN18RR dataset. Figure 3b takes
a closer look before 50th training epochs of Fig. 3a. We can see that, the convergence rates of TransE and
TransE-pa with different attention heads are almost the same, but they convergence to different value of
Hits@10, showing different learning capacity. As a result, we choose k = 4
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Fig. 4 Improved performance v.s. increased costs between two pairs of models: TransE and TransE-pa,
TransD and TransD-pa. Arrows link from TransX to TransX-pa, with different colors represents for differ-
ent datasets. For better visualization, we set the x-axis to be the logarithm of the total amount of parameters.
Note that we compare the models both under the ’bern’ setting

the learning rate), our proposed framework improves the translational distance models to be
competitive in the field of large-scale knowledge graph learning.

4.3.3 Discussion

As a remark, we would like to justify that the increased cost in relation to the improvements.
Since it is hard to perform quantitative assessment, we investigate it via comparison with
the previous improvement of translational distance models, i.e., from TransE to TransD.

In Fig. 4a and b, we plot the performance with regard to the total number of parameters
of the two pairs of models: TransE and TransE-pa (arrow from TransE to TransE-pa, in
thin line), TransD and TransD-pa (arrow from TransD to TransD-pa, in heavy line), with
different colors representing for different datasets. Note that the number of parameters of
TransD and TransE-pa is nearly the same. According to the figure, from TransD to TransD-
pa, a relatively higher performance improvement is obtained with a smaller increased cost,
while from TransE to TransD or TransE-pa, the corresponding improvement will result in a
higher increased cost.

5 Conclusion

In this paper, we propose a framework named TransX-pa. This framework takes the existing
translational distance models for knowledge graph embedding (TransE, TransR, TransH and
TransD) into consideration from a unified viewpoint. Under this framework, we have used
positional-aware embeddings and self-attention blocks to deal with circle and hierarchical
structures in knowledge graphs. Compared with previous models, TransX-pa only requires
a small extra computational cost. A large number of experiments on triplet classification
and link prediction tasks have shown the effectiveness of TransX-pa, demonstrating that it
can be used to overcome the learning problem caused by the special structures.
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