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A real-time semantic visual SLAM
approach with points and objects

Peiyu Guan1,2 , Zhiqiang Cao1,2, Erkui Chen3, Shuang Liang1,2,
Min Tan1,2 and Junzhi Yu1,4

Abstract
Visual simultaneously localization and mapping (SLAM) is important for self-localization and environment perception of service
robots, where semantic SLAM can provide a more accurate localization result and a map with abundant semantic information.
In this article, we propose a real-time PO-SLAM approach with the combination of both point and object measurements.
With point–point association in ORB-SLAM2, we also consider point–object association based on object segmentation and
object–object association, where the object segmentation is employed by combining object detection with depth histogram.
Also, besides the constraint of feature points belonging to an object, a semantic constraint of relative position invariance
among objects is introduced. Accordingly, two semantic loss functions with point and object information are designed and
added to the bundle adjustment optimization. The effectiveness of the proposed approach is verified by experiments.
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Introduction

Simultaneously localization and mapping (SLAM) has

become a very popular research direction in recent years,

which requires to construct and update an environment map

while simultaneously tracking an agent’s position.1,2

SLAM has a variety of applications such as autonomous

driving, mobile robots, and virtual reality. Especially,

visual SLAM has received extensive attentions due to the

large amount of information, wide range of application

scenarios, and low cost of visual sensors.3,4 Compared with

monocular and stereo cameras, RGB-Depth (RGB-D)

camera is widely used in indoor environments because they

can directly provide the depth and color measurements of

the scene. In this article, we focus on RGB-D SLAM.

For traditional visual SLAM, the feature-based

approach5–7 and direct method8,9 are mainstream solutions,

where low-level point information plays an important role.

The former associates points in successive frames

according to the local appearance near every feature point,

while the latter tracks points on the basis of constant bright-

ness assumption.10 However, these methods suffer from
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illumination and viewpoint changes.11,12 Different view-

points and illuminations can lead to the variations of local

appearance and brightness of the same point, which will

cause the tracking failure of points with incorrect data

association. Thus, the localization accuracy of the visual

SLAM is decreased. On the other hand, the traditional

visual SLAM mainly focuses on low-level geometric infor-

mation, which possibly results in a weak interaction with

complex surrounding environments.13

With the development of deep learning, great progresses

have been made in object detection and object segmenta-

tion whose high-level semantic information can better

adapt to viewpoint and illumination changes. The purpose

of object detection is to infer the locations and class

labels of objects, where the location of the object is rep-

resented in the form of a bounding box. For object detec-

tion based on deep learning, it can be classified into

approaches based on regional proposal and without

regional proposal. The former is a two-stage process:

firstly generate a series of candidate regions and then

extract the features of the candidate regions for classifi-

cation and boundary regression. Its popular methods

include regions with convolutional neural network fea-

tures (R-CNN), Fast R-CNN, and Faster R-CNN and so

on. For the approaches without regional proposal, the

global information of the image is directly used, and you

only look once (YOLO),14 YOLO9000,15 YOLOv3,16

and single-shot multibox detector17 are the representative

methods. Different from the bounding box of object

detection, object segmentation predicts the class labels

pixel by pixel, and it is related to semantic segmenta-

tion18,19 and instance segmentation.20 A possible problem

of object segmentation is its computation cost, which

makes it hard to integrate into a real-time SLAM.

Driven by object detection and segmentation based on

deep learning, the researchers concern semantic visual

SLAM with the combination of object detection or segmen-

tation. Semantics can not only help SLAM achieve better

localization11,21–23 but also establish more abundant map.

To improve the localization accuracy, semantic constraints

are added. Lianos et al. constructed a semantic error func-

tion by utilizing semantic segmentation to promote point–

point association.11 An et al. evaluated the importance of

each semantic category based on semantic segmentation for

better visual features and the removal of outliers in the

matching process.21 On the basis, the accuracy and

robustness of localization are improved. Besides semantic

constraint, pose optimization of objects is also considered.

A 3-D cuboid object detection approach is proposed,22 and

it is combined with the Oriented FAST and Rotated BRIEF

(ORB) feature points to respectively build semantic error

functions for static and dynamic environments. On this

basis, poses of points, 3-D cuboids, and cameras are jointly

optimized. Similarly, Li et al. utilized 3-D object detection

with viewpoint classification as well as feature points for

constructing semantic constraints,23 which is suitable for

both static and dynamic conditions.

It shall be noted that existing semantic SLAM

approaches mainly concern the constraints of camera–land-

mark, camera–camera, as well as different types of land-

marks, where a landmark can be a point-type, and it can

also be an object type. The constraint of landmarks with the

same kind is seldom considered. In fact, there exists invar-

iance in terms of relative distance and orientation between

two static object landmarks, and it may be changed if only

the aforementioned constraints are employed. It is benefi-

cial for the localization by introducing the relative con-

straints among objects into the SLAM optimization

process. In this article, we propose a real-time visual

Point-Object SLAM (PO-SLAM) approach on the basis

of RGB-D ORB-SLAM2, which incorporates object–

object constraint in the bundle adjustment (BA) optimiza-

tion process. To ensure the real-time performance of the

system while considering the instantiation of the objects,

YOLOv316 is adopted and it is combined with a rough

geometric segmentation based on depth histogram to obtain

the contours of objects, which can improve the association

quality. Moreover, the object–object constraint is reflected

by the relative position invariance of objects, which is con-

verted to the length and orientation invariances of the line

segment connecting every two objects in each frame. This

provides additional information for pose optimization.

In the following, we will describe the proposed PO-

SLAM approach combining points and objects in detail.

Then, the experiments are presented, and finally, we con-

clude the article.

The proposed semantic PO-SLAM
with points and objects

The framework of the proposed semantic PO-SLAM is

shown in Figure 1, where point features, point–point asso-

ciation, and point–point constraint are directly used accord-

ing to ORB-SLAM2.7 In the feature extraction module,

object features are extracted from the color image provided

by RGB-D camera using YOLOv3.16 Considering that

object detection cannot accurately express the contours of

objects, we utilize the depth image to geometrically seg-

ment the detected objects based on depth histograms. Then,

combined with point features, point–object association is

executed to obtain the feature points on each detected

object. After extracting the features of every frame, we

track the features between the current frame and the previ-

ous frame. And besides the point–point association, object–

object interframe association is also executed. On this

basis, the extracted point and object features as well as the

association results are involved in the BA optimization

process. With the help of loop closing of ORB-SLAM2,

SLAM is finally implemented. In the following, we will

address the PO-SLAM in detail.
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Feature extraction

Low-level point features are combined with high-level

semantic object features in our SLAM. The reader may

refer to the study by Mur-Artal and Tardós7 for point fea-

tures extraction, and in this section, we focus on the extrac-

tion of object features.

Object features extraction. Object features including the

objects number, categories, as well as the positions are

favorable for data association of SLAM due to the relia-

bility of high-level feature. In this article, YOLOv316 is

utilized to detect the objects at each frame, where the deep

network is trained on the MS COCO data set including 80

categories of common objects. By object detection, the

bounding boxes, labels, and label confidences of objects

are obtained. Note that we only reserve the results with

confidence of more than 70%.

Geometric segmentation. For object detection, the resulting

bounding box surrounding an object cannot fit the actual

boundary of object completely, and some background

information is inevitably contained. In this case, it is not

easy to judge whether a feature point is on an object, which

will affect the determination of the object’s position. Also,

in spite of good performance in segmentation effect,

instance segmentation based on deep learning needs to take

more time. A fast segmentation solution to extract the fore-

ground in the bounding box of an object is required. Herein,

a geometric segmentation based on depth histogram is

presented.

In a detection bounding box, there are only two types of

pixels: background and foreground. Their differentiation

may be solved using depth information that reflects the

distance between an object and the camera, and a depth

threshold to separate the foreground from the background

needs to be determined. With the depth values of fore-

ground and background, we utilize the Otsu threshold seg-

mentation method24 to segment the depth values by

maximizing the interclass variance of these two parts. Otsu

is a method to automatically determine the threshold;
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Figure 1. Overall framework of the semantic PO-SLAM approach. SLAM: simultaneously localization and mapping.
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however, it is sensitive to noise. For the depth map pro-

vided by the RGB-D camera, there exists the case where the

depth value of a pixel is 0, which may be caused by the

pixels outside the depth range or miss detection. Those

pixels with a depth value of 0 in the depth map should be

first filtered out before calculating the depth threshold.

To obtain the geometrical segmentation for an object, the

depth image of current frame is cropped according to the

predicted bounding box, and one can obtain the depth submap

dh�w. After dh�w is filtered, its values are scaled to [0, 255],

which is used to acquire the threshold using the Otsu method.

On this basis, the foreground and background corresponding

to the object is separated. The detailed process is given in

Algorithm 1. bl; bb
� �

and br; btð Þ are the left bottom coordi-

nate and the upper right coordinate of the bounding box,

respectively, and h ¼ bb � bt, w ¼ br � bl. Dth refers to the

depth threshold, and the segmentation mask is labelled as M.

Figure 2 illustrates the segmentation result. Take the

teddy bear in the original image from the TUM data set25

(see Figure 2(a)) as an example. Figure 2(b) provides the

detection result, and the depth histogram of the pixels in the

bounding box is presented in Figure 2(c). One can see that

the depth values are divided into two parts by the yellow

dashed line corresponding to the depth threshold Dth. The

left part and right part of the dashed line are corresponding

to the depth values of foreground and background. With the

segmentation, the extracted foreground is given in

Figure 2(d) for the object in Figure 2(b).

Data association

As a reflection of the common view between frames, data

association is important in solving camera poses and land-

mark positions of SLAM. In addition to the association of

interframe point features used in ORB-SLAM2,7 we also

take the correlation of point features and object features in

each frame as well as the association of interframe object

features into account.

Point–object association. As mentioned above, for each

detected bounding box in each frame, the foreground image

is separated by the depth image information, and the feature

points located in the foreground area are used as the feature

points corresponding to the object. The association of

points and objects is used to calculate the point–object error

in the subsequent BA optimization. Figure 3 gives an illus-

tration of association results for a selected image in fr2/

desk of the TUM RGB-D data set.25 The bounding boxes of

different classes of objects are represented by different

colors, and the color of feature points belonging to the same

object is consistent with that of the bounding box. Notice

that multiple object instances of the same class can be

distinguished by the positions of their bounding boxes, and

the green points do not belong to any detected object,

which are considered as the background. When the points

fall within the bounding box of an object and their colors

match the color of the bounding box, they are regarded as

the feature points associated with the object.

Object–object association. Object–object association between

two frames is similar to standard object tracking. Since we

have known the categories of the objects in each frame, we

can only concern the object categories that simultaneously

appear in two frames. At first, the center uc; vcð Þ of an

object in the previous color image is unprojected to the

world coordinate system by its depth dc and the camera

pose Tcw;pre of the previous frame. Then 3-D position Pc

of the object center is projected to the current image using

the camera pose Tcw;cur of the current frame.

Pc ¼ p�1 Tcw;pre; dc; uc; vc

� �
ð1Þ

uc; vcð Þproj ¼ p T cw;cur;Pc

� �
ð2Þ

where p and p�1 represent the projection from 3-D space to

2-D image and unprojection from 2-D image to 3-D space,

respectively. uc; vcð Þproj refers to the projection of Pc on the

current frame. After the projection of the object center on

the current frame is acquired, we check the relationship of

the projection and the bounding boxes in the current frame

with the constraint of the same object label. If the distance

Algorithm 1. Geometrical segmentation process.
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between the projection and the center of a bounding box in

the current frame is less than a given threshold, the corre-

sponding two objects are considered as a successful match.

Bundle adjustment

Combining point and object features, constraints with

geometric and semantic relationships are constructed to

optimize camera poses and 3-D point positions. The

sets of image sequence, positions of 3-D points, and objects

in the world coordinate system are denoted as

I ¼ Ikf g; P ¼ Pif g; and O ¼ Oj

� �
, respectively, where

k, i, and j are their corresponding indexes. For a 3-D point,

it is either on the object or belongs to the background. We

label the position of the ith point on the jth object as jPi.

Also, the object is represented by the points inside the

object and its position, and fOjg ¼ f jPig; Cjg
�

, where Cj

is the 3-D position of the jth object.

We can observe the measurements corresponding to 3-D

points and objects from each frame. o ¼ fokjg and z ¼ zkif g
are used to stand for the observations of jth object Oj and the

ith point in the kth frame. okj ¼ bl
kj; b

b
kj; br

kj; bt
kj; ckj; lkj

n o
,

where ckj and lkj are the observations of object position and

class label. We denote jzki with the observation on the jth

object for the ith point in the kth frame.

BA formulation. Our semantic optimization process can be

described as the following problem: given the observations

Figure 2. The geometric segmentation. (a) Original image. (b) One detected object. (c) The depth histogram of the bounding box in (b).
(d) The extracted foreground after the segmentation.

Figure 3. Results of point–object association for an image in fr2/
desk of TUM RGB-D data set, where the color of points belonging
to the same object is the same as that of the corresponding
bounding box.
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zkif g of points in the kth frame and observations okj

� �
of

objects Oj

� �
in the kth frame, find the optimized camera

pose T�cw; k and the positions fP�i g of the points, where

Tcw; k 2 SE 3ð Þ is used to convert 3-D points from the world

coordinate system to the camera coordinate system, and

Pi 2 R3. In the BA process, the optimization process is

executed by minimizing the errors between the predicted

values and the measured values, which is a nonlinear least-

squares problem. Our measurement errors consist of point–

point error, point–object error, and object–object error, and

the optimization function can be formulated as follows

T �cw; k ;P
�
i ¼ arg min

Tcw; k ;Pi

X
k; j; i

n
jjepp zki; Tcw; k ;Pi

� �
jj2Sk;i

þjjeoo okj1
; okj2

; Tcw; k ;Oj1
;Oj2

� �
jj2Sk;j1 ;j2

þ jjepo okj; Tcw; k ;
jPi

� �
jj2Sk;i;j

o
ð3Þ

where epp �ð Þ, epo �ð Þ, and eoo �ð Þ represent the errors between

the projected point on the image by the camera pose and the

observation point for Pi, between projected point and 2-D

bounding box and between two objects, respectively. In this

article, the Levenberg–Marquardt method is adopted to

solve this problem.

Error functions. Point–point error. With the ORB features,

point–point error (i.e. re-projection error) is given by7:

epp zki;T cw; k ;Pi

� �
¼ p Tcw; k ;Pi

� �
� zki ð4Þ

Point–object error. Based on the point and object data

association, we get fj
Pig that belong to an object Oj. The-

oretically, after these points are projected into the current

frame, they should fall into the corresponding 2-D bound-

ing box of the object Oj but that is not always the case. Our

point–object error for the point jPi is as follows.

epo okj; Tcw; k ;
jPiÞ ¼ erru; errvð Þ

�
ð5Þ

where

erru ¼
0

uproj � br
kj

bl
kj � uproj

bl
kj � uproj � br

kj

uproj > br
kj

uproj < bl
kj

8>><
>>:

ð6Þ

errv ¼
0

vproj � bb
kj

bt
kj � vproj

bt
kj � vproj � bb

kj

vproj > bb
kj

vproj < bt
kj

8>>><
>>>:

ð7Þ

uproj; vproj

� �
¼ p Tcw; k ;

jPi

� �
ð8Þ

uproj; vproj

� �
is the projected pixel coordinate of jPi, and

erru and errv are the u-axis error and v-axis error between

projected point and 2-D bounding box. It shall be noted that

when the projection point is inside the detected bounding

box, the cost function is always zero, and thus this con-

straint is relatively coarse. Only when the projection point

falls outside the detection box, does the penalty take effect.

Object–object error. we acquire the feature points

belonging to the objects as well as corresponding 3-D

points through the point–object data association. And then

use the coordinate centroid of these 3-D points as the 3-D

position of the object with the coordinate centroid of cor-

responding ORB feature points in the image as the obser-

vation of the object position, which are described as

Cj ¼
1

N

X
i

jPi ð9Þ

ckj ¼
1

N

X
i

jzki ð10Þ

where N is the number of points anchored to the object Oj.

The relative position between two objects is constrained

by distance and orientation. To solve the problem, we con-

nect the positions of two objects into an abstract line seg-

ment, and thus the distance and direction constraints can be

converted to the invariance of length and direction of the

line segment. We define ckj1
and ckj2

as the observations of

positions for objects Oj1
and Oj2

in the kth frame, respec-

tively. Correspondingly, Cj1
and Cj2

represent the 3-D posi-

tions of objects Oj1
and Oj2

. According to Hartley and

Zisserman,26 we define ch
kj1

and ch
kj2

as the homogeneous

coordinates of ckj1
and ckj2

for the parameterized represen-

tation of the line segment. Thus, the line through ckj1
and

ckj2
can be expressed as follows

l ¼
ch

kj1
� ch

kj2

ch
kj1
� ch

kj2

��� ��� ð11Þ

According to the direction invariance constraint, we can

infer that the projection points of object Oj1
and object Oj2

should be located on the line l. The direction error can be

denoted as follows

eoo dir ¼ lTp Tcw; k ;Cj1

� �
; lTp Tcw; k ;Cj2

� �� �
ð12Þ

The length invariance of the line segment indicates that

the distance between the projected points is the same as that

of ckj1
and ckj2

. Then, the distance error is given by

eoo dis ¼ D p1; p2

� �
� Dðckj1

; ckj2
Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pu
1 � pu

2

� �2 þ pv
1 � pv

2

� �2
q

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cu

kj1
� cu

kj2

� 	2

þ cv
kj1
� cv

kj2

� 	2
r ð13Þ

where

p1 ¼ p Tcw; k ;Cj1

� �
ð14Þ

p2 ¼ p Tcw; k ;Cj2

� �
ð15Þ
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where p1 and p2 represent the 2-D pixel coordinates of the

projections of Cj1
and Cj2

in the image, respectively, and

D �ð Þ refers to the Euclidean distance of two pixels. eoo dir

and eoo dis constitute the object–object error function.

Experiments and results

In this section, we will evaluate the localization perfor-

mance of our approach and conduct the comparison with

ORB-SLAM2.

Experimental setup

We adopt the TUM RGB-D SLAM data set and bench-

mark25,27 to test and validate the approach. TUM data set

consists of different types of sequences, which provide

color and depth images with a resolution of 640 � 480

using a Microsoft Kinect sensor. YOLOv3 scales the orig-

inal images to 416� 416. Combining objects we concerned

such as book, keyboard, mouse, TV-monitor, cup, cell

phone, remote, bottle, teddy bear, and potted plant, 10

sequences related to office environments are selected.

We adopt the following evaluation metrics27: absolute

trajectory error with root mean square (ATE) and mean

relative pose error (RPE), where ATE quantifies the differ-

ence between points of the estimated trajectory and their

ground truths, whereas RPE assesses the local accuracy of

the estimated poses in a fixed interval. All of the experi-

ments are repeated five times and the median of these five

results is considered as the final result. To clearly demon-

strate the improvement of our method, ATErel
11 and RPErel

are considered, where the former refers to the relative ATE

and the latter reflects the relative RPE. ATErel ¼
ATEORB SLAM2 � ATEþsemanticsð Þ100= ATEORB SLAM2 and

RPErel ¼ RPEORB SLAM2 � RPEþsemanticsð Þ100=RPEORB SLAM2,

where ATEþsemantics and RPEþsemantics represent the ATE

and RPE of our semantic SLAM. All of our experiments are

run on a desktop with an Intel Core i7-7700HQ CPU and

Nvidia GTX 1080 GPU. Only the object detection is exe-

cuted on the GPU.

Experiment on the TUM RGB-D data set25

Tables 1 and 2 give the comparison of our PO-SLAM and

ORB-SLAM2 over 10 sequences. To better address our

Table 1. Comparison of our methods with ORB-SLAM2 according to absolute trajectory errors.

Sequence
ORB-SLAM2

PO-SLAM1 PO-SLAM2 PO-SLAM

ATE (m) ATE (m) ATErel (%) ATE (m) ATErel (%) ATE (m) ATErel (%)

fr1/desk 0.0153 0.0158 -3.27 0.0152 0.65 0.0153 0.00
fr1/desk2 0.0239 0.0220 7.95 0.0234 2.09 0.0214 10.46
Fr1/room 0.0537 0.0516 3.91 0.0484 9.87 0.0481 10.43
fr1/xyz 0.0097 0.0097 0.00 0.0096 1.03 0.0096 1.03
fr2/desk 0.0094 0.0092 2.13 0.0091 3.19 0.0090 4.26
fr2/xyz 0.0036 0.0037 �2.78 0.0036 0.00 0.0035 2.78
fr3/long_office 0.0100 0.0097 3.00 0.0102 -2.00 0.0096 4.00
fr3/sitting_xyz 0.0093 0.0090 3.23 0.0091 2.15 0.0091 2.15
fr3/sitting_static 0.0087 0.0080 8.05 0.0084 3.45 0.0079 9.20
fr3/walking_xyz 0.7127 0.7012 1.61 0.7128 -0.01 0.7025 1.43

SLAM: simultaneously localization and mapping; ATE: absolute trajectory error with root mean square.

Table 2. Comparison of our methods with ORB-SLAM2 according to relative pose errors.

Sequence
ORB-SLAM2

PO-SLAM1 PO-SLAM2 PO-SLAM

RPE (m) RPE (m) RPErel (%) RPE (m) RPErel (%) RPE (m) RPErel (%)

fr1/desk 0.0279 0.0283 �1.43 0.0271 2.87 0.0277 0.72
fr1/desk2 0.0409 0.0408 0.24 0.0399 2.44 0.0388 5.13
fr1/room 0.0840 0.0763 9.17 0.0762 9.29 0.0748 10.95
fr1/xyz 0.0129 0.0128 0.78 0.0127 1.55 0.0129 0
fr2/desk 0.0324 0.0313 3.40 0.0312 3.70 0.0319 1.54
fr2/xyz 0.0106 0.0104 1.89 0.0103 2.83 0.0103 2.83
fr3/long_office 0.0234 0.0226 3.42 0.0230 1.71 0.0226 3.42
fr3/sitting_xyz 0.0121 0.0117 3.31 0.0118 2.48 0.0116 4.13
fr3/sitting_static 0.0115 0.0109 5.22 0.0111 3.48 0.0107 6.96
fr3/walking_xyz 0.8439 0.8266 2.05 0.8464 �0.30 0.8115 3.84

SLAM: simultaneously localization and mapping; RPE: mean relative pose error.
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approach, we also consider two other methods PO-SLAM1

and PO-SLAM2. These two methods correspond to the

cases of PO-SLAM without point–object error in (3) and

PO-SLAM without object–object error in (3), respectively.

Noticing that the first seven sequences describe static

scenes, whereas the last three sequences are related to

dynamic scenes.

As can be seen in Tables 1 and 2, our PO-SLAM has an

improvement of up to 10.46% in ATE and up to 10.95% in

RPE compared with ORB-SLAM2. Overall, our three meth-

ods perform better than ORB-SLAM2 in both ATE and RPE

for most of the sequences, and PO-SLAM performs best.

Figure 4 depicts the comparison of the trajectories

obtained by PO-SLAM and ORB-SLAM2 on four

sequences with the ground truth. It is seen that our trajec-

tories are closer to the ground truth than ORB-SLAM2.

Note that all ORB features extracted by ORB-SLAM2 are

used in our point–point error. From Tables 1 and 2, our

method has proved a better adaptability to dynamic envir-

onments. Figure 5 illustrates a performance comparison of

PO-SLAM and ORB-SLAM2 on fr3/walking_xyz

dynamic sequence.25 Clearly, ORB-SLAM2 fails to track

on the frame 696 and frame 768, while PO-SLAM is still

in the SLAM mode with enough matching points with the

previous frame.

The average running time per frame of PO-SLAM is

demonstrated in Figure 6 for 10 sequences on the TUM

RGB-D data set. It is seen that the average time is 71.47

ms with a speed about 14 fps, which meets the real-time

requirement.

Conclusions

In this article, we propose a semantic visual SLAM

approach combining 2-D object detection and ORB feature

points with additional semantic constraints for the process

of BA optimization. The object segmentation approach

combining object detection and the depth histogram of 2-

D bounding box is used to associate feature points and their

corresponding objects. Besides, the correlation between

any two detected objects within the field of view of each

frame is also introduced. Experimental results on the TUM

RGB-D data set indicate that our approach can improve the

accuracy and robustness compared with ORB-SLAM2.

Figure 4. Comparison of trajectories estimated by our PO-SLAM, ORB-SLAM2, and ground truth on the TUM RGB-D data set. (a) fr1/
desk2, (b) fr1/room, (c) fr3/office and (d) fr2/desk. SLAM: simultaneously localization and mapping.

8 International Journal of Advanced Robotic Systems



Figure 5. Comparison of our PO-SLAM and ORB-SLAM2 on fr3/walking_xyz. (a) and (b) The results of ORB-SLAM2, and (c) and (d)
the results of PO-SLAM. SLAM: simultaneously localization and mapping.

Figure 6. Average running time per frame of PO-SLAM on the TUM RGB-D data set. SLAM: simultaneously localization and mapping.

Guan et al. 9
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