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A high-efficiency, information-based
exploration path planning method
for active simultaneous localization
and mapping
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Abstract
The efficiency of exploration in an unknown scene and full coverage of the scene are essential for a robot to complete
simultaneous localization and mapping actively. However, it is challenging for a robot to explore an unknown environment
with high efficiency and full coverage autonomously. In this article, we propose a novel exploration path planning method
based on information entropy. An information entropy map is first constructed, and its boundary features are extracted.
Then a Dijkstra-based algorithm is applied to generate candidate exploration paths based on the boundary features. The
dead-reckoning algorithm is used to predict the uncertainty of the robot’s pose along each candidate path. The explo-
ration path is selected based on exploration efficiency and/or high coverage. Simulations and experiments are conducted
to evaluate the proposed method’s effectiveness. The results demonstrated that the proposed method achieved not only
higher exploration efficiency but also a larger coverage area.
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Introduction

In recent years, autonomous exploration path planning and

simultaneous localization and mapping (SLAM) in an

unknown environment has drawn increasing attention from

robotics and computer vision communities.1–6 In the

research fields of driverless cars,7–9 unmanned aerial vehi-

cles, bionic robot,10 and household robot, a real-time, high-

precision environmental map is the basis for these

applications to achieve other high-level jobs such as navi-

gation, surveying, and picking and dropping items. How-

ever, the actual application scenarios are ever-changing,

and it is impossible to preestablish maps for each scene.

The lack of autonomous environmental exploration cap-

abilities will significantly limit the widespread use of robot

technology. Therefore, many scholars began to study the

robot’s autonomous exploration path planning problem in

an unknown environment, enabling the robot to explore and

establish the map actively.11–21 They combine the local

observation data with a partially established map to get
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an optimal exploration trajectory. The robot autonomously

conducts mapping and navigation along this trajectory.

Some scholars have also considered the optimization of

the sensor’s pose during the exploration.22–24 The classic

frontier-based approach11,14,25 can achieve a full cover-

age observation of the environment by selecting the

nearest accessible and unvisited frontier, but it is a

one-step greedy method and cannot guarantee that the

final exploration trajectory is optimal. The exploration

efficiency may decrease significantly due to frequent

retrace the route and the fragmentation of the unex-

plored region. The possibility of positioning loss will

also increase without constraints of the uncertainty in

the robot’s location. Some scholars have adopted an

optimization-based multistep approach to obtain the

optimal path by maximizing the information gain during

the exploration.15,23,26–30 However, the computation cost

increases significantly as the length of the generated

path increases. As a result, the path length has to be

limited, or the map resolution is reduced. The

optimization-based methods tend to have a high effi-

ciency of exploration at the beginning, but at the end

of the exploration, as the fragmentation of the explora-

tion environment increases, the exploration efficiency

reduces drastically.

In this article, a novel exploration path planning

method based on information entropy has been pro-

posed. The proposed method tries to follow the bound-

ary of the unexplored space and the explored space,

avoid breaking the unexplored region into pieces and

maintain the integrity of the unexplored area. This

mechanism achieves a higher and more stable explora-

tion efficiency throughout the exploration process.

Information entropy can fully reflect the quantity of

information, which is more accurate and has more

advantages than the semantic concepts in the frontier-

based methods. First, this representation for the envi-

ronment makes the proposed method not only has the

same global convergence as the typical frontier-based

methods but also overcomes the disadvantage of the

efficiency reduction due to the fragmentation. Second,

the representation simplifies the calculation of informa-

tion gain. The information entropy gain can be obtained

by a more straightforward summation operation rather

than a large number of multiplication operations as

needed to calculate the posterior probability. A Dijkstra

algorithm-based exploration path generation strategy is

proposed to get a set of candidate paths under the con-

sideration of the robot’s pose uncertainty along these

paths. Then an efficiency-optimal selection strategy is

used to choose the final exploration path. The results of

simulations and experiments show that the proposed

method has a significant improvement compared to two

classic exploration methods.

The main contributions of this article are summarized as

follows:

(1) A path generation method based on information

entropy maps and boundary features is proposed

to generate efficient exploration paths.

(2) Uncertainty changes in the pose of the robot are

also taken into account in the candidate explora-

tion paths.

(3) Practical validation of the proposed method on a

mobile robot.

Related work

The exploration in an unknown environment to active SLAM

have been studied by many researchers.11,14–17,25,26,29,31–42

We will give a brief review of these methods as the following

three categories.

Frontier-based exploration methods

The frontier-based exploration methods11,14,25,38,42 in

unknown scenes can be traced back to the seminal work

of Yamauchi.11 The frontier refers to the boundary between

the open space and unexplored space. The robot explores

new areas by moving to the nearest frontier until all the

frontier in the environment has been explored. They also

extern the frontier-based methods to multiple robots.42

Freda and Oriolo mainly use a data structure that they

called the Sensor-based Random Tree (SRT) to create the

exploration path and uses the frontier to guide the growth of

the SRT toward unexplored areas.14 Mobarhani et al. pro-

pose a histogram-based evaluation method to cluster the

frontier cell and select the optimal target. They evaluate

each cluster by calculating the distance from each cluster

center to the robot, and the number of cells included in each

cluster.25 By using the frontier-based method, the order of

observations is not constrained, which results in the area to

be explored that may be gradually divided into more and

more small areas. In order to achieve full coverage of the

environment, the robot has to jump back and forth between

these small areas. However, the classic frontier-based

method tends to cause an increase in the fragmentation of

the unexplored region. We propose a method of exploration

path planning based on boundary features. The proposed

method can avoid dividing the region into multiple small

pieces and reducing the fragmentation.

Environmental characteristics-based method

Mu et al. use the features extracted from the environment to

construct the geometric representation of the environment,

which they called topological feature graph (TFG).43 They

use a sampling-based method to generate the exploration

path with TFG. Xu et al. use the time-varying tensor field to

represent the environment and guide the robot to move.23

At the same time, an RGB-D camera is attached to the robot

arm to scan the environment, and the camera’s 3-D trajec-

tory is optimized simultaneously to move smoothly to
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obtain high-quality scans. Vallvé et al. build potential

information filed by evaluating the path and map entropy

reduction. Then they compute an exploration path in the

gradient descent direction of the potential information

filed.28 We extract the boundary features of the environ-

ment to generate the exploration path. The boundary fea-

ture is stable and has lower computational complexity than

the method11 and the method.29

Information-theoretic methods

Leung et al. treat the robot’s exploration path planning in

an unknown environment as an optimal path planning.26

They assume that the features in the environment are static,

and use model predictive control to obtain a control

sequence of a robot by maximizing the information entropy

gain. Vallvé et al. propose a method based on rapidly

exploring random tree (RRT).40 They use RRT to generate

a set of candidate paths, and then they use POSE SLAM to

evaluate these candidate paths by predicting changes in the

uncertainty of the robot’s path and the information entropy

of the map to select the final exploration path. Stachniss

et al. use a particle filter to predict changes in maps and

robot’s poses after moved to each possible position.37 They

proposed a method to select the exploration actions by

trading off between the expected information gain and the

possible sensor observation. Bourgault et al. propose a

weighted utility evaluation function based on the uncer-

tainty of the localization and information gain, and used

the optimization method to obtain the path of exploration.15

As the length of the planning path increases, the computa-

tional cost will increase dramatically. Bai et al. propose a

Bayesian optimization-based approach.29 Firstly, some ran-

dom exploration targets around the robot are generated, and

mutual information at these targets are calculated.

Moreover, a Gaussian process (GP) is trained to predict the

distribution of mutual information. After obtaining the ini-

tial GP model, they use the Bayesian optimization and the

GP model to find the best exploration target, and the mutual

information moving to it and add them to the training data

set to train a new GP model. Then they use this model to

calculate the best target and mutual information. This itera-

tive process is repeated several times. Finally, the final

exploration goal is obtained. Since the acquisition of the

posterior probability is a computationally complex calcula-

tion, the existing methods mostly address this problem by

using a shorter planning path or reducing the resolution of

the map. However, the boundary features used in this arti-

cle cover only a small portion of the map. Therefore, the

number of planning paths is significantly reduced.

Approach overview

We refer to the problem that a robot plans exploration paths

autonomously in an unknown environment and performs

simultaneous mapping and localization as the active SLAM.

The active SLAM can be separated into two subproblems,

SLAM and the active exploration path planning. The tradi-

tional SLAM approach passively receives observation data

and solves the problem of localization and mapping. Based on

the partial information of the existing environment, the active

algorithm plans an efficient path for the next exploration

steps. This path must be traded off between the benefits of

exploring new areas and revisiting areas to improve accuracy.

In order to ensure that the exploration process does not fail,

the uncertainty of the robot’s pose will also be added to the

constraints of the exploration path planning.

Figure 1 shows the pipeline of our proposed method. In

this article, an open-source SLAM44 has been used to pro-

vide an occupied grid map, robot positioning, and the

Perform SLAM

Grid Map

Boundary
feature 

extraction

Candidate
path

generation

Correction of
candidate

paths

Pose Uncertainty Estimation Exploration Path

Entropy map
Path evaluation

and
selection

Candidate exploration path generationUpdate entropy map Optimal exploration path

(a) (b) (c)

Figure 1. Overall scheme of our exploration path planning approach for the active SLAM. In Figure (a), the local grid map and sensor
data are used to update the information entropy map incrementally. In Figure (b), the boundary features are extracted, and a set of
candidate exploration paths is generated. The length and number of these candidate paths are corrected. In Figure (c), these candidate
paths are evaluated by a comprehensive path selection strategy, and an optimal exploration path is obtained.
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uncertainty estimation of the robot’s pose. In Figure 1(a),

the local grid map and sensor data are used to update the

information entropy map incrementally. Changes in the

grid map will be updated synchronously to the information

entropy map. The steps for generating the candidate paths

are as shown in Figure 1(b). First, the boundary features in

the grid map and the information entropy map will be

extracted by a convolution operation and a threshold seg-

mentation algorithm. Then, a path generation algorithm

based on the extracted boundary features will be used to

generate a set of candidate exploration paths. The length

and number of these candidate paths are modified by the

candidate path correction module to produce a set of can-

didate exploration paths that cover the unexplored area. In

Figure 1(c), the candidate paths obtained from Figure 1(b)

are evaluated by the proposed comprehensive path selec-

tion strategy, and finally, an optimal exploration path is

obtained. We repeat the above process until the information

entropy of all the grids in the information entropy map is

reduced to a sufficiently low threshold.

Information entropy map

We construct a grid information entropy map form the

occupied grid map and the sensor data. The entropy map

is used to represent the perception of the environment. The

occupied grid map can only give a state of each grid its

occupied or idle state, and it is susceptible to noise as the

state of the grid changes too fast with the observed data,

which has a significant impact on the path planning pro-

cessing. A continuous information entropy map is created

and updated synchronously with the SLAM process to

solve the issue. The entropy of a grid is gradually and

smoothly updated as the observation progresses, which

reflects the average state of the observations, and thus, the

grid information entropy map is less sensitive to noise.

Information entropy is a quantitative measure of infor-

mation. For a discrete random variable X with possible

values x1; x2 ; :::; xn, and probability mass function, the

information entropy of the random variable X is defined as

Ĥ ðX Þ ¼ �
Xn

i¼1

PðxiÞlogðPðxiÞÞ ð1Þ

For each grid, its information entropy is calculated and

continuously updated as the observation progresses. There

are only two states in each grid, that is, idle or occupied, so

the information entropy in this article is defined as

Ĥ ðciÞ ¼ � PðciÞln PðciÞ � ð1� PðciÞÞlnð1� PðciÞÞ
ð2Þ

where PðciÞ refers to the probability that the grid cell ci

is occupied. The information entropy map is continu-

ously updated with the smoothed entropy value using

equation (3)

Htþ1ðciÞ ¼ k HtðciÞ þ ð1� kÞ Ĥ tðciÞ ð3Þ

where HtðciÞ is the entropy of the grid cell ci in the grid

information entropy map at time step t and Ĥ tðciÞ is the

estimated entropy value for cell ci, Htþ1ðciÞ is the updated

entropy for the grid cell ci. k is an updated coefficient that

determines the update weights of the actual entropy and the

observations.

Candidate exploration path generation

The active SLAM is mainly concerned with how to use

local observation information to plan the exploration path,

and simultaneously locate itself and establish a complete

environment map with or without a prior environmental

map. In this section, we will first introduce the candidate

path generation method based on the local observation

information, and then we will give the final optimal explo-

ration selection strategy in the next section.

Boundary feature extraction

After obtaining data from the sensor, we update the prob-

ability estimations in the occupied grid map Ig and the

related information entropy map Ie. The maps are shown

in Figure 2(a) and (b), respectively.

We obtain candidate exploration paths based on two

kinds of boundary features. The entropy map boundary

feature Be in this article refers to the grids in the high

entropy region are adjacent to the low entropy region. The

entropy grid map boundary feature Bg is the grids in the

free area and adjacent to the occupied grids in the grid map.

It should be noted that the grid map here is obtained from

GMapping44 and has been inflated. The boundary features

can be extracted from the information entropy map Ig or the

inflated grid map Ie, respectively. The boundary feature is

shown in Figure 2(c). It is a bit like frontier but different.

Firstly, the source of boundary features is different. The

boundary features come from the information entropy map

and the occupied grid map. Secondly, the use of features is

different. The boundary features are not used to find an

exploring goal, but to plan the candidate path for explora-

tion. Unlike frontier-based methods, our approach can plan

the path back to the previous area to limit the uncertainty of

the robot’s pose.

We first select an appropriate partition threshold to

divide the information entropy map into high information

entropy areas and low information entropy areas. A con-

volution kernel M ¼
1 1 1

1 1 1

1 1 1

2
64

3
75

3�3

will be used to con-

volve the map Ie and get the convolution map Iec. Similarly,

we can also get the map Igc from the grid map convolution.

Then the boundary feature Be and Bg are extracted through

the following formula
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B e ¼ fX jI ecðX Þ < n2; I eðX Þ > 0; I gðX Þ 6¼ 1g

B g ¼ fX jI gcðX Þ < n2; I gðX Þ 6¼ 1g ð4Þ

where n is the dimension of the convolution kernel M, X is

the coordinate on the grid.

The frontier-based method moves toward to the fron-

tier to explore, and the proposed method is to try to

explore along with the proposed boundary feature. Dif-

ferent from the classic frontier concept, we have a

boundary feature that is not available in frontier-based

methods, that is, the boundary feature extracted from the

grid map Bg. These two kinds of boundary features

allow us to not only explore the unknown region but

also return to the previous area to relocate or improve

the quality of the existed map.

Different direction selection strategies result in signifi-

cant efficiency differences. The proposed method tends to

plan a path that tries to surround the unexplored area, rather

than directly go toward the unexplored areas and fragment

it. Hence, we have fewer repetitive observations to improve

coverage and keep a higher exploration efficiency. Simul-

taneously, we consider the optimal distance of observation

and the robot’s positioning uncertainty in path planning.

dpi is an abbreviation for dots per inch, which is a mea-

sure of sensor scanner dot density. For multiline laser sen-

sors, the scanned laser beams are not necessarily parallel

but always arranged at a certain angle q.
We define an analogous parameter Sdpi to reflect the

scanner density in equation (5)

Sdpi ¼ ðD � tan qÞ�1 ð5Þ

where q is the angle between the two scan beams. D is the

distance between the object and the laser sensor. It is shown

in Figure 3. It should be declared that the observation of the

sensor is not all effective. Here the effective observation

radius Re is defined as

fR ejdistðx; x0Þ < R e; SdpiðxÞ > dpimin; x; x0 2 R2g
ð6Þ

where x is the sensor point in the robot base coordinate

system, x0 is the origin of the coordinate. The closer to the

laser sensor, the scanning points are denser, and the farther

they will be sparser.

Only about half of the area is unexplored when explor-

ing along the boundary, which is shown in Figure 4. The

overlapping areas were observed almost twice. It is gener-

ally not optimal to use boundary features for candidate path

generation. Thus we introduced a parameter a to handle the

overlap problem. We use an extern radius R u ¼ aR e to

update the information entropy map Ie. We found that there

is a close relationship between the updated radius of Ru and

the overlap. The coefficient a can directly adjust the over-

lap, which in turn affects the efficiency of the exploration.

When the updated radius is twice the effective observa-

tions radius, that is, R u ¼ 2R e, half of the updated infor-

mation entropy map overlaps. The area marked in red in

Figure 4 shows the overlapping area between adjacent

Figure 2. Boundary feature extraction and exploration path determination. We build and update an information entropy map shown in
Figure (b) with the same scale as the occupied map shown in Figure (a). Figure (c) presents the area marked by the red box in Figure (a).
In Figure (c), the thick pink line Be describes the boundary feature extracted from the information map Figure (b), and the thick green
line Bg presents the boundary feature extracted from the occupied grid map Figure (a). The thin yellow lines show the generated
candidate paths.

eR

θ

D

Figure 3. The definition of the effective radius Re of sensor
detection. q is the angle between two adjacent scan lines.
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observations. In the lower part of Figure 4, we can see that

the overlap between adjacent observations has disappeared.

If we adjust the coefficient a to make that R u ¼ aR e, then

the overlap between adjacent observation areas also

changes, and the exploration efficiency is correspondingly

affected. The relationship between overlapping area ratio

Rov and parameter a is defined as equation (7)

Rov ¼
1� 0:5 a; 0 < a < 2:0

0; a � 2:0

�
ð7Þ

When we increase the value ofa, the overlapping area ratio

Rov will decrease, but the exploration efficiency will increase,

and vice versa. Therefore, by selecting the coefficient a, we

can balance the efficiency and quality of the exploration.

Candidate path generation

As mentioned above, the exploration along the boundaries

of information entropy is very efficient in an unknown

environment. We use the Dijkstra algorithm and the con-

structed graph G to generate paths along the boundaries.

In this article, we use a graph structure to represent the

environment, which is similar to J Vallvé’s.40 A graph

GðN ;E;W Þ consists of edges and nodes, where N repre-

sents nodes, each of which is a grid cell in the grid map, E is

the edge between nodes, and W refers to the edge weight.

We treat the current position of the robot on the grid map as

the starting node and the grids on the boundary as the ending

nodes. Then we use the Dijkstra algorithm to obtain candidate

paths. In order to make planned paths along the boundary as

much as possible and to actively avoid the collision, we increase

the transition cost to nonboundary points and simultaneously

reduce the cost to the boundary points in the graph G. This

modification makes the path planning algorithm more inclined

to select the path along the extracted boundary and make the

generated path inherently avoid an obstacle. We adjust the

weight of the edge between the node ni and its adjacent node nj

wij ¼
k1 � wij; nj 2 B e

k2 � wij; nj 2 B g

�
ð8Þ

where nj 2 NeighborðniÞ and ni; nj 2 B e [ B q; 0 � k1 <

k2 < 1:0.

The Dijkstra algorithm is very efficient and suitable for

candidate path generation from the extracted boundaries

because it only needs to be run once to get all the candidate

paths. A case in point P0 is shown in Figure 5. The thin

yellow lines are the original candidate paths that grow

along the boundaries as much as possible and have the

obstacle avoiding ability. They can pass through the free

space as need. So we can see that there are some connec-

tions between the different boundaries, which are shown as

the yellow lines.

Correction of candidate paths based on uncertainty
estimation

Rodriguez-Arevalo et al.45 reported that the monotonicity of

spatial propagation of uncertainty is preserved when the deter-

minant of the covariance matrix is used as criteria in 2-D

space. Inspired by their work, we use the dead-reckoning algo-

rithm to estimate the covariance matrix and use the determi-

nant of the covariance matrix as a criterion to quantify the

uncertainty of the robot’s pose as the robot moves. We con-

strain the uncertainty of the candidate path by choosing a

threshold according to the monotonicity property.

The pose of the coordinate j relative to the coordinate

system i can generally assume to be a Gaussian distribu-

tion. The estimated pose is a vector X̂ ij ¼ ðxij; yij; �ijÞ and

the associated covariance matrix is Sij. X jk ¼ ðxjk ; yjk ; �jkÞ
is another pose which is respect to coordinate j. The calcu-

lation of X ik from the state X ij and X jk is defined as

X ik ¼ X ij � X jk ð9Þ

The covariance matrix Sik can be approximated by

Sik � J�
Sij 0

0 Sjk

� �
JT
� ð10Þ

Figure 4. The overlapping area between two adjacent observa-
tions. By adjusting the coefficient a, we can control the overlap.
When a is set to 2.0, the overlapping areas disappear.

Figure 5. Candidate paths generation. The red marker point P0

shows the current position of the robot. The yellow lines in the
figure are the candidate paths.
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where the Jacobian of the compounding operation in equa-

tion (10) is

J� ¼
@X ik

@ðX ij;X jkÞ

¼
1 0 yij � yik cosð�ijÞ �sinð�ijÞ 0

0 1 xik � xij sinð�ijÞ cosð�ijÞ 0

0 0 1 0 0 1

2
664

3
775
ð11Þ

Let J� ¼ ½J 1�; J 2�	, and J 1�; J 2� are given by

J 1� ¼
1 0 yij � yik

0 1 xik � xij

0 0 1

2
664

3
775

J 2� ¼
cosð�ijÞ �sinð�ijÞ 0

sinð�ijÞ cosð�ijÞ 0

0 0 1

2
664

3
775

ð12Þ

So from equation (10) we can get

Sik ’ J 1�SijJ
T
1� þ J 2�SjkJT

2� ð13Þ

detðJ 1�Þ 
 1; detðJ 2�Þ 
 1 ð14Þ

Carrillo et al.17 have reported that the monotonicity

of the uncertain criteria is preserved under linearized

assumptions when using the determinant of the covar-

iance matrix as the uncertain criteria and equation (14)

is established.

When the pose of the robot changes from step n� 1 to

the next step n, the relative motion can be compounded

with the relative pose ðn�1Þxn*ðdx; dy; d�ÞT . dx; dy; d� is the

change in distance and steering from step n� 1 to n. The

position of the robot concerning the odometry frame is

ð0Þxn¼ ð0Þx1�ð1Þx2 � . . .�ðn�1Þxn ð15Þ

We assume that the distribution of ðn�1Þxn is a zero-mean

Gaussian with the covariance matrix Vn and the associated

variance for every step is defined as

V n ¼
ððnÞddÞ2 0 0

0 ððnÞddÞ2 0

0 0 ððnÞd�Þ2

2
664

3
775 ð16Þ

where ðnÞdd is the distance traveled at step n. The covar-

iance matrix Vn reflects that the uncertainty increases as the

distance increases and the angle changed in heading

increases. We use GMapping to build a grid map and pro-

vide the robot’s location. The initial covariance matrix S0

is obtained by the current particle distribution in the GMap-

ping. The current covariance matrix can be updated by the

last estimation Sn�1 and the new Vn

Sn ’ J 1�Sn�1JT
1� þ J 2�V nJT

2� ð17Þ

The lth of candidate exploration paths is composed

of m road-mark points Pl ¼ fp1; p2; . . . ; pmg and dd ¼
k pm � pm�1 k; d� ¼ arctanð ypm

� ypm�1

xpm
� xpm�1

Þ. We use equation

(16) and equation (17) to estimate the uncertainty Sl as

the robot moves along the lth candidate path

m� ¼ arg min
m

1

2
ðSl

m �SmaxÞ2 ð18Þ

By evaluating the uncertainty of the lth candidate path, a

subpath P 0l ¼ fp1; p2; . . . ; pm�g; 1 � m� � m is generated

from the path Pl according to equation (18). The robot

explores the scene along the subpath P 0l , the uncertainty

estimate Sm� of the robot’s location does not exceed the

threshold Smax. That is

detðSm� Þ � detðSmaxÞ; 8m; 1 � m � m� ð19Þ

Equation (19) means that if the uncertainty constraint

corrects the candidate path, the uncertainty of the robot’s

location is guaranteed not to exceed Smax.

Exploration path evaluation and selection

Information gain (IG) metrics for evaluation

We use information gain as metrics to evaluate each

candidate path. The information gain in this article is

measured in the number of grids which are covered by a

candidate path on the information entropy map Ie. The

amount of information gain that can be obtained by

exploring along a path is an essential consideration in

evaluating candidate paths.

Because we maintain a map of information entropy syn-

chronously with the update of the occupied map, the calcu-

lation of the information entropy gain becomes very

straightforward. For a certain path P ¼ fp1; p2 ; :::; pkg, the

information entropy gain Eg along the path is defined as

Eg ¼
X
pi2P

X
c2RegionðpiÞ

H 0ðcÞ � HðcÞ ð20Þ

where HðcÞ is the information entropy of a grid cell c 2 R2

which is in the region of radius Re around the road-mark

point pi. H 0ðcÞ indicates the information entropy of this

area updated.

H 0ðcÞ ¼ PðcÞln PðcÞ � ð1� PðcÞÞlnð1� PðcÞÞ ð21Þ

Reexplore metric for evaluation

When the uncertainty of the robot positioning increases to a

critical value, continuing to explore along the path of high

entropy may result in the loss of positioning. Exploring

alone candidate paths that are in the previously explored

area will lead to a meager information entropy gain, but

reexploring along these paths can improve the accuracy of

the map and reduce the uncertainty of the robot’s location
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Er ¼
X
pi2P

X
c2RegionðpiÞ

H 0 � HðcÞ ð22Þ

Here we assume that the updated information entropy is

the same as the predetermined entropy H0 to calculate a

virtual information entropy gain. HðcÞ is the information

entropy of the grid cell c, and Er is the obtained virtual

information entropy gain.

Comprehensive evaluation and selection algorithm

The exploration path planning method proposed in this

article is listed in Algorithm 1. The algorithm uses a grid

map Ig and an information entropy map Ie as its input. The

grid map used in Algorithm 1 is generated from the GMap-

ping, and the information entropy map is gradually updated

as the exploration progresses. The entire exploration pro-

cess can be roughly divided into three steps.

First of all, the information entropy map is initialized as

the same size as the grid map and expand as the grid map.

We use the convolution kernel described in the fourth sec-

tion to convolve the information entropy map Ie and grid

map Ig, and then we get the boundary Be and Bg respec-

tively according to equation (4).

Then we build a graph G from the grid map Ig. The

weight of the edges connected to nodes at the boundary

will be reduced. The Dijkstra algorithm is applied to gen-

erate the candidate paths PGCP from the robot position to

every grid lying on the boundary. After getting these can-

didate paths, we first use the uncertainty prediction

method in the fourth section to correct the candidate paths.

After the above processing, if no candidate path is gener-

ated, We will use function PathWithMaxReExpCova-

rage() to implement the method to select a path from

the candidate path PGCP.

Finally, we first select the path with the highest infor-

mation entropy gain from these paths. If the path does not

exist, this indicates that we have explored all the areas, or

according to the uncertainty constraints. If we continue to

explore the unknown area, we will lose the location when a

decrease in the average information entropy within the

specified Emin, the entire exploration process is completed.

Simulations and experiments

We compared the proposed algorithm with two other meth-

ods11,29 in the simulation. We also verified our algorithm’s

adaptability and efficiency in three real-world experiments.

Evaluation in synthetic scenes

We use ROS-Stage package47 and three public grid maps to

set up the simulation environment. The robot used in the

simulation is equipped with an odometric sensor with noise

covariance Vn and a single-line laser with a maximum

detection range of 15 m and a field of view of 190 degrees,

and its maximum movement speed is set to 0.25 m/s. The

initial uncertainty of the robot pose estimate is set to S0.

All methods are evaluated in the same simulation environ-

ment. The first exploration approach is an active SLAM

exploration method that trains a GP to predict the maxi-

mum information gain under control and use Bayesian opti-

mization to get the best exploration target.29 Another

exploration method we compared with is the classic

frontier-based approach.11

Figure 6 shows the generated map in the simulation and

the recorded exploration trajectory. Figure 7 shows the

information entropy changes with exploration. Table 1 rep-

resents all statistical results. It gives the total reduction of

the Entropy, the final exploration Distance, and the entropy

reduced nats per meter (Er), the standard deviation of the

entropy reducing rate Std(Er), and the total area covered

during the exploration process.

We performed experiments in the same simulation envi-

ronment. When the robot moves forward 10 cm, we calcu-

late and save the information entropy of the map, the pose

of the robot, the covariance matrix E of the location, and

the simulation time. We use the information entropy of the

map over the traveled distance to evaluate the performance

of each algorithm.

Algorithm 1. Mobile robot autonomous exploration path
planning algorithm.
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In the beginning, the three methods have a similar

exploration efficiency. We can see that the decline rate

of information entropy is very close to Figure 7. As the

exploration progresses, the unexplored area using the

comparative methods is broken into pieces, and as a

result of the efficiency of the exploration using other

methods11,29 has dropped a lot. This can be seen from

different experiments is shown in Figure 7(a) to (c). As

the fragmentation of the unexplored area is aggravated,

the maximum information gain under control is becoming

harder to predict by using Bayesian optimization.29 This

leads to a significant decline in the efficiency of explo-

ration. When the unexplored area is broken into pieces,

the robot using the classic frontier-based method

wanders in some small but far apart frontier-fragments.

This also leads to the same decline in the efficiency of

exploration, especially in the final stage. From Figure 7,

the exploration efficiency of the methods11,29 drops more

significantly as the complexity of the environment

increases.
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Figure 6. The comparison experiments with the other two methods on three different open-source map. The picture on the left
shows the experiment on the casia map, the middle represents the experiment on the fr101 map, and the one on the right describes the
experiment on fr-campus.46

(c)(a) (b)

Figure 7. The experimental result corresponding to Figure 6. The curve represents the change of the information entropy of the
environment when different exploration methods are adopted. The blue line (the proposed method) shows the shortest exploration
path length in three different scenarios, and the information entropy of the map decreases faster throughout the process.

Table 1. Comparative data in the three simulation experiments.

Map Method Entropy (nats) Distance (m) Er (nats/m) Std(Er) Coverage area (m2)

casia (a) Method11 3064 117.30 26.12 16.61 191.50
Method29 2812 169.16 16.62 17.11 175.75
Ours 3231 89.57 36.07 9.49 201.94

fr101 (b) Method11 24,213 881.06 27.48 14.07 1513.31
Method29 22,586 1009.23 22.38 19.28 1411.63
Ours 25,179 714.85 35.22 7.09 1573.69

fr-campus (c) Method11 62,761 1620.33 38.73 13.58 3922.56
Method29 49,097 3123.94 15.72 17.34 3068.56
Ours 64,474 1391.87 46.32 9.20 4029.63

Bold face value indicates that the proposed method is better or has a greater improvement than the other two methods.
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The proposed method is to explore along the boundary

instead of going to the border to explore. Because

the boundary-based exploration method avoids the frag-

mentation of the unexplored area, the efficiency of the

exploration can be very and efficient constant. Table 1

shows that the average decline rate of Er in environmental

information entropy is higher compared to the others. The

standard deviation of the rate Std(Er) is smaller than the

others. Table 1 also shows that our approach achieves

the best coverage (4029:63 m2, 201:94 m2, 1537:69 m2)

of the environment with the shortest exploration path

(1391:87 m, 89:57 m, 714:85 m).

Under the same conditions, we conduct comparative

experiments of the proposed method with the classical

frontier-based approach11 and the Bayesian optimization-

based approach.29 Figure 8 provides a comparison plot of

information entropy gain over the simulation step in three

simulations, respectively. The blue circle indicates the end

of the exploration. As the exploration progresses, the frontier-

based exploration strategy intensifies the fragmentation of

unexplored areas and has a significant impact on the effi-

ciency of exploration. As a result, we can see that the

computational speed of the method11 is the lowest in the three

simulations. The method29 is a Bayesian optimization-based

method. At each step, it needs to solve a Bayesian optimiza-

tion problem to find the exploration target. The experimental

results show that the proposed method has higher computa-

tional efficiency than other methods.

Evaluation in real scene

We also verify our proposed method in real scenes. The

robot used in the experiment is a kobuki robot, which is

equipped with a Velodyne VLP16 multiline lidar, an

RDB-D camera, and an odometer. It is shown in Figure 9.

The laser sensor scans the surrounding environment at a rate

of 10 Hz per second. The odometer module collects infor-

mation at a rate of 25 Hz per second. The driver and control

system software is developed using Cþþ language on a

Linux system with an i7 4-core CPU and 8 GB RAM. The

grid map was built using the modified GMapping package

under ROS. The algorithm for updating the information

entropy map, extracting the boundary, and planning the

selection of the exploration path is listed in Algorithm 1.

Figure 10 shows the exploration trajectory, and the gener-

ated 3-D point cloud map in the three different real scenes. In

the experiment of Figure 10(a) and (b), we set a ¼ 1:5,

Re ¼ 0:75 m, and the resolution of the grid map is 0.05 m/

grid. In the experiment shown in Figure 10(c), we set a dif-

ferent value of a ¼ 1:0. Compared to Figure 10(a) and (b),

the point cloud generated in Figure 10(c) is denser. Because

we chose the smaller parameter a ¼ 1:0, which makes more

overlap between adjacent observations, and the equivalent

Sdpi is higher than average, so we can get more scan points.

Since the proposed method is based on the path planning

method, it is possible to dynamically adjust the exploration

trajectory according to changes in an environment. For a

dynamic object, the exploration path does not change as long

as it moves outside the safe area of the robot. The explora-

tion algorithm is triggered to replan the exploration path only

when a dynamic object enters the safe area of the robot.

When the dynamic object is removed, the area where the

previous dynamic object located will also be considered

(a) (b) (c)

Figure 8. Comparison of the computational speed of the proposed method, the method,11 and the method,29 measured by infor-
mation entropy gain over time step in the three simulation experiments. Figure (a) shows the experiment on the casia map, Figure (b)
represents the experiment on the fr101 map, and Figure (c) describes the experiment on fr-campus.46

Velodyne
LiDAR

INTEL UNC

RGBD
Camera

Joint

Battery

Figure 9. The structure of the real experiment robot. It is built
on a Turtlebot robot, with Velodyne VLP-16 Lidar and an Intel
UNC mini PC installed on it.
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again in the future exploration path. In Figure 10(e) and (f),

we can see that there are many pedestrians in the point cloud

being built, but from the exploration trajectory in the above

picture, we can hardly see the impact of these pedestrians.

Figure 11 shows the information entropy gain of the map

over the traveled distance recorded at a specific distance inter-

val during the exploration process. Table 2 lists the experiment

results. The proposed method has a relatively stable rate of

information entropy reduction in different scenarios.

We also study the effects of uncertainty constraints on

the robot’s exploration. From Figure 12, we can see that

after adding the uncertainty constraint, the uncertainty of

the localization of the robot is limited to a specific range,

which significantly improves the adaptability of the algo-

rithm to the environment.

Conclusion

In this article, we address the exploration path planning for

a robot to achieve SLAM in an unknown environment. We

proposed an exploration path planning method, which is

based on boundary features and uncertainty estimations.

Figure 10. The figure shows the exploration trajectory and the generated 3-D point cloud map after the robot actively explores the
three different real scenes. Figure (a), Figure (b), and Figure (c) are top views of Figure (d), Figure (e), and Figure (f), respectively. We
choose a ¼ 1:5 in Figure (a) and Figure (b), but to get a denser point cloud map, we set a to a smaller value of 1.0 in Figure (c).
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Figure 11. The above figures show the information entropy gain of the map over the traveled distance.

Table 2. Comparative data in the three real experiments.

Scenes
Running

time (min) Distance (m)
Coverage
area (m2) IG (nats)

Real scenes (a) 11.41 93.32 102.21 7795
Real scenes (b) 14.41 150.36 358.81 4242
Real scenes (c) 21.50 255.45 230.33 17024

IG: Information gain.
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The proposed path planning method tries to generate can-

didate paths along the boundaries. It avoids breaking the

unexplored region into pieces and can be adjusted by a to

achieve a higher exploration rate or denser mapping. We

use dead reckoning to estimate the uncertainty of the

robot’s localization along each candidate path and limit the

uncertainty within a given threshold. The information

entropy gain and the uncertainty estimation are simultane-

ously considered to trading off exploration against exploi-

tation. Then, a path selection strategy is used to generate

the optimal exploration path from these candidate paths.

Three synthetic scenes and three real scenes with active

SLAM tasks are considered in the simulations and experi-

ments. The results show that the proposed method has a

better performance compared to two classic methods.

In our further work, we will perform more real-world

experiments, and verify the ability of the proposed

approach in an outdoor environment. We will study the

ways for multiple robots to share perceptual information

and study the mechanism of multi-robot cooperative explo-

ration and then extend the proposed method to multiple

robots to improve the overall exploration efficiency.
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