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Abstract: In this study, a novel online adaptive dynamic programming (ADP)-based algorithm is developed for solving the
optimal control problem of affine non-linear continuous-time systems with unknown internal dynamics. The present algorithm
employs an observer–critic architecture to approximate the Hamilton–Jacobi–Bellman equation. Two neural networks (NNs)
are used in this architecture: an NN state observer is constructed to estimate the unknown system dynamics and a critic NN is
designed to derive the optimal control instead of typical action–critic dual networks employed in traditional ADP algorithms.
Based on the developed architecture, the observer NN and the critic NN are tuned simultaneously. Meanwhile, unlike existing
tuning laws for the critic, the newly developed critic update rule not only ensures convergence of the critic to the optimal
control but also guarantees stability of the closed-loop system. No initial stabilising control is required, and by using recorded
and instantaneous data simultaneously for the adaptation of the critic, the restrictive persistence of excitation condition is
relaxed. In addition, Lyapunov direct method is utilised to demonstrate the uniform ultimate boundedness of the weights of
the observer NN and the critic NN. Finally, an example is provided to verify the effectiveness of the present approach.
1 Introduction

Optimal control problems for non-linear dynamical systems
have been intensively studied during the past several decades
[1–5]. A core challenge of deriving the solution for the
non-linear optimal control problem is that it often falls to
solve the Hamilton–Jacobi–Bellman (HJB) equation. It is
well-known that the HJB equation is actually a partial dif-
ferential equation, which is generally difficult to solve by
analytical methods. To overcome the difficulty, Bellman
introduced dynamic programming (DP) theory. The DP the-
ory has been successfully applied to solve optimal control
problems for many years. Nevertheless, a shortcoming of DP
is that the computation grows exponentially with increase in
the dimensionality of non-linear systems. Bellman coined
this phenomenon ‘the curse of dimensionality’ [6].

For the sake of applying DP, Werbos proposes adaptive
DP (ADP) algorithms [7, 8]. A distinct feature of the ADP
method is that it employs neural networks (NNs) to derive
approximate solutions of the HJB equation forward-in-time.
There are several kinds of synonyms used for ADP, includ-
ing ‘adaptive dynamic programming’ [9–13], ‘approximate
dynamic programming’ [14–16], ‘adaptive critic designs’
[17] and ‘neural dynamic programming’ [18]. However,
most of ADP approaches are either implemented offline by
utilising iterative schemes or they require a priori knowledge
of system dynamics. As for the real-world systems, these
requirements are intractable to satisfy. Consequently, it gives
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rise to great challenges for implementing these algorithms
in real-time control process. To address this issue, reinforce-
ment learning (RL) methods are developed. RL is a class of
approaches used in machine learning to revise the actions of
an agent based on responses from its environment [19]. A
general structure utilised to implement RL algorithm is the
actor–critic architecture, where the actor performs actions
by interacting with its environment, and the critic evalu-
ates actions and offers feedback information to the actor,
leading to the improvement in performance of the subse-
quent actor [20]. Compared with typical ADP methods, there
is no prescribed behaviour or training model proposed to RL
schemes. The feature of the RL method is often applied to
adaptive optimal controller designs [21–25].

Recently, in order to overcome the iterative offline
approach for real-time applications, several online RL-
based algorithms were developed [26–28]. In [26], Vrabie
and Lewis presented an online algorithm based on RL
to solve the HJB equation of optimal control of non-
linear continuous-time (CT) systems with unknown internal
dynamics. By utilising the algorithm, the actor and the critic
were sequently tuned and the solution of the HJB equation
was successively approximated. It should be mentioned that,
the system state needs to be reset at each iteration step and
this brings about difficulties for stability analysis. After that,
Vamvoudakis and Lewis [27] proposed a novel algorithm
based on RL to synchronously tune the critic and the actor.
However, the exact knowledge of CT non-linear systems is
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required in [27]. More recently, Bhasin et al. [28] devel-
oped a projection algorithm to obtain the optimal control of
uncertain non-linear CT systems. Based on the algorithm,
the actor, the critic and the identifier were all simultaneously
tuned. Nevertheless, the use of the projection algorithm
demands the selection of a predefined convex set so as to
make the target NN weights remain in the set which is a
challenge. Furthermore, it is worth pointing out that, the
algorithms proposed in [26–28] all require an initial stabil-
ising control. This requirement is restrictive and difficult to
satisfy in practice. The reason is as follows: from a mathe-
matical point of view, the initial stabilising policy is actually
a suboptimal control. The suboptimal control is intractable
to obtain since it is generally impossible to obtain analytical
solutions of partial differential equations.

Lately, Dierks and Jagannathan [29] relaxed the require-
ment of initial stabilising control by using a single online
approximator-based framework. After that, Zhang et al. [30]
extended the work of [29] to derive the Nash equilibrium
for CT non-zero-sum differential games. Meanwhile, based
on the work of [29], Nodland et al. [31] developed an
optimal adaptive output feedback control for an unmanned
helicopter. Nevertheless, in order to guarantee exponential
convergence of the NN weights to the actual optimal val-
ues, the persistence of excitation (PE) condition is required
in [26–31]. It should be emphasised that, the PE condition is
intractable to verify because of the presence of hidden-layers
often involved. In addition, the PE signal is often derived
by adding exploration noise. The inappropriate exploration
noise might give rise to instability of the closed-loop system
during implementing the algorithm, for there is no general
structure to provide this kind of noise. To the best of our
knowledge, there are rather few investigations on optimal
control without employing the PE condition, especially the
algorithms developed to derive optimal control without using
both the PE condition and the initial stabilising control. This
motivates our research.

In this paper, a novel online ADP-based algorithm is
developed for solving the optimal control problem of affine
non-linear CT systems with unknown internal dynamics. The
present algorithm employs an observer–critic architecture to
approximate the HJB equation. Two NNs are used in the
architecture: an NN state observer is constructed to estimate
unknown system dynamics and a critic NN is designed to
derive the optimal control instead of typical action–critic
dual networks employed in ADP algorithms. Based on the
developed architecture, the observer NN and the critic NN
are tuned simultaneously. Meanwhile, unlike existing tuning
laws for the critic, the newly developed critic update rule not
only ensures convergence of the critic to the optimal control
but also guarantees stability of the closed-loop system. No
initial stabilising control is required, and by using recorded
and instantaneous data simultaneously for the adaptation of
the critic, the restrictive PE condition is removed. Moreover,
the weights of the observer NN and the critic NN are guar-
anteed to be uniformly ultimately bounded (UUB) through
Lyapunov’s direct method.

The main contributions of this paper are listed as fol-
lows:

1. To the best of authors’ knowledge, it is the first time that
an observer–critic architecture is developed to derive optimal
control of partially uncertain non-linear CT systems without
the requirement of both the PE condition and the initial sta-
bilising control. Based on the constructed architecture, the
observer NN and the critic NN can be tuned simultaneously.
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2. In comparison with [26–31], a significant difference
between these literature and the present paper is that, in
our case, the restrictive PE condition is relaxed by using
recorded and instantaneous data simultaneously to tune the
critic. In addition, a clear advantage of the developed method
in this paper as compared with [26–30] lies in that the
requirement of the priori knowledge of system states is
removed.
3. Unlike [31] using a linear-in-parameter (LP) NN
observer, the developed observer utilises a non-LP (NLPs)
NN. NLP NN is considered to be more powerful and
accurate than LP NN employed to estimate the unknown
non-linear system dynamics [32].

Furthermore, it should be mentioned that the present
algorithm in this paper does not need value iteration and
policy iteration. In other words, the developed algorithm
does not share common feature with traditional RL meth-
ods. Hence, we consider the present algorithm to be a novel
ADP approach.

This paper is organised as follows. Section 2 presents the
problem statement and preliminaries. Section 3 constructs
an NN state observer. Section 4 develops an online opti-
mal neuro-controller. Section 5 conducts stability analysis
and the performance of the closed-loop system. Section 6
provides simulation results to show the effectiveness of the
proposed control scheme. Finally, Section 7 gives several
concluding remarks.

Notations: R represents the set of the real numbers. R
m and

R
m×n represent the sets of the real m-vectors and the real

m × n matrices, respectively. In represents the n × n identity
matrix. T is the transposition symbol. � is a compact set of
R

n, Cm(�) = {f (m) ∈ C1|f : � → R
m}. When ξ is a vector,

‖ξ‖ denotes the Euclidean norm of ξ . When A is a matrix,
‖A‖ denotes the 2-norm of A.

2 Problem statement and preliminaries

Consider a non-linear CT system described by equations of
the form

ẋ(t) = f (x(t)) + g(x(t))u(x(t))

y(t) = Cx(t) (1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the control
input vector, y(t) ∈ R

l is the output vector, f (x) ∈ R
n is an

unknown non-linear function and g(x) ∈ R
n×m is a matrix

of non-linear functions. It is assumed that f (x) + g(x)u is
Lipschitz continuous on a compact set � ⊂ R

n containing
the origin, such that the solution x(t) of system (1) is unique
for ∀x0 ∈ � and u, and f (0) = 0. The states of system (1) are
not available, only the system output y(t) can be measured.
For the sake of later analysis, the following assumptions are
required.

Assumption 1: The control matrix g(x) is known and
bounded over the compact set �; that is, there exist positive
constants gm and gM (gm < gM ) such that gm ≤ ‖g(x)‖ ≤ gM ,
for ∀x ∈ �.

Assumption 2: System (1) is observable and system states
are bounded in L∞ [33, 34]. In addition, C ∈ R

l×n (l ≤ n)
is a full row rank matrix; that is, rank(C) = l.
1677
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In this paper, the value function for system (1) is given
by

V (x(t)) =
∫∞

t

r(y(s), u(s))ds (s ≥ t) (2)

where r(y, u) = yTQy + uTRu, and Q and R are constant
symmetric positive definite matrices.

Objective of control: The control goal in this paper is to
obtain an online adaptive control not only stabilises system
(1) but also minimises the value function (2), while ensuring
that all the signals involved in the closed-loop system are
UUB.

3 NN state observer

Since system states are unavailable and only the system
output is known, we cannot directly derive the optimal
control. To overcome the difficulty, an NN state observer
is employed. According to [35], F(x) ∈ Cn(�)(F(x) is
a non-linear function) can be represented by a two-layer
feedforward NN as

F(x) = W T
o σ(V T

o x) + ε1(x) (3)

where σ(·) ∈ R
N1 is the activation function, ε1(x) ∈ R

n is
the NN function reconstruction error, Vo ∈ R

n×N1 and Wo ∈
R

N1×n are the weights for the input layer to the hidden
layer and the hidden layer to the output layer, respectively.
The number of the hidden layer nodes is denoted by N1.
Activation functions for σ(·) are generally bounded, mea-
surable, non-decreasing functions from the real numbers
onto [−1, 1] which include, for instance, hyperbolic tangent
function σ(x) = (ex − e−x)/(ex + e−x) and so on. Without
loss of generality, in the state observer NN, we choose
σ(x) = tanh(x).

From system (1), we have

ẋ(t) = Ax + F(x) + g(x)u

y(t) = Cx(t) (4)

where F(x) = f (x) − Ax, A ∈ R
n×n is a Hurwitz matrix, and

(C, A) is observable. By using (3), (4) can be rewritten as

ẋ(t) = Ax + W T
o σ(V T

o x) + g(x)u + ε1(x)

y(t) = Cx(t) (5)

The NN state observer for system (1) is given by

˙̂x(t) = Ax̂ + Ŵ T
o σ(V̂ T

o x̂) + g(x̂)u + B(y − ŷ)

ŷ(t) = Cx̂(t) (6)

where x̂(t) ∈ R
n and ŷ(t) ∈ R

l are the state and the output
of the observer, respectively, Ŵo ∈ R

N1×n and V̂o ∈ R
n×N1

are estimated weights, and the observer gain B ∈ R
n×l is

chosen such that the matrix A − BC is Hurwitz. In fact, such
a matrix B does exist since (C, A) is observable.

Define the state and output estimation errors as x̃(t) =
x(t) − x̂(t) and ỹ(t) = y(t) − ŷ(t), respectively. From (5)
and (6), we can derive the observer error dynamics as

˙̃x(t) = Acx̃(t) + W̃ T
o σ(V̂ T

o x̂) + δ(x)

ỹ(t) = Cx̃(t) (7)
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where Ac = A − BC, W̃o = Wo − Ŵo and δ(x) = W T
o [σ(Vo

Tx)
− σ(V̂ T

o x̂)] + [g(x) − g(x̂)]u + ε1(x).
Before presenting the stability analysis of the observer

error x̃(t), we provide some mild assumptions and facts. It
should be mentioned that these assumptions are common
techniques, which have been used in [36–38].

Assumption 3: The ideal observer NN weights Wo and Vo

are bounded over � by known positive constants WM and
VM , respectively. That is

‖Wo‖ ≤ WM , ‖Vo‖ ≤ VM

Assumption 4: The NN function reconstruction error ε1(x)
is bounded over � as ‖ε1(x)‖ ≤ εM , where εM > 0.

Fact 1: The NN activation function is bounded over �; that
is, there exists σM > 0 such that ‖σ(x)‖ ≤ σM , for ∀x ∈ �.

Fact 2: Since Ac is a Hurwitz matrix, there exists a positive-
definite symmetric matrix P ∈ R

n×n satisfying the Lyapunov
equation

AT
c P + PAc = −θ In

where θ > 0 is a design parameter.

Theorem 1: Let Assumptions 1–4 hold. If NN estimated
weights Ŵo and V̂o are updated as

˙̂Wo = −l1σ(V̂ T
o x̂)ỹTCA−1

c − κ1‖ỹ‖Ŵo (8)

˙̂Vo = −l2sgn(x̂)ỹTCA−1
c Ŵ T

o (IN1 − 	(V̂ T
o x̂)) − κ2‖ỹ‖V̂o (9)

where li > 0(i = 1, 2) are design constants, κi(i = 1, 2)
satisfy

κ1 > l1‖CA−1
c ‖2/4, κ2 > l2 (10)

	(V̂ T
o x̂) = diag{σ 2

k (V̂ T
ok x̂)}(k = 1, . . . , N1), sgn(x̂) = [sgn(x̂1),

. . . , sgn(x̂n)]T and sgn(x̂ι)(ι = 1, . . . , n) are the sign function
with respect to x̂ι [39]. Then, the NN state observer given
in (6) can ensure that the observer error x̃(t) converges to
the compact set

�x̃ =
{

x̃ : ‖x̃‖ ≤ 2B
θ‖C‖λmin[(C+)TC+]

}
(11)

where B > 0 is a constant to be determined later [see (17)],
C+ is the Moore–Penrose pseudoinverse of the matrix C,
and λmin[(C+)TC+] is the minimum eigenvalue of the matrix
(C+)TC+. In addition, the NN weight estimation errors W̃o

and Ṽo = Vo − V̂o are all guaranteed to be UUB.

Proof: Consider the Lyapunov function candidate

J (t) = J1(t) + J2(t) (12)

where

J1(t) = 1

2
x̃TPx̃

J2(t) = 1

2
tr(W̃ T

o l−1
1 W̃o) + 1

2
tr(Ṽ T

o l−1
2 Ṽo)
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Taking the time derivative of J1(t) and by using (7) and
Facts 1 and 2, we have

J̇1(t) = −θ

2
x̃Tx̃ + x̃TP(W̃ T

o σ(V̂ T
o x̂) + δ(x))

= −θ

2
ỹT[(C+)TC+]ỹ + ỹT(C+)TP

× (W̃ T
o σ(V̂ T

o x̂) + δ(x))

≤ −θ

2
λmin[(C+)TC+]‖ỹ‖2

+ ‖ỹ‖‖(C+)TP‖(‖W̃o‖σM + δM ) (13)

where δM is the upper bound of δ(x), that is, ‖δ(x)‖ ≤ δM .
Actually, noticing that u(x) is a continuous function defined
on �, one can conclude that there exists uM > 0 such that
‖u‖ ≤ uM . Then, by Assumptions 1–4 and Fact 1, one can
conclude that δ(x) in (7) is an upper bounded function.

Taking the time derivative of J2(t) and using weight
update rules (8) and (9), we obtain

J̇2(t) = tr

{
W̃ T

o σ(V̂ T
o x̂)ỹTCA−1

c + κ1

l1
‖ỹ‖W̃ T

o (Wo − W̃o)

}

+ tr

{
Ṽ T

o sgn(x̂)ỹTCA−1
c (Wo − W̃o)

T

× (IN1 − 	(V̂ T
o x̂)) + κ2

l2
‖ỹ‖Ṽ T

o (Vo − Ṽo)

}
(14)

Note that tr(XY ) = tr(YX ) = YX , for ∀X ∈ R
n×1, Y ∈ R

1×n

and tr[Z̃T(Z − Z̃)] ≤ ‖Z̃‖‖Z‖ − ‖Z̃‖2, for ∀Z , Z̃ ∈ R
m×n.

Then, (14) can be rewritten as

J̇2(t) = ỹTCA−1
c W̃ T

o σ(V̂ T
o x̂) + κ1

l1
‖ỹ‖tr(W̃ T

o (Wo − W̃o))

+ ỹTCA−1
c (Wo − W̃o)

T(IN1 − 	(V̂ T
o x̂))Ṽ T

o sgn(x̂)

+ κ2

l2
‖ỹ‖tr(Ṽ T

o (Vo − Ṽo))

≤ ασM ‖ỹ‖‖W̃o‖ + κ1

l1
‖ỹ‖(WM ‖W̃o‖ − ‖W̃o‖2)

+ α‖IN1 − 	(V̂ T
o x̂)‖‖ỹ‖(WM + ‖W̃o‖)‖Ṽo‖

+ κ2

l2
‖ỹ‖(VM ‖Ṽo‖ − ‖Ṽo‖2) (15)

where α = ‖CA−1
c ‖. Combining (13) with (15) and noticing

‖IN1 − 	(V̂ T
o x̂)‖ ≤ 1, we obtain

J̇ (t) ≤ −θ

2
λmin[(C+)TC+]‖ỹ‖2 +

{
δM ‖(C+)TP‖

+
(

(‖(C+)TP‖ + α)σM + κ1

l1
WM

)
‖W̃o‖

+
(

αWM + κ2

l2
VM

)
‖Ṽo‖ −

(
κ1

l1
− α2

4

)
‖W̃o‖2

−
(

κ2

l2
− 1

)
‖Ṽo‖2 −

(α

2
‖W̃o‖ − ‖Ṽo‖

)2
}

‖ỹ‖
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= −θ

2
λmin[(C+)TC+]‖ỹ‖2 +

{
δM ‖(C+)TP‖

+
(

κ1

l1
− α2

4

)
β2

1 +
(

κ2

l2
− 1

)
β2

2

−
(

κ1

l1
− α2

4

)
‖W̃o + β1‖2 −

(
κ2

l2
− 1

)
‖Ṽo + β2‖2

−
(α

2
‖W̃o‖ − ‖Ṽo‖

)2
}

‖ỹ‖ (16)

where

β1 = 2l1(α + ‖(C+)TP‖)σM + 2κ1WM

α2l1 − 4κ1

β2 = αl2WM + κ2VM

2(l2 − κ2)

Combining (10) and (16), we derive

J̇ (t) ≤ −θ

2
λmin[(C+)TC+]‖ỹ‖2 +

{
δM ‖(C+)TP‖

+
(

κ1

l1
− α2

4

)
β2

1 +
(

κ2

l2
− 1

)
β2

2

}
‖ỹ‖

= −
(

θ

2
λmin[(C+)TC]‖ỹ‖ − B

)
‖ỹ‖

where

B = δM ‖(C+)TP‖ +
(

κ1

l1
− α2

4

)
β2

1 +
(

κ2

l2
− 1

)
β2

2 (17)

Consequently, J̇ (t) is negative as long as

‖ỹ‖ >
2B

θλmin[(C+)TC+] (18)

where B is defined in (17). Note that ‖ỹ‖ ≤ ‖C‖‖x̃‖. Then,
(18) implies

‖x̃‖ >
2B

θ‖C‖λmin[(C+)TC+]
That is, the observer error x̃(t) converges to �x̃ defined as
in (11). Meanwhile, according to the standard Lyapunov
extension theorem [40], this verifies the uniform ultimate
boundedness of the observer NN weight estimation errors
W̃o and Ṽo. �

Remark 1: The first terms of (8) and (9) are both derived
through the standard back-propagation algorithm, and the
last terms of them are both employed to ensure the bound-
edness of parameter estimations. The size of �x̃ defined as
in (11) can be kept sufficiently small by properly choosing
parameters, for example, θ , κi, li(i = 1, 2), such that higher
accuracy of identification is guaranteed. Although (8) and
(9) share similar feature as in [36], a significant difference
between [36] and the present work is that, in our case, we do
not use Taylor series in the process of identification. Owing
to errors from using the Taylor series, our method is con-
sidered to be more accurate in estimating unknown system
dynamics.
1679
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Remark 2: By the knowledge of Linear Matrix [41,
42], we obtain rank(C) = rank(C+) and rank(C+) =
rank[(C+)TC+]. Hence, by using Assumption 2, we have
rank[(C+)TC+] = rank(C) = l. Noticing that (C+)TC+ ∈
R

l×l and (C+)TC+ is a symmetric semidefinite matrix, we
can conclude that (C+)TC+ is positive definite. Therefore,
λmin[(C+)TC+] > 0. This shows that the compact set �x̃

makes sense.

4 Online optimal neuro-controller design

This section is divided into two parts: In the first part, the
HJB equation for system (1) is developed. Then, in the sec-
ond part, an online NN-based optimal control scheme is
presented.

4.1 HJB equation

In what follows we replace system (1) with (6), since system
(1) can be approximated well by (6) outside of the compact
set �x̃. Meanwhile, because of the unavailability of x(t), we
replace the actual system state x(t) with the estimated state
x̂(t). In this circumstance, system (1) can be represented as

˙̂x(t) = h(x̂) + g(x̂)u (19)

where h(x̂) = Ax̂ + Ŵ T
o σ(V̂ T

o x̂) + B(y − Cx̂). The value
function (2) is rewritten as

V (x̂(t)) =
∫∞

t

r(x̂(s), u(s))ds (20)

where r(x̂, u) = Qc(x̂) + uTRu with Qc(x̂) = x̂TCTQCx̂.
Let A (�) be the set of admissible control [43]. If the

control u(x̂) ∈ A (�) and the value function V (x̂) ∈ C1(�),
then we have

V T
x̂ (h(x̂) + g(x̂)u) + Qc(x̂) + uTRu = 0

where Vx̂ ∈ R
n represents the partial derivative of V (x̂) with

respect to x̂.
Define the Hamiltonian for the control u(x̂) and the value

function V (x̂) as

H (x̂, Vx̂, u) = V T
x̂ (h(x̂) + g(x̂)u) + Qc(x̂) + uTRu

Then, the optimal value V ∗(x̂) is obtained by solving the
HJB equation

min
u(x̂)∈A (�)

H (x̂, V ∗
x̂ , u) = 0 (21)

Consequently, the closed-form expression for optimal
control can be derived as

u∗(x) = −1

2
R−1gT(x̂)V ∗

x̂ (22)

Substituting (22) into (21), we obtain the HJB equation as

(V ∗
x̂ )Th(x̂) + Qc(x̂) − 1

4
(V ∗

x )
Tg(x̂)R−1gT(x̂)V ∗

x̂ = 0 (23)

In this sense, one shall find that (23) is actually a partial
differential equation with respect to V ∗

x̂ , which is difficult to
solve accurately by analytical methods. In order to confront
1680
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the challenge, an online NN-based optimal control scheme is
developed in the subsequent section. Before presenting the
optimal control scheme, we provide the following required
assumption.

Assumption 5: L1(x̂) is a continuously differentiable
Lyapunov function candidate for system (19) and satis-
fies that L̇1(x̂) = LT

1x̂(h(x̂) + g(x̂)u∗) < 0 with L1x̂ the partial
derivative of L1(x̂) with respect to x̂. Meanwhile, there exists
a positive definite matrix �(x̂) ∈ R

n×n defined on � such
that

LT
1x̂(h(x̂) + g(x̂)u∗) = −LT

1x̂�(x̂)L1x̂ (24)

Remark 3: It should be emphasised that h(x̂) + g(x̂)u∗
is often assumed to be bounded by a positive constant
[27, 28], that is, there exists a constant ρ > 0 such that
‖h(x̂) + g(x̂)u∗‖ ≤ ρ. To relax the condition, in this paper,
h(x̂) + g(x̂)u∗ is assumed to be bounded by a function
with respect to x. Since L1x̂ is the function with respect
to x̂, without loss of generality, we assume that ‖h(x̂) +
g(x̂)u∗‖ ≤ �‖L1x̂‖(� > 0). In this sense, one can derive
that ‖LT

1x̂(h(x̂) + g(x̂)u∗)‖ ≤ �‖L1x̂‖2. Noticing LT
1x̂(h(x̂) +

g(x̂)u∗) < 0, one shall find that (24) defined as in Assump-
tion 5 is reasonable. In addition, it is worth pointing out
that L1(x̂) can be derived through proper selecting functions,
such as polynomials.

4.2 Online neuro-optimal control scheme

In this subsection, an online optimal control scheme is con-
structed by using a unique critic NN. Owing to the universal
approximation property of feedforward NNs [35], V (x̂) in
(20) can be represented as

V (x̂) = W T
c σ(ϑT

c x̂) + ε2(x̂)

where ϑc ∈ R
n×N and Wc ∈ R

N denote the weights for the
input layer to the hidden layer and the hidden layer to
the output layer, respectively, and N is the number of
the neurons. The activation function σ(ϑT

c x̂) is written as
σ(x̂) for brevity, for ϑc is often initialised randomly and
kept constant. σ(x̂) = [σ1(x̂), σ2(x̂), . . . , σN (x̂)]T ∈ R

N with
σi(x̂) ∈ C1(�), σi(0) = 0, and the set {σi(x̂)}N

1 is chosen
to be linearly independent, and ε2(x̂) is the NN function
reconstruction error.

The derivative of V (x̂) with respect to x̂ is developed by

Vx̂ = ∇σ T(x̂)Wc + ∇ε2 (25)

where ∇σ(x̂) = ∂σ(x̂)/∂ x̂ and ∇σ(0) = 0.
By utilising (25), (22) can be represented as

u∗(x̂) = −1

2
R−1gT(x̂)∇σ TWc + εu∗ (26)

where εu∗ = −1

2
R−1gT(x̂)∇ε2. By the same token, (23) can

be rewritten as

W T
c ∇σh(x̂) + Qc(x̂) + εHJB

− 1

4
W T

c ∇σg(x̂)R−1gT(x̂)∇σ TWc = 0 (27)
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where εHJB is the residual error converging to zero when
the number of NN nodes is large enough [25]; that is, there
exists εa > 0 such that ‖εHJB‖ ≤ εa.

In view of the unavailability of the ideal critic NN weight
Wc, (26) cannot be implemented in real control process.
Hence, we employ V̂ (x̂) to approximate the value function
in (20) as

V̂ (x̂) = Ŵ T
c σ(x̂) (28)

where Ŵc is the estimated weight of Wc. The weight
estimation error for the critic NN is defined as

W̃c = Wc − Ŵc (29)

By utilising (28), the estimates of (22) is given by

û(x̂) = −1

2
R−1gT(x̂)∇σ TŴc (30)

The approximated Hamiltonian is derived as

H (x̂, Ŵc) = Ŵ T
c ∇σh(x̂) + Qc(x̂)

− 1

4
Ŵ T

c ∇σA(x̂)∇σ TŴc � e (31)

where A(x̂) = g(x̂)R−1gT(x̂).
Combining (26), (27) and (31), we have

e = −W̃ T
c ∇σ

(
C(x̂) + 1

2
A(x̂)∇ε2

)

− 1

4
W̃ T

c ∇σA(x̂)∇σ TW̃c − εHJB (32)

where C(x̂) = h(x̂) + g(x̂)u∗.
To derive the minimum value of e, it is desired to choose

Ŵc to minimise the squared residual error E = 1

2
eTe. By

using the gradient descent algorithm, the weight tuning law
for the critic NN is often given by [24, 27, 28]

˙̂Wc = − η

(1 + φTφ)2

∂E

∂Ŵc

= −η
φ

(1 + φTφ)2
e (33)

where φ = ∇σ [h(x̂) + g(x̂)û], η > 0 is a design constant,
and the term (1 + φTφ)2 is employed for normalisation.

However, there exist two issues about the tuning
rule (33):

1. Tuning the critic NN weights to minimise E = 1

2
eTe

alone cannot guarantee the stability of system (19) during
the learning process of NNs.
2. The PE condition of φ/(1 + φTφ) is required to guar-
antee the weights of the critic NN exponential converge
to the actual optimal values [24, 27–31]. Nevertheless,
the PE condition is intractable to verify because of the
presence of hidden-layers involving in the term φ/(1 +
φTφ). In addition, the exploration noise is often added
to obtain the PE signal, which might cause instabil-
ity of the closed-loop system during implementing the
algorithm.
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To address above two issues, a novel weight update law
for the critic NN is developed as

˙̂Wc = −ηφ̄(Y (x̂) − 1

4
Ŵ T

c ∇σA(x̂)∇σ TŴc)

− η

N∑
j=1

φ̄(j)(Y (x̂tj ) − 1

4
Ŵ T

c ∇σ(j)A(x̂tj )∇σ T
(j)Ŵc)

+ η

2
�(x̂, û)∇σA(x̂)L1x̂ (34)

where A(x̂) is given in (31), Y (x̂) = Ŵ T
c ∇σh(x̂) + Qc(x̂),

φ̄ = φ/m2
s and ms = 1 + φTφ, j ∈ {1, . . . , N } denote the

index of a stored data point x̂(tj) (written as x̂tj ), φ̄(j) = φ̄(x̂tj ),
msj = 1 + φT(x̂tj )φ(x̂tj ), ∇σ(j) = ∇σ(x̂tj ), L1x̂ is defined as in
Assumption 5 and �(x̂, û) is defined as

�(x̂, û) =
⎧⎨
⎩0, if LT

1x̂

(
h(x̂) − 1

2
A(x̂)∇σ TŴc

)
< 0

1, otherwise
(35)

Remark 4: Several notes about the weight tuning rule for
the critic NN (34) are listed as follows:

(1) The first term in (34) shares the same feature with (33),
which aims to minimise the objective function E = 1

2 eTe.
(2) The second term in (34) is utilised to relax the PE con-
dition. If there is no second term in (34) and let x̂ = 0, then

one can derive ˙̂Wc = 0. In this sense, the approximated value
function V̂ (x̂) will no longer be updated. However, the opti-
mal control might not be obtained at the finite time tf which
makes x̂(tf ) = 0. To avoid this case from happening, the PE
condition is usually employed [24, 27–31]. Interestingly, the
second term in (34) can also avoid this pitfall as long as the
set {φ̄(j)}N

1 is selected to be linearly independent. Now, we
show this fact by contradiction as follows:

Suppose that when x̂ = 0, there exists ˙̂Wc = 0. From (34),
we obtain

N∑
j=1

φ̄(j)ej = 0

where

ej = Y (x̂tj ) − 1

4
Ŵ T

c ∇σ(j)A(x̂tj )∇σ T
(j)Ŵc

Since {φ̄(j)}N
1 is linearly independent, we can obtain ej = 0

(j = 1, . . . , N ). However, this case will not happen until the
system state stays at the equilibrium point, for the points x̂tj
j ∈ {1, . . . , N } are randomly selected. In other words, there
at least exists a j0 ∈ {1, . . . , N } such that ej0 �= 0 during
the learning process of NNs. So, there is the contradic-

tion. Hence, the second term in (34) guarantees that ˙̂Wc �= 0
during the learning process of NNs.
(3) The last term in (34) is employed to ensure the stability
of the closed-loop system while the critic NN learns the
optimal value. We denote the derivative of the Lyapunov
function candidate for system (19) with the control input
(30) as

� = LT
1x̂

(
h(x̂) − 1

2
A(x̂)∇σ TŴc

)
If the closed-loop system is unstable, then there exists � >
0. In order to keep the closed-loop system stable (i.e. � <
1681
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0), by using the gradient descent method, we have

−η
∂�

∂Ŵc

= −η

∂

[
LT

1x̂

(
h(x̂) − 1

2
A(x̂)∇σ TŴc

)]
∂Ŵc

= η

2
∇σA(x̂)L1x̂ (36)

Equation (36) shows the reason why we employ the last term
of (34). In fact, observing the definition of �(x̂, û) given
in (35), we find that if system (19) is stable (i.e. � < 0),
then �(x̂, û) = 0 and the last term in (34) does not work. If
system (19) is unstable, then �(x̂, û) = 1 and the last term
in (34) is activated. Owing to the existence of the last term
in (34), it makes no requirement of the initial stabilising
control for system (19). The property shall be shown in the
subsequent numerical simulation.

By Remark 4, we know that the set {φ̄(j)}N
1 should be

linearly independent. Nevertheless, it is not an easy task to
directly test this condition. Hence, we introduce a lemma as
follows.

Lemma 1: If the set {σ(x̂tj )}N
1 is linearly independent and

û(x̂) stabilises system (19), then the following set

{∇σ(j)[h(x̂tj ) + g(x̂tj )û]}N
1

is also linearly independent.

Proof: Since the proof is similar to [43], we omit it here. �

Notice that φ̄(j) = φ(x̂tj )/(1 + φT(x̂tj )φ(x̂tj ))
2, where φ(x̂tj )= ∇σ(j)[h(x̂tj ) + g(x̂tj )û]. By Lemma 1, we shall find that

if {σ(x̂tj )}N
1 is linearly independent, then {φ̄(j)}N

1 is also lin-
early independent. In other words, for ensuring the linear
independence of {φ̄(j)}N

1 , the following condition should be
satisfied.

Condition 1: Let D = [σ(x̂t1), . . . , σ(x̂tN )] ∈ R
N×N be the

recorded data matrix. There exists sufficient large num-
ber of recorded data such that D is non-singular, that
is, det D �= 0.

Remark 5: Condition 1 can be satisfied by selecting and
recording data during the learning process of NNs over a
finite time interval. Compared with the PE condition, a clear
advantage of Condition 1 is that it can be easily checked
online [44]. In addition, Condition 1 makes full use of his-
tory data, which can improve the speed of the convergence
of parameters. This fact will be shown in the numerical
simulation.

By the definition of φ in (33) and using (26), we have

φ = ∇σ

(
C(x̂) + 1

2
A(x̂)∇ε2

)
+ 1

2
∇σA(x̂)∇σ TW̃c (37)

where C(x̂) is given in (32). From (29), (32), (34) and (37),
we can derive

˙̃Wc = − η

m2
s

(
∇σL(x̂) + 1

2
Ā(x̂)W̃c

)

×
(

W̃ T
c ∇σL(x̂) + 1

4
W̃ T

c Ā(x̂)W̃c + εHJB

)

−
N∑

j=1

η

m2
sj

(
∇σ(j)L(x̂tj ) + 1

2
Ā(x̂tj )W̃c

)
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Fig. 1 Developed control scheme for CT non-linear systems

×
(

W̃ T
c ∇σ(j)L(x̂tj ) + 1

4
W̃ T

c Ā(x̂tj )W̃c + εHJB

)

− η

2
�(x̂, û)∇σA(x̂)L1x̂ (38)

where L(x̂) =C(x̂) + 1

2
A(x̂)∇ε2, Ā(x̂) = ∇σA(x̂)∇σ T and

Ā(x̂tj ) = ∇σ(j)A(x̂tj )∇σ T
(j).

A general schematic programming of the proposed control
algorithm is shown in Fig. 1.

5 Stability analysis and the performance of
the closed-loop system

In this section, we present our main results based on Lya-
punov’s direct method. Prior to demonstrating the main
theorem, we provide another required assumption as follows:

Assumption 6: The derivative of the NN activation func-
tion σ(x̂) with respect to x̂ is bounded on �, that is, there
exists bσ > 0 such that ‖∇σ(x̂)‖ < bσ , ∀x ∈ �. The deriva-
tive of the NN reconstruction error ε2(x̂) with respect to
x̂ is bounded on �, that is, there exists εb > 0 such that
‖∇ε2(x̂)‖ < εb, ∀x ∈ �.

With Assumptions 1–6 and Facts 1 and 2, our main
theorem is developed as follows:

Theorem 2: Given the input-affine dynamics described by
(1) with associated HJB equation (23), let Assumptions 1–6
hold and take the control input for system (1) as in (30).
Moreover, let weight update laws for the observer NN be
(8) and (9), and let weight tuning rule for the critic NN
be (34). Then, the state observer error x̃(t), the NN weight
estimation errors W̃o, Ṽo and W̃c are all UUB.

Proof: Consider the Lyapunov function candidate

L(t) = L1(t) + L2(t) + 1

2
W̃ T

c η−1W̃c (39)

where L1(t) is defined as in Assumption 5, L2(t) = J (t) with
J (t) given in (12).
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Taking the time derivative of (39) and by using
Theorem 1, we derive

L̇(t) = L̇1(t) + L̇2(t) + W̃ T
c η−1 ˙̃Wc

≤ LT
1x̂

(
h(x̂) − 1

2
A(x̂)∇σ TŴc

)

− θ

2
λmin[(C+)TC+]‖Cx̃‖2

+ B‖Cx̃‖ + W̃ T
c η−1 ˙̃Wc (40)

where B is given in (17). By utilising (38), we derive the
last term of (40) as

W̃ T
c η−1 ˙̃Wc = N1 + N2 − 1

2
W̃ T

c �(x̂, û)∇σA(x̂)L1x̂ (41)

where

N1 = − 1

m2
s

(
W̃ T

c ∇σL(x̂) + 1

2
W̃ T

c Ā(x̂)W̃c

)

×
(

W̃ T
c ∇σL(x̂) + 1

4
W̃ T

c Ā(x̂)W̃c + εHJB

)

N2 = −
N∑

j=1

1

m2
sj

(
W̃ T

c ∇σ(j)L(x̂tj ) + 1

2
W̃ T

c Ā(x̂tj )W̃c

)

×
(

W̃ T
c ∇σ(j)L(x̂tj ) + 1

4
W̃ T

c Ā(x̂tj )W̃c + εHJB

)

Now, we consider the first term N1 of (41). From N1, we
have

N1 = − 1

m2
s

{
(W̃ T

c ∇σL(x̂))2 + 1

8

(
W̃ T

c Ā(x̂)W̃c

)2

+ 3

4
(W̃ T

c ∇σL(x̂))(W̃ T
c Ā(x̂)W̃c)

+ W̃ T
c ∇σL(x̂)εHJB + 1

2
W̃ T

c Ā(x̂)W̃cεHJB

}
(42)

Note that, for ∀ a, b ∈ R and ε �= 0,

ab = 1

2

{(
εa + b

ε

)2

−
(

ε2a2 + b2

ε2

)}
(43)
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Applying (43) to the last three terms of (42), we obtain

N1 = − 1

m2
s

{
1

2
(3W̃ T

c ∇σL(x̂) + 1

4
W̃ T

c Ā(x̂)W̃c

)2

+ 1

2
(W̃ T

c ∇σL(x̂) + εHJB)2 + 1

16
(W̃ T

c Ā(x̂)W̃c)
2

+ 1

2

(
1

4
W̃ T

c Ā(x̂)W̃c + 2εHJB

)2

− 4(W̃ T
c ∇σL(x̂))2 − 5

2
ε2

HJB

}

≤ − 1

m2
s

{
1

16
(W̃ T

c Ā(x̂)W̃c)
2 − 4(W̃ T

c ∇σL(x̂))2 − 5

2
ε2

HJB

}
(44)

Similarly, we can conclude

N2 ≤ −
N∑

j=1

1

m2
sj

{
1

16
(W̃ T

c Ā(x̂tj )W̃c)
2 − 4(W̃ T

c ∇σ(j)L(x̂tj ))
2

− 5

2
ε2

HJB

}
(45)

Substituting (44) and (45) into (41), and noticing that 1 ≤
m2

s ≤ 4, 1 ≤ m2
sj

≤ 4, we obtain (see (46))

where μinf (Y) denotes the lower bound of Y (Y =
Ā(x̂tj ), Ā(x̂)), and ϑsup(Z) represents the upper bound of Z
(Z = L(x̂tj ), L(x̂)), and N is the number of neuron nodes in
the hidden-layer.

Combining (40) and (46), we derive

L̇(t) ≤ LT
1x̂

(
h(x̂) − 1

2
A(x̂)∇σ TŴc

)

− 1

2
W̃ T

c �(x̂, û)∇σA(x̂)L1x̂

− T1

64
‖W̃c‖4 + 4T2‖W̃c‖2

− γ

2
(‖Cx̃‖ − B/γ )2 + B2

2γ

+ 5

2
(N + 1)ε2

a (47)
W̃ T
c η−1 ˙̃Wc ≤ − 1

16

{
N∑

j=1

1

m2
sj

(W̃ T
c Ā(x̂tj )W̃c)

2 + 1

m2
s

(W̃ T
c Ā(x̂)W̃c)

2

}
+ 4

{
N∑

j=1

1

m2
sj

(W̃ T
c ∇σ(j)L(x̂tj ))

2 + 1

m2
s

(W̃ T
c ∇σL(x̂))2

}

+ 5

2

(
1

m2
s

+
N∑

j=1

1

m2
sj

)
ε2

HJB − 1

2
W̃ T

c �(x̂, û)∇σA(x̂)L1x̂

≤ − 1

64

{
N∑

j=1

μ2
inf (Ā(x̂tj )) + μ2

inf (Ā(x̂))

}
‖W̃c‖4 + 4b2

σ

{
N∑

j=1

ϑ2
sup(L(x̂tj )) + ϑ2

sup(L(x̂))

}
‖W̃c‖2

+ 5

2
(N + 1)ε2

a − 1

2
W̃ T

c �(x̂, û)∇σA(x̂)L1x̂ (46)
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where

T1 = μ2
inf (Ā(x̂)) +

N∑
j=1

μ2
inf (Ā(x̂tj ))

T2 = b2
σϑ2

sup(L(x̂)) + b2
σ

N∑
j=1

ϑ2
sup(L(x̂tj ))

γ = θλmin

[
(C+)TC+]

In view of the definition of �(x̂, û) in (35), we divide (47)
into the following two cases for discussion.

Case 1: �(x̂, û) = 0. By the definition of �(x̂, û) in (35),
we can derive that the first term in (47) is negative under
this circumstance. Observing that LT

1x̂
˙̂x < 0, by using the

Archimedean property of R [39], we can conclude that there
exists a constant τ > 0 such that LT

1x̂
˙̂x < −‖L1x̂‖τ ≤ 0. Then,

(47) becomes

L̇(t) ≤ −τ‖L1x̂‖ − γ

2
(‖Cx̃‖ − B/γ )2

− T1

64

(
‖W̃c‖2 − 128T2

T1

)2

+ 256T
2
2

T1

+ 1

2γ
[B2 + 5γ (N + 1)ε2

a] (48)

Accordingly, (48) yields L̇(t) < 0 as long as one of the
following conditions holds

‖L1x̂‖ >
256T

2
2

τT1

+ B2 + 5γ (N + 1)ε2
a

2τγ
(49)

or

‖x̃‖ >
1

‖C‖

√
512T

2
2

γT1

+ B2 + 5γ (N + 1)ε2
a

γ 2
+ B

γ ‖C‖ (50)

or

‖W̃c‖ > 2

√√√√32T2

T1

+
√

2T1[B2/γ + 5(N + 1)ε2
a] + 1024T

2
2

T1

(51)

Case 2: �(x̂, û) = 1. By the definition of �(x̂, û) in (35), we
find that, in this case, the first term in (47) is non-negative
which implies that the control (30) may not stabilise system
(19). Then, (47) becomes

L̇(t) ≤ LT
1x̂

(
C(x̂) + 1

2
A(x̂)∇ε2

)

− γ

2
(‖Cx̃‖ − B/γ )2 + B2

2γ

− T1

64

(
‖W̃c‖2 − 128T2

T1

)2

+ 256T
2
2

T1

+ 5

2
(N + 1)ε2

a (52)
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where C(x̂) is given in (32). By using Assumptions 5 and 6,
(52) can be rewritten as

L̇(t) ≤ −λmin(�(x̂))

(
‖L1x̂‖ − εbϑsup(A(x̂))

4λmin(�(x̂))

)2

− γ

2
(‖Cx̃‖ − B/γ )2 − T1

64

(
‖W̃c‖2 − 128T2

T1

)2

+ εbϑsup(A(x̂))

16λmin(�(x̂))
+ 256T

2
2

T1

+ 1

2γ
[B2 + 5γ (N + 1)ε2

a] (53)

where λmin(�(x̂)) represents the minimum eigenvalue of
�(x̂), ϑsup(·) is defined as in (46).

Therefore, (53) implies L̇(t) < 0 as long as one of the
following conditions holds

‖L1x̂‖ >
εbϑsup(A(x̂))

4λmin(�(x̂))
+

√
d

λmin(�(x̂))
(54)

or

‖x̃‖ >
1

‖C‖

√
2d

γ
+ B

γ ‖C‖ (55)

or

‖W̃c‖ > 2

√√√√32T2

T1

+ 2

√
d

T1

(56)

where

d = εbϑsup(A(x̂))

16λmin(�(x̂))
+ 256T

2
2

T1

+ 1

2γ
[B2 + 5γ (N + 1)ε2

a]

Combining Cases 1 and 2 and by using the standard Lya-
punov extension theorem [40], one can conclude that the
state observer error x̃(t), NN weight estimation errors W̃o,
Ṽo and W̃c are UUB. �

Remark 6: It is worth pointing out that the uniform ulti-
mate boundedness of W̃o and Ṽo is obtained as follows:
inequalities (49)–(51) [or (54)–(56)] guarantee L̇(t) < 0.
Then, we can conclude that L(t) is the strictly decreasing
function with respect to t (t ≥ 0). Hence, we can derive
L(t) < L(0), where L(0) is a bounded positive constant. By
using L(t) defined as in (39), we have that 1

2 tr
(
W̃ T

o l−1
1 W̃o

) +
1
2 tr(Ṽ T

o l−1
2 Ṽo) < L(0). By using the definition of Frobenius

norm and the equivalence of norms [42], we can derive that
‖W̃o‖ and ‖Ṽo‖ are bounded. This verifies that W̃o and Ṽo

are UUB.

6 Simulation results

In this section, an example is provided to illustrate the
effectiveness of the developed theoretical results.
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Consider the input-affine non-linear CT systems described
by

ẋ = f (x) + g(x)u

y = Cx (57)

where

f (x) =
[ −x1 + x2

−0.5x1 − 0.5x2 + 0.5x2[cos(2x1) + 2]2

]

g(x) =
[

0
cos(2x1) + 2

]
, C =

[
1 0
0 1

]

The value function is given in (2), where Q and R are cho-
sen as identity matrices of approximate dimensions. The
prior knowledge of system states is assumed to be unavail-
able, and only the output y(t) is measurable in system (57).
To obtain the knowledge of system dynamics, an NN state
observer given in (6) is employed. The gains for the observer
NN are selected as

A = [−1 1; −0.5 −0.5], B = [1 0; −0.5 0]
l1 = 20, l2 = 10, κ1 = 6.1, κ2 = 15, N1 = 8

and the gain for the critic NN is selected to be η = 2.5. The
activation function for the critic NN is chosen with N = 3
neurons as σ(x) = [x2

1 x2
2 x1x2]T and the critic NN weight

is denoted as Ŵc = [W 1
c W 2

c W 3
c ]T.

Remark 7: It is significant to emphasise that, the number
of neurons required for any particular application is still an
open problem. Selecting the proper neurons for NNs is more
of an art than science [45]. In this example, the number of
neurons is obtained by computer simulations. We find that
selecting eight neurons in the hidden layer for the observer
NN can lead to satisfactory simulation results. Meanwhile, in
order to compare our algorithm with the algorithms proposed
in [27, 28], we choose three neurons in the hidden layer for
the critic NN, and the simulation results are satisfied.

The initial weights Ŵo and V̂o for the observer NN
are selected randomly within an interval of [−10, 10] and
[−5, 5], respectively. Meanwhile, the initial weights for the
critic NN are chosen to be zeros, and the initial system
state is selected to be x0 = [3.5 −3.5]T. In this case, the
initial control cannot stabilise system (57). In other words,
no initial stabilising control is required for implementing
the algorithm. In addition, by using the method proposed in
[44, 46], the recorded data can be easily made qualified for
Condition 1.

The computer simulation results are presented in
Figs. 2–9. Figs. 2 and 3 show the trajectories of system state
x1(t) and observed state x̂1(t), and the trajectories of system
state x2(t) and observed state x̂2(t), respectively. Fig. 4 illus-
trates the performance of the NN state observer errors x̃1(t)
and x̃2(t). Fig. 5 presents the 2-norm of the weights of the
observer NN ‖Ŵo‖ and ‖V̂o‖. Fig. 6 shows the performance
of convergence of the critic NN weights. Fig. 7 presents the
control u. Fig. 8 illustrates system states without considering
the the third term in (34).

To make comparison with [29], we employ Fig. 9 to show
the system states with the algorithm proposed in [29]. It
should be mentioned that the PE condition is necessary in
[29]. To guarantee the PE qualitatively, we add a small
IET Control Theory Appl., 2014, Vol. 8, Iss. 16, pp. 1676–1688
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Fig. 2 Trajectories of real state x1(t) and observed state x̂1(t)

Fig. 3 Trajectories of real state x2(t) and observed state x̂2(t)

Fig. 4 NN observer errors x̃1(t) and x̃2(t)

exploratory signal n(t) = sin5(t) cos(t) + sin5(2t) cos(0.1t)
to the control u for the first 9 s. In other words, Fig. 9 is
obtained based on the exploratory signal n(t). In addition, it
should be pointed out that, by using the methods proposed in
[27, 28] and employing the same exploratory signal n(t), one
1685
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Fig. 5 2-norm of observer NN weights ||Ŵo|| and ||V̂o||

Fig. 6 Convergence of the critic NN weight Ŵc

Fig. 7 Control input u

can also obtain stable system states, respectively. We omit
the simulation results here, for they have been presented
in [27, 28]. It is quite straightforward to notice that, the
trajectories of system states given in [27, 28] share common
1686
© The Institution of Engineering and Technology 2014
Fig. 8 Trajectories of states without considering the third term in
(34)

Fig. 9 System states with the algorithm proposed in [29]

feature with Fig. 9, which is oscillatory before it converges
to the equilibrium point. This feature is caused by adding
the PE signal.

Several notes about the simulation results are listed as
follows:

• From Figs. 2–4, it is observed that the NN observer can
approximate the real system very fast and well.
• From Figs. 5 and 6, one shall find that the observer NN
and the critic NN are tuned simultaneously.
• From Figs. 2–7, one can observe that the system states,
and the estimated weights of the observer NN and the critic
NN are all guaranteed to be UUB, while keeping the closed-
loop system stable.
• From Figs. 2 and 3, one can observe that there are almost
no oscillations of system states. As aforementioned, the PE
signal always leads to oscillations of system states (see
Fig. 9 and the simulation results presented in [27, 28]). This
verifies that the restrictive PE condition is removed by using
recorded and instantaneous data simultaneously. Hence, a
significant advantage of the present algorithm as compared
with the methods proposed in [27–29] lies in that the PE
condition is relaxed.
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doi: 10.1049/iet-cta.2014.0186



www.ietdl.org
• From Figs. 6 and 7, one can find that both the initial
weights for the critic NN and the initial control are zeros.
In this circumstance, the initial control cannot stabilise the
system since the initial state x0 is non-zero. Nevertheless,
the initial control must stabilise the system in [27, 28].
Consequently, in comparison with the methods proposed in
[27, 28], a distinct advantage of the developed algorithm in
this paper lies in that the initial stabilising control is not
required any more.
• From Fig. 8, one shall find that, without the third term
involving in (34), the system is unstable during the learning
process of the critic NN. In addition, compared Figs. 2 and
3 with Fig. 9, it is observed that our algorithm can make
system states converge to the equilibrium point faster than
the algorithm proposed in [29].

7 Conclusion

In this paper, we have developed a new ADP-based
algorithm which solves the optimal control problem for
input-affine non-linear CT systems in the presence of
unknown internal dynamics. The algorithm constructs an
observer–critic architecture. Based on the present algorithm,
the observer NN and the critic NN are tuned simultaneously.
Meanwhile, the conditions that the initial stabilising control
and the PE condition are both relaxed. In our future work, we
shall focus on how to develop online algorithms for solv-
ing optimal control problems of non-affine non-linear CT
systems.

8 Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China under Grants nos. 61034002,
61233001, 61273140, 61304086 and 61374105, and in part
by the Beijing Natural Science Foundation under Grant no.
4132078.

9 References

1 Bryson, A.E., Ho, Y.C.: ‘Applied optimal control: optimization’,
Estimation and Control (Taylor & Francis, 1975)

2 Lewis, F.L., Vrabie, D., Syrmos, V.L.: ‘Optimal control’ (John Wiley
& Sons, 2012)

3 Li, H., Liu, D.: ‘Optimal control for discrete-time affine nonlinear sys-
tems using general value iteration’, IET Control Theory Appl., 2012,
6, (18), pp. 2725–2736

4 Yang, X., Liu, D., Huang, Y: ‘Neural-network-based online optimal
control for uncertain non-linear continuous-time systems with control
constraints’, IET Control Theory Appl., 2013, 7, (17), pp. 2037–2047

5 Yang, X., Liu, D., Wang, D.: ‘Reinforcement learning for adaptive
optimal control of unknown continuous-time nonlinear systems with
input constraints’, Int. J. Control, 2014, 87, (3), pp. 553–566

6 Bellman, R.E.: ‘Dynamic programming’ (Princeton University Press,
1957)

7 Werbos, P.J.: ‘Beyond regression: new tools for prediction and analysis
in the behavioral sciences’. PhD thesis, Harvard University, 1974

8 Werbos, P.J.: ‘Approximate dynamic programming for real-time con-
trol and neural modeling’, in White, D.A., Sofge, D.A. (Eds.): ‘Hand-
book of intelligent control: neural, fuzzy, and adaptive approaches’
(Van Nostrand Reinhold, 1992)

9 Murray, J.J., Cox, C.J., Lendaris, G.G., Saeks, R.: ‘Adaptive dynamic
programming’, IEEE Trans. Syst., Man Cybern. C, Appl. Rev., 2002,
32, (2), pp. 140–153

10 Wang, F.Y., Zhang, H., Liu, D.: ‘Adaptive dynamic programming: an
introduction’, IEEE Comput. Intell. Mag., 2009, 4, (2), pp. 39–47

11 Liu, D., Wang, D., Yang, X.: ‘An iterative adaptive dynamic program-
ming algorithm for optimal control of unknown discrete-time nonlinear
systems with constrained inputs’, Inf. Sci., 2013, 220, pp. 331–342
IET Control Theory Appl., 2014, Vol. 8, Iss. 16, pp. 1676–1688
doi: 10.1049/iet-cta.2014.0186
12 Liu, D., Wei, Q.: ‘Finite-approximation-error-based optimal control
approach for discrete-time nonlinear systems’, IEEE Trans. Cybern.,
2013, 43, (2), pp. 779–789

13 Wei, Q., Liu, D.: ‘Numerical adaptive learning control scheme for
discrete-time non-linear systems’, IET Control Theory Appl., 2013, 7,
(11), pp. 1472–1486

14 Powell, W.B.: ‘Approximate dynamic programming: solving the curses
of dimensionality’ (Wiley, 2011, 2nd edn.)

15 Liu, D., Zhang, Y., Zhang, H.: ‘A self-learning call admission con-
trol scheme for CDMA cellular networks’, IEEE Trans. Neural Netw.,
2005, 16, (5), pp. 1219–1228

16 Liu, D., Javaherian, H., Kovalenko, O., Huang, T.: ‘Adaptive critic
learning techniques for engine torque and air-fuel ratio control’, IEEE
Trans. Syst. Man Cybern. B, Cybern., 2008, 38, (4), pp. 988–993

17 Prokhorov, D.V., Wunsch, D.C.: ‘Adaptive critic designs’, IEEE
Trans. Neural Netw., 1997, 8, (5), pp. 997–1007

18 Si, J., Wang, Y.T.: ‘On-line learning control by association and
reinforcement’, IEEE Trans. Neural Netw., 2001, 12, (2), pp. 264–276

19 Sutton, R.S., Barto, A.G.: ‘Reinforcement learning–an introduction’
(MIT Press, 1998)

20 Lewis, F.L., Vrabie, D., Vamvoudakis, K.G.: ‘Reinforcement learning
and feedback control: using natural decision methods to design optimal
adaptive controllers’, IEEE Control Syst. Mag., 2012, 32, (6), pp. 76–
105

21 Liu, D., Yang, X., Li, H.: ‘Adaptive optimal control for a class
of continuous-time affine nonlinear systems with unknown internal
dynamics’, Neural Comput. Appl., 2013, 23, (7–8), pp. 1843–1850

22 Wu, H.N., Luo, B.: ‘Neural network based online simultaneous pol-
icy update algorithm for solving the HJI equation in nonlinear H∞
Control’, IEEE Trans. Neural Netw. Learn. Syst., 2012, 23, (12),
pp. 1884–1895

23 Ni, Z., He, H., Wu, J.: ‘Adaptive learning in tracking control based
on the dual critic network design’, IEEE Trans. Neural Netw. Learn.
Syst., 2013, 24, (6), pp. 913–928

24 Zhang, H., Cui, L., Zhang, X., Luo, Y.: ‘Data-driven robust approxi-
mate optimal tracking control for unknown general nonlinear systems
using adaptive dynamic programming method’, IEEE Trans. Neural
Netw., 2011, 22, (12), pp. 2226–2236

25 Abu-Khalaf, M., Lewis, F.L.: ‘Nearly optimal control laws for non-
linear systems with saturating actuators using a neural network HJB
approach’, Automatica, 2005, 41, (5), pp. 779–791

26 Vrabie, D., Lewis, F.L.: ‘Neural network approach to continuous-
time direct adaptive optimal control for partially unknown nonlinear
systems’, Neural Netw., 2009, 22, (3), pp. 237–246

27 Vamvoudakis, K.G., Lewis, F.L.: ‘Online actor-critic algorithm to
solve the continuous-time infinite horizon optimal control problem’,
Automatica, 2010, 46, (5), pp. 878–888

28 Bhasin, S., Kamalapurkar, R., Johnson, M., Vamvoudakis, K.G.,
Lewis, F.L., Dixon, W.E.: ‘A novel actor-critic-identifier architec-
ture for approximate optimal control of uncertain nonlinear systems’,
Automatica, 2013, 49, (1), pp. 82–92

29 Dierks, T., Jagannathan, S.: ‘Optimal control of affine nonlinear
continuous-time systems’. Am. Control Conf., Baltimore, MD, USA,
June–July 2010, pp. 1568–1573

30 Zhang, H., Cui, L., Luo, Y.: ‘Near-optimal control for nonzero-
sum differential games of continuous-time nonlinear systems
using single-network ADP’, IEEE Trans. Cybern., 2013, 43, (1),
pp. 206–216

31 Nodland, D., Zargarzadeh, H., Jagannathan, S.: ‘Neural network-based
optimal adaptive output feedback control of a helicopter UAV’, IEEE
Trans. Neural Netw. Learn. Syst., 2013, 24, (7), pp. 1061–1073

32 Haykin, S.: ‘Neural networks and learning machines’ (Prentice-Hall,
2008, 3rd edn.)

33 Khalil, H.K.: ‘Nonlinear systems’ (Prentice-Hall, 2001, 3rd edn.)
34 Abdollahi, F., Talebi, H.A., Patel, R.V.: ‘A stable neural network-

based observer with application to flexible-joint manipulators’, IEEE
Trans. Neural Netw., 2006, 17, (1), pp. 118–129

35 Hornik, K., Stinchcombe, M., White, H.: ‘Universal approximation of
an unknown mapping and its derivatives using multilayer feedforward
networks’, Neural Netw., 1990, 3, (5), pp. 551–560

36 Lewis, F.L., Yesildirek, A., Liu, K.: ‘Multilayer neural-net robot con-
troller with guaranteed tracking performance’, IEEE Trans. Neural
Netw., 1996, 7, (2), pp. 388–399

37 Yu, W.: ‘Recent advances in intelligent control systems’ (Springer-
Verlag, 2009)

38 Yang, X., Liu, D., Wang, D., Wei, Q.: ‘Discrete-time online learn-
ing control for a class of unknown nonaffine nonlinear systems using
reinforcement learning’, Neural Netw., 2014, 55, pp. 30–41

39 Rudin, W.: ‘Principles of mathematical analysis’ (McGraw-Hill’, Inc.,
1976, 3rd edn.)
1687
© The Institution of Engineering and Technology 2014



www.ietdl.org
40 Lewis, F.L., Jagannathan, S., Yesildirek, A.: ‘Neural network con-
trol of robot manipulators and nonlinear systems’ (Taylor & Francis,
1999)

41 Gampbell, S.L., Meger, C.D.: ‘Generalized inverses of linear transfor-
mations’ (Dover Publications, 1991)

42 Horn, R.A., Johnson, C.R.: ‘Matrix analysis’ (Cambridge University
Press, 2012, 2nd edn.)

43 Beard, R., Saridis, G., Wen, J.: ‘Galerkin approximations of the gen-
eralized Hamilton–Jacobi–Bellman equation’, Automatica, 1997, 33,
(12), pp. 2159–2177
1688
© The Institution of Engineering and Technology 2014
44 Chowdhary, G.V.: ‘Concurrent learning for convergence in adaptive
control without persistency of excitation’. PhD thesis, Georgia Institute
of Technology, 2010

45 Padhi, R., Unnikrishnan, N., Wang, X., Balakrishnan, S.N.: ‘A single
network adaptive critic (SNAC) architecture for optimal control syn-
thesis for a class of nonlinear systems’, Neural Netw., 2006, 19, (10),
pp. 1648–1660

46 Chowdhary, G.V.: ‘A singular value maximizing data recording
algorithm for concurrent learning’. American Control Conf., San
Francisco, CA, USA, 2011, pp. 3547–3552
IET Control Theory Appl., 2014, Vol. 8, Iss. 16, pp. 1676–1688
doi: 10.1049/iet-cta.2014.0186


