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Abstract: In this study, an online adaptive optimal control scheme is developed for solving the infinite-horizon optimal
control problem of uncertain non-linear continuous-time systems with the control policy having saturation constraints. A novel
identifier-critic architecture is presented to approximate the Hamilton–Jacobi–Bellman equation using two neural networks
(NNs): an identifier NN is used to estimate the uncertain system dynamics and a critic NN is utilised to derive the optimal
control instead of typical action–critic dual networks employed in reinforcement learning. Based on the developed architecture,
the identifier NN and the critic NN are tuned simultaneously. Meanwhile, unlike initial stabilising control indispensable in
policy iteration, there is no special requirement imposed on the initial control. Moreover, by using Lyapunov’s direct method,
the weights of the identifier NN and the critic NN are guaranteed to be uniformly ultimately bounded, while keeping the
closed-loop system stable. Finally, an example is provided to demonstrate the effectiveness of the present approach.
1 Introduction

Saturation, backlash and dead zone are common features
in real engineering applications. During the past several
decades, controller design of non-linear systems with satu-
rating actuators had drawn intensive attention in the control
community [1–4]. The objective of designing a controller is
generally to develop stable control schemes for non-linear
systems [5, 6]. Nevertheless, stability is only a bare mini-
mum requirement in a system design. The control scheme is
often required to guarantee the stability of the closed-loop
system, while keeping the prescribed cost function as small
as possible. Or rather, optimality is more preferred for con-
troller design of non-linear dynamic systems than stability
alone.

From a mathematical point of view, the solution of the
optimal control problem can be obtained by solving the
Hamilton–Jacobi–Bellman (HJB) equation, which guaran-
tees the sufficient condition for existence of optimality [7].
For linear dynamic systems and quadratic costs, the HJB
equation reduces to the Riccati equation, which can accu-
rately be solved by analytical or numerical methods [8]. In
case of non-linear systems, the HJB equation is actually a
non-linear partial differential equation that is intractable to
be solved. Although dynamic programming (DP) provides a
way to cope with optimal control problems, a serious draw-
back about it is that the computation is untenable to be
run with the increasing dimension of the non-linear system,
which is referred to the well-known ‘curse of dimension-
ality’ [9]. In addition, the backward direction of the search
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obviously prohibits the use of DP in the real-time control. In
order to overcome the difficulties for the use of DP, adaptive
dynamic programming (ADP) algorithms were developed
by Werbos [10–12]. The ADP approaches employ NNs
to derive optimal control forward-in-time. After that, large
amounts of ADP methods were developed [13–17]. How-
ever, most of the ADP algorithms are implemented either
by an offline process via iterative schemes or need a priori
knowledge of system dynamics. In light of the exact knowl-
edge of non-linear dynamic systems generally unavailable, it
is intractable to implement these algorithms. Consequently,
reinforcement learning (RL) methods are introduced. RL is
a class of approaches used in machine learning to methodi-
cally revise the actions of an agent based on responses from
its environment [18]. A typical structure of implementing
RL algorithm is the actor–critic architecture, where the actor
performs actions by interacting with its surroundings, and
the critic evaluates actions and offers feedback information
to the actor, leading to the improvement in performance of
the subsequent actor [19].

Up to now, many researchers have studied optimal con-
trol problems for non-linear systems based on RL methods
[19–22]. Abu-Khalaf and Lewis [20] presented an offline
algorithm based on RL to solve the HJB equation of optimal
control of fcontinuous-time (CT) non-linear systems with
input having saturation constraints. By using the algorithm,
the actor and the critic were sequently tuned and the solu-
tion of the HJB equation was successively approximated.
In order to derive online optimal control for CT non-linear
systems, Vamvoudakis and Lewis [21] proposed a novel
2037
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algorithm based on RL to synchronously tune the critic
and the actor. However, the exact knowledge of CT non-
linear systems is indispensable in [20, 21]. After that, Bhasin
et al. [22] presented a projection algorithm to derive the
optimal control of uncertain non-linear CT systems. Based
on the algorithm, the requirement of the prior knowledge
of non-linear dynamics was relaxed. Meanwhile, the actor,
the critic, and the identifier were all simultaneously tuned.
Nevertheless, a shortcoming of the method is that the use
of the projection algorithm demands the selection of a pre-
defined convex set so as to make the target NN weights
remain in the set, which is a challenge. In addition, unfor-
tunately, the algorithm proposed in [20, 21] and [22], all
required the initial stabilising control. There is no a general
approach developed to derive such a control. From mathe-
matical perspectives, the initial stabilising policy is actually
a suboptimal control. The suboptimal control is generally
difficult to obtain since it is often impossible to give analyt-
ical solutions for partial differential equations. Accordingly,
the initial stabilising control is a rather restrictive condi-
tion. Recently, Dierks and Jagannathan [23] relaxed the
requirement of initial stabilising control using a single online
approximator-based framework. However, the exact knowl-
edge of the system dynamics is still required. In addition, the
saturation of the control input is not taken into considera-
tion. As mentioned before, plenty of real-world applications
of feedback control involve control actuators with amplitude
limitations. The control design techniques that ignore the
actuators’ limitation may give birth to undesirable transient
response and cause system instability.

Motivated by the above work, in this paper, an online
adaptive optimal control scheme is developed for solving
the infinite-horizon optimal control problem of uncertain
non-linear CT systems with the control policy having sat-
uration constraints. A novel identifier–critic architecture is
presented to approximate the HJB equation using two neural
networks NNs: an identifer NN is used to estimate the uncer-
tain system dynamics and a critic NN is utilised to derive the
optimal control instead of typical action–critic dual networks
employed in RL. Based on the developed architecture, the
identifier NN and the critic NN are tuned simultaneously.
Meanwhile, unlike initial stabilising control indispensable
in policy iteration, there is no special requirement imposed
on the initial control. Moreover, by using Lyapunov’s direct
method, the weights of the identifier NN and the critic NN
are guaranteed to be uniformly ultimately bounded (UUB),
while keeping the closed-loop system stable.

The main contributions of this paper include the
following:

1. To the best of our knowledge, it is the first time that an
identifier–critic architecture is developed to derive optimal
control of uncertain non-linear CT systems with input con-
strains. Based on the architecture, the identifier NN and the
critic NN are tuned simultaneously.
2. Compared with [21, 22], a clear advantage of the devel-
oped control scheme in this paper is that no initial stabilis-
ing control is required. Meanwhile, the optimal control is
derived by using only one critic network, instead of the
action–critic dual networks. In addition, another obvious
advantage of this paper as compared with [21] lies in that the
knowledge of the internal system dynamics is not required,
that is, f (x) is unknown in system (1).
3. This paper extends the work of [23] to derive opti-
mal control for uncertain non-linear CT systems with
saturating actuator. The stability analysis of non-linear CT
2038
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systems with saturating actuator is more difficult than those
regardless of saturating actuator. By using a novel modified
weight tuning law for the critic NN and employing Tay-
lor series, the difficulties of stability analysis is successfully
overcome.
4. Unlike most identifier using a linear-in-parameter (LP)
NN [24, 25], the presented identifier utilises a non-linear-
in-parameters (NLP) NN. NLP NN is generally considered
as more powerful than LP NN used to estimate the system
dynamics [26].

The rest of this paper is organised as follows. The prob-
lem statement and preliminaries are presented in Section 2.
Identifier design is proposed in Section 3. Online optimal
neuro-controller design with constrained controls is devel-
oped in Section 4. Stability analysis and performance of
the closed-loop system is indicated in Section 5. Simu-
lation results are provided to show the effectiveness of
the proposed control scheme in Section 6. Finally, several
concluding remarks are given in Section 7.

For convenience, notations are listed here, which will be
used throughout the paper.

• R denotes the real number, R
m and R

m×n denote the real
m-vector and the real m × n matrix, respectively. In repre-
sents n × n identity matrix. If there is no special explanation,
T is a transposition symbol.
• ‖ · ‖ stands for any suitable norm. When z is a vector,
‖z‖ denotes the Euclidean norm of z. When z is a matrix,
and ‖z‖ denotes Frobenius norm of z.
• � is a compact subset of R

n and A is a subset of
R

m, Cm(�) = {f (m) ∈ C|f : � → R}.

2 Problem statement and preliminaries

For purpose of the present paper, we consider the non-linear
CT system given in the form

ẋ(t) = f (x(t)) + g(x(t))u(t) (1)

with state x(t) ∈ � ⊆ R
n and control u(t) ∈ A ⊆ R

m. A =
{u = [u1, u2, . . . , um]T : |ui| ≤ αi, i = 1, . . . , m}, where αi is
the saturating bound for the ith actuator. f (x) ∈ R

n is an
unknown non-linear function, g(x) ∈ R

n×m is a matrix of
non-linear functions. It is assumed that f (0) = 0 and f (x) +
g(x)u is Lipschitz continuous on � containing the origin,
such that the solution of system (1) is unique for any given
initial state x0 ∈ � and control u ∈ A. System (1) is stabilis-
able in the sense that there exists a continuous control u ∈ A

that asymptotically stabilises the system on �.
The value function for system (1) is generally

described by

V (x(t)) =
∫∞

t

r(x(s), u(s)) ds (2)

where r(x, u) = Q(x) + W(u), and Q(x) is continuously dif-
ferentiable and positive definite, that is, ∀x 	= 0, Q(x) >
0 and x = 0 ⇔ Q(x) = 0, and W(u) is positive definite.
In order to confront bounded controls in system (1) and
inspired by the work of [20, 27], we define W(u) as

W(u) = 2λ

∫ u

0

ψ−T(υ/λ) dυ

where ψ−1(υ/λ) = [ψ−1(υ1/λ), ψ−1(υ2/λ), . . . , ψ−1(υm/

λ)]T, λ is a positive constant, ψ ∈ R
m, ψ−T denotes (ψ−1)T,
IET Control Theory Appl., 2013, Vol. 7, Iss. 17, pp. 2037–2047
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and ψ(·) is a bounded one-to-one function satisfying
|ψ(·)| ≤ 1 and belonging to Cp(p ≥ 1) and L2(�). Mean-
while, ψ(·) is a monotonic odd function with its first
derivative bounded. It is significant to state that W(u) is
positive definite since ψ−1(·) is a monotonic odd func-
tion. Without loss of generality, in this paper, we choose
ψ(·) = tanh(·).
Definition 1: (UUB [28]) The equilibrium point xe of system
(1) is said to be UUB, if there exist positive constants b and
c, independent of t0 ≥ 0, and for every a ∈ (0, c), there is
T = T (a, b) > 0, independent of t0, such that

‖x(t0) − xe‖ ≤ a ⇒ ‖x(t) − xe‖ ≤ b, ∀ t ≥ t0 + T

Objective of control: The control objective is to derive
an online adaptive control not only stabilises system (1) but
also minimises the value function (2), while ensuring that
all the signals involved in the closed-loop system are UUB.

Prior to continuing our discussion, we present the follow-
ing required assumption.

Assumption 1: The control matrix g(x) is known and
bounded, that is, there exist positive constants gm and
gM (gm < gM ), such that gm ≤ ‖g(x)‖ ≤ gM , for ∀ x ∈ �.

3 Identifier design

In control engineering, NNs are considered as powerful tools
for approximating non-linear functions owing to their prop-
erties of non-linearity, adaptivity, self-learning and fault tol-
erance. In this section, a single-hidden layer feedforward NN
is applied to approximate F (x) ∈ Cn(�) (F (x) is a non-
linear function to be detailed subsequently) as follows [29]

F (x) = W T
1 σ(V T

1 x) + ε1(x) (3)

where σ(·) ∈ R
N1 is the activation function, ε1(x) ∈ R

n is
the NN function reconstruction error, V1 ∈ R

n×N1 and W1 ∈
R

N1×n are the weights for the input layer to the hidden
layer and the hidden layer to the output layer, respectively.
The number of the hidden layer nodes is denoted as N1.
In general, activation functions for σ(·) are bounded, mea-
surable, non-decreasing functions from the real numbers
onto [−1, 1], which include, for instance, hyperbolic tan-
gent function σ(x) = (ex − e−x)/(ex + e−x) etc. Without loss
of generality, in this paper, we employ hyperbolic tangent
function σ(x) as the activation function.

Since the dynamics of system (1) is uncertain, we need to
identify the system for deriving the optimal control. From
plant (1), we have that

ẋ(t) = f (x) + g(x)u

= Ax + F (x) + g(x)u (4)

where F (x) = f (x) − Ax, and A ∈ R
n×n is a known constant

matrix. By using (3), (4) can be developed by

ẋ(t) = Ax + W T
1 σ(V T

1 x) + g(x)u + ε1(x) (5)

The NN identifier approximates system (1) as

˙̂x(t) = Ax̂ + Ŵ T
1 σ(V̂ T

1 x̂) + g(x̂)u + ν(t) (6)

where x̂(t) ∈ R
n is the identifier NN state, Ŵ1 ∈ R

N1×n, V̂1 ∈
R

n×N1 are weight estimates, and ν(t) ∈ R
n is the robust feed-

back term defined as ν(t) = χ x̃ with the identification error
IET Control Theory Appl., 2013, Vol. 7, Iss. 17, pp. 2037–2047
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x̃(t) � x(t) − x̂(t) and the design matrix χ ∈ R
n×n selected

such that A − χ is a Hurwitz matrix.
By using (5) and (6), the identification error dynamics is

given by

˙̃x(t) = (A − χ)x̃(t) + W̃ T
1 σ(V̂ T

1 x̂) + δ(x) (7)

where W̃1 = W1 − Ŵ1, δ(x) = W T
1 [σ(V1

Tx) − σ(V̂ T
1 x̂)] +

[g(x) − g(x̂)]u + ε1(x)
Before showing the stability of the identification error

x̃(t), we need to present some mild assumptions and facts.
It is worth pointing out that these assumptions are common
techniques, which have been used in [7, 22, 25, 30].

Assumption 2: The NN weights W1 and V1 are bounded over
the compact set � by known positive constants WM1 and VM1 ,
respectively. That is

‖W1‖ ≤ WM1 , ‖V1‖ ≤ VM1

Assumption 3: The NN function reconstruction error ε1(x)
is bounded over the compact set � as ‖ε1(x)‖ ≤ εM1 , where
εM1 is a known positive constant.

Fact 1: The NN activation function is bounded by a known
positive constant over the compact set �, that is, there exists
σM > 0, such that ‖σ(x)‖ ≤ σM , for ∀ x ∈ �.

Fact 2: Since A − χ is a Hurwitz matrix, there exists a
unique positive-definite symmetric matrix P ∈ R

n×n satisfy-
ing the Lyapunov equation

(A − χ)TP + P(A − χ) = −αIn

where α > 0 is a design parameter.

Theorem 1: Let Assumptions 1–3 hold, if NN weight esti-
mates Ŵ1 and Ŵ2 are updated as

˙̂W1 = −l1σ(V̂ T
1 x̂)x̃T(A − χ)−1 − κ1‖x̃‖Ŵ1 (8)

˙̂V1 = −l2sgn(x̂)x̃T(A − χ)−1Ŵ T
1

(
IN1 − 
(V̂ T

1 x̂)
)

− κ2‖x̃‖V̂1

(9)

with design parameters li > 0 and κi > 0 (i = 1, 2),

(V̂ T

1 x̂) = diag{σ 2
j (V T

1j x̂)} (j = 1, . . . , N1), and sgn(x̂) =
[sgn(x̂1), . . . , sgn(x̂n)]T, where sgn(x̂k) (k = 1, . . . , n) is a
sign function with respect to x̂k [32]. Then, the NN identifier
developed in (6) can ensure that the identification error x̃(t)
converges to the small compact set

�x̃ = {x̃ : ‖x̃‖ ≤ 2B/α} (10)

where B is defined as in (16). In addition, the error dynamics
of NN weight estimates W̃1 = W1 − Ŵ1 and Ṽ1 = V1 − V̂1

are all guaranteed to be UUB.

Proof: Consider the Lyapunov function candidate

J (t) = J1(t) + J2(t) (11)
2039
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where

J1(t) = 1

2
x̃TPx̃ J2(t) = 1

2
tr

(
W̃ T

1 l−1
1 W̃1

)
+ 1

2
tr

(
Ṽ T

1 l−1
2 Ṽ1

)
Taking the time derivative of J1(t) in (11) and using Facts
1–2, we have that

J̇1(t) = −α

2
x̃Tx̃ + x̃TP

[
W̃ T

1 σ(V̂ T
1 x̂) + δ(x)

]
≤ −α

2
‖x̃‖2 + ‖x̃‖‖P‖

(
‖W̃1‖σM + δM

)
(12)

where δM is the upper bound of δ(x), that is, ‖δ(x)‖ ≤ δM .
Actually, by Assumptions 1–3 and Fact 1, one can easily
draw the conclusion that δ(x) in (7) is a bounded function
since the control is constrained.

On the other hand, taking the time derivative of J2(t)
in (11) and using weights update laws (8) and (9), we
obtain that

J̇2(t) = tr

{
W̃ T

1 σ(V̂ T
1 x̂)x̃T(A − χ)−1+ κ1

l1
‖x̃‖W̃ T

1 (W1 − W̃1)

}

+ tr

{
Ṽ T

1 sgn(x̂)x̃T(A − χ)−1(W1 − W̃1)
T

×
(

IN1 − 
(V̂ T
1 x̂)

)
+ κ2

l2
‖x̃‖Ṽ T

1 (V1 − Ṽ1)

}
(13)

Observing that tr(XY ) = tr(YX ) = YX , for ∀X ∈ R
n×1, Y ∈

R
1×n and tr[Z̃T(Z − Z̃)] ≤ ‖Z̃‖‖Z‖ − ‖Z̃‖2, for ∀ Z , Z̃ ∈

R
m×n, we can rewrite (13) as

J̇2(t) = x̃T(A − χ)−1W̃ T
1 σ(V̂ T

1 x̂) + κ1

l1
‖x̃‖tr

(
W̃ T

1 (W1 − W̃1)
)

+ x̃T(A − χ)−1(W1 − W̃1)
T
(

IN1 − 
(V̂ T
1 x̂)

)
Ṽ T

1 sgn(x̂)

+ κ2

l2
‖x̃‖tr

(
Ṽ T

1 (V1 − Ṽ1)
)

≤ βσM ‖x̃‖‖W̃1‖ + κ1

l1
‖x̃‖

(
WM1‖W̃1‖ − ‖W̃1‖2

)
+ β

∥∥IN1 − 
(V̂ T
1 x̂)

∥∥‖x̃‖
(

WM1 + ‖W̃1‖
)

‖Ṽ1‖
+ κ2

l2
‖x̃‖

(
VM1‖Ṽ1‖ − ‖Ṽ1‖2

)
(14)

where β = ‖(A − χ)−1‖.
Combining (12) with (14) and noting that ‖IN1 −


(V̂ T
1 x̂)‖ ≤ 1, we obtain that

J̇ (t) = −α

2
‖x̃‖2+

{
δM ‖P‖ +

(
(‖P‖ + β)σM + κ1

l1
WM1

)
‖W̃1‖

+
(

βWM1 + κ2

l2
VM1

)
‖Ṽ1‖ −

(
κ1

l1
− β2

4

)
‖W̃1‖2

−
(

κ2

l2
− 1

)
‖Ṽ1‖2 −

(
β

2
‖W̃1‖ − ‖Ṽ1‖

)2
}

‖x̃‖

= −α

2
‖x̃‖2 +

{
δM ‖P‖ +

(
κ1

l1
− β2

4

)
γ 2

1

+
(

κ2

l2
− 1

)
γ 2

2 −
(

κ1

l1
− β2

4

)
‖W̃1 + γ1‖2

−
(

κ2

l2
− 1

)
‖Ṽ1 + γ2‖2 −

(
β

2
‖W̃1‖ − ‖Ṽ1‖

)2
}

‖x̃‖
(15)
2040
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where

γ1 = 2l1(β + ‖P‖)σM + 2κ1WM1

β2l1 − 4κ1
, γ2 = βl2WM1 + κ2VM1

2(l2 − κ2)

Selecting κ1 > β2l1/4, κ2 > l2 and from (15), we derive that

J̇ (t) ≤ −α

2
‖x̃‖2 +

{
δM ‖P‖ +

(
κ1

l1
− β2

4

)
γ 2

1

+
(

κ2

l2
− 1

)
γ 2

2

}
‖x̃‖

= −
(α

2
‖x̃‖ − B

)
‖x̃‖ (16)

where B = δM ‖P‖ +
(

κ1

l1
− β2

4

)
γ 2

1 +
(

κ2

l2
− 1

)
γ 2

2

Therefore J̇ (t) is negative as long as ‖x̃(t)‖ > 2B/α,
where B is defined as in (16). That is, the system iden-
tification error x̃(t) converges to the compact set �x̃ defined
as in (10). Meanwhile, according to the standard Lyapunov
extension theorem [30], this demonstrates the uniformly
ultimate boundedness of the NN weight estimates error
W̃1 and Ṽ1. �

4 Online optimal neuro-controller design
with constrained controls

This section consists of two subsections. In the first sub-
section, the HJB equation for constrained non-linear CT
systems is developed. Then, an online NN-based optimal
control scheme is presented.

4.1 HJB equation for constrained non-linear CT
systems

Since system (1) can be approximated by (6) outside of the
small compact set �x̃, we replace system (1) with (6) in
the subsequent discussion. Meanwhile, system state x(t) is
replaced by x̂(t), and (6) is represented by

˙̂x(t) = h(x̂) + g(x̂)u (17)

where h(x̂) = Ax̂ + Ŵ T
1 σ(V̂ T

1 x̂) + χ x̃(t). The value function
(2) is rewritten as

V (x̂(t)) =
∫∞

t

(
Q(x̂(s)) + 2λ

∫ u

0

tanh−T(υ/λ) dυ

)
ds (18)

Definition 2: (Admissible control [32]) A control u(x̂) :
R

n → R
m is said to be admissible with respect to (18) on

�, written as u(x̂) ∈ A (�), if u(x̂) is continuous on �,
u(0) = 0, u(x̂) stabilises system (17) on �, and V (x̂0) is
finite for every x̂ ∈ �.

Given a control u(x̂) ∈ A (�), if the associated value
function V (x̂) ∈ C1(�), its infinitesimal version of (18) is
the so-called Lyapunov equation

V T
x̂ (h(x̂) + g(x̂)u) + Q(x̂) + 2λ

∫ u

0

tanh−T(υ/λ) dυ = 0

where Vx̂ ∈ R
n denotes the partial derivative of V (x̂)

with respect to x̂. Define the Hamiltonian for the control
IET Control Theory Appl., 2013, Vol. 7, Iss. 17, pp. 2037–2047
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u(x̂) ∈ A (�) and the associated value function V (x̂) by

H (x̂, Vx̂, u) = V T
x̂ (h(x̂) + g(x̂)u) + Q(x̂)

+ 2λ

∫ u

0

tanh−T(υ/λ) dυ

Then, the optimal cost V ∗(x̂) can be obtained by solving the
HJB equation

min
u(x̂)∈A (�)

H (x̂, V ∗
x̂ , u) = 0. (19)

Suppose that the minimum value on the left-hand side of
(19) exists and is unique. Then, the closed-form expression
for constrained optimal control is derived as

u∗(x̂) = −λ tanh

(
1

2λ
gT(x̂)V ∗

x̂

)
(20)

Substituting (20) into (19), we derive the HJB equation for
constrained non-linear systems as

V ∗
x̂

Th(x̂) − 2λ2
C

T(x̂) tanh(C(x̂))

+ Q(x̂) + 2λ

∫−λ tanh(C(x̂))

0

tanh−T(υ/λ) dυ = 0 (21)

where C(x̂) = 1

2λ
gT(x̂)V ∗

x̂ . Observe that

2λ

∫−λ tanh(C(x̂))

0

tanh−T(υ/λ) dυ

= 2λ2
C

T(x̂) tanh(C(x̂)) + λ2 ln[1 − tanh2(C(x̂))]

Then, we can rewrite (21) as

V ∗
x̂

Th(x̂) + Q(x̂) + λ2 ln[1 − tanh2(C(x̂))] = 0 (22)

where C(x) is defined as in (21).
Nevertheless, one shall find that (22) is intractable to

solve since it is actually a partial differential equation
with respect to V ∗

x̂ . In order to overcome the difficulty, an
online NN-based optimal control scheme is developed. Prior
to presenting the optimal control scheme, we develop the
following required lemma.

Lemma 1: Consider system (17) with the associated value
function V (x̂) as in (18) and the optimal control (20), let
L1(x̂) be a continuously differentiable radially unbounded
Lyapunov candidate function such that L̇1(x̂) = L̇1x̂(h(x̂) +
g(x̂)u) < 0 with L̇1x̂ the partial derivative of L1(x̂) with
respect to x̂. Meanwhile, let �(x̂) ∈ R

n×n be positive definite
on �, that is, for ∀x̂ 	= 0, �(x̂) > 0 and x̂ = 0 ⇔ �(x̂) = 0,
and there exist positive constants such that ρIn ≤ �(x̂) ≤ �In

(ρ < �), for ∀ x̂ ∈ � [30]. In addition, let �(x̂) = ∞ when
‖x̂‖ = ∞ and there exists

V ∗
x̂

T
�(x̂)L1x̂ = Q(x̂) + 2λ

∫ u∗

0

tanh−T(υ/λ) dυ (23)

Then, one can derive that

LT
1x̂(h(x̂) + g(x̂)u∗) = −LT

1x̂�(x̂)L1x̂ (24)
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Proof: Taking the time derivative of (18) and employing
(20), we have that

V̇ (x̂) = V ∗
x̂

T (
h(x̂) + g(x̂)u∗)

= −Q(x̂) − 2λ

∫ u∗

0

tanh−T(υ/λ) dυ (25)

By utilising (23) and (25), we derive that

h(x̂) + g(x̂)u∗ = −
(

V ∗
x̂ V ∗

x̂
T
)−1 (

V ∗
x̂ V ∗

x̂
T
)

�(x̂)L1x̂

= −�(x̂)L1x̂ (26)

Hence, one can obtain (24) by premultiplying both sides of
(26) with LT

1x̂. �

4.2 Online NN-based optimal control scheme

The purpose of this subsection is to design an online optimal
control scheme by using a unique critic NN. According to
the universal approximation property of feedforward NNs
[29], V (x̂) in (18) can accurately be represented as

V (x̂) = W T
2 σ(V T

2 x̂) + ε2(x̂) (27)

where V2 ∈ R
n×N2 and W2 ∈ R

N2 are the weights for the
input layer to the hidden layer and the hidden layer to the
output layer, respectively. N2 is the number of the neurons.
Since the inner weights are generally initialised randomly
and kept constant, the activation function σ(V T

2 x̂) is writ-
ten as σ(x̂) for briefly. σ(x̂) = [σ1(x̂), σ2(x̂), . . . , σN2(x̂)]T ∈
R

N2 with σj(x̂) ∈ C1(�), σj(0) = 0, and the set {σj(x̂)}N2
1 is

selected to be linearly independent. ε2(x̂) is the NN function
reconstruction error. The derivative of V (x̂) with respect to
x̂ is given by

Vx̂ = ∇σ T(x̂)W2 + ∇ε2 (28)

with ∇σ(x̂) = ∂σ(x̂)/∂ x̂ and ∇σ(0) = 0.
By using (28), (20) can be represented as

u∗(x̂) = −λ tanh

(
1

2λ
gT(x̂)∇σ TW2

)
+ εu∗ (29)

where

εu∗ = −1

2
(1 − tanh2(ξ1))g

T(x̂)∇ε2

with ξ1 ∈ R
m selected between 1

2λ
gT(x̂)∇σ TW2 and 1

2λ
gT(x̂)

(∇σ TW2 + ∇ε2).
Similarly, with the aid of (28), (22) can be rewritten as

W T
2 ∇σh(x̂) + Q(x̂) + λ2 ln

[
1 − tanh2(L1(x̂))

] + εHJB = 0
(30)

where

L1(x̂) = 1

2λ
gT(x̂)∇σ TW2

εHJB = ∇εT
2

[
h(x̂) + g(x̂)

λ

ξ2
tanh(ξ3)(tanh2(ξ3) − 1)

]

with ξ2 ∈ R selected between 1 − tanh2(C(x̂)) and 1 −
tanh2(L1(x̂)), and ξ3 ∈ R

m chosen between C(x̂) and L1(x̂).
2041
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Remark 1: It was shown in [20] that the HJB approxima-
tion error εHJB converges to zero as the number of hidden
layer neurons N2 increases. That is, for ∀ εh > 0, there exists
a positive N0 (depending only on εh) such that N2 > N0

implies ‖εHJB‖ ≤ εh.

Since the ideal NN weight W2 is typically unknown, (27)
cannot be implemented in real control process. Therefore we
employ V̂ (x̂) to approximate the value function in (18) as

V̂ (x̂) = Ŵ T
2 σ(x̂) (31)

where Ŵ2 is the estimation of W2. The weight estimates error
for the critic NN is defined as

W̃2 = W2 − Ŵ2 (32)

By utilising (31), the estimate of (20) is written as

û(x̂) = −λ tanh

(
1

2λ
gT(x̂)∇σ TŴ2

)
(33)

From (31) and (33), we derive the approximate Hamiltonian as

H (x̂, Ŵ2) = Ŵ T
2 ∇σh(x̂) + Q(x̂)

+ λ2 ln
[
1 − tanh2(L2(x̂))

]
� e (34)

where L2(x̂) = 1
2λ

gT(x̂)∇σ TŴ2.
Combining (30), (32) and (34), we derive that

e = −W̃ T
2 ∇σh(x̂) + λ2

[
�(L2(x̂)) − �(L1(x̂))

] − εHJB (35)

where �(Li(x̂)) = ln[1 − tanh2(Li(x̂))] (i = 1, 2). Observe
that, for ∀ ξ ∈ R, �(ξ) can accurately be represented by

�(ξ) = ln(1 − tanh2(ξ))

=
{

ln 4 − 2ξ − 2 ln (1 + exp(−2ξ)) , ξ > 0
ln 4 + 2ξ − 2 ln (1 + exp(2ξ)) , ξ < 0

That is,

�(ξ) = ln 4 − 2ξsgn(ξ) − 2 ln [1 + exp(−2ξsgn(ξ))] (36)

Replacing ξ with Li(x̂) in (36) and observing Li(x̂) ∈ R
m,

we obtain that

�(Li(x̂)) = ln 4 − 2L
T
i (x̂)sgn(Li(x̂))

− 2 ln
[
1 + exp

(−2L
T
i (x̂)sgn(Li(x̂))

)]
(37)

where sgn(Li(x̂)) ∈ R
m is a sign vector-valued function [32].

Therefore by (35) and (37), we obtain that

e = 2λ2
[
L

T
1 (x̂)sgn(L1(x̂)) − L

T
2 (x̂)sgn(L2(x̂))

]
− W̃ T

2 ∇σh(x̂) + λ2�L − εHJB

= λ
[
W T

2 ∇σg(x̂)sgn(L1(x̂)) − Ŵ T
2 ∇σg(x̂)sgn(L2(x̂))

]
− W̃ T

2 ∇σh(x̂) + λ2�L − εHJB

= −W̃ T
2 ∇σh(x̂) + λW̃ T

2 ∇σg(x̂)sgn(L2(x̂)) + D1(x̂) (38)

where

�L = 2 ln
1 + exp

[−2LT
1 (x̂)sgn(L1(x̂))

]
1 + exp

[−2LT
2 (x̂)sgn(L2(x̂))

]
D1(x̂) = λW T

2 ∇σg(x̂)
[
sgn(L1(x̂)) − sgn(L2(x̂))

]
+ λ2�L − εHJB
2042
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Remark 2: From the expression of �L, one can obtain that
�L ∈ [− ln 4, ln 4]. Meanwhile, by Remark 1, one can con-
clude that D1(x̂) is a bounded function since W2 is generally
set to be bounded and λ is a constant.

In order to obtain the minimum value of e, it is desired to
minimise the objective function E = 1

2 eTe with the gradient
descent algorithm. However, tuning the critic NN weights to
minimise E alone does not guarantee the stability of system
(17) during the learning process of NNs. For ensuring the
algorithm can be implemented online, a novel weight update
law for the critic NN is developed by

˙̂W2 = −ηφ̄
(

Q(x̂) + Ŵ T
2 ∇σh(x̂) + λ2 ln

[
1 − tanh2(L2(x̂))

])
+ η

2
�(x̂, û)∇σg(x̂)

[
1 − tanh2(L2(x̂))

]
gT(x̂)L1x̂

+ η

(
λ∇σg(x̂)

[
tanh(L2(x̂)) − sgn(L2(x̂))

] ϕT

ms
Ŵ2

−(F2Ŵ2 − F1ϕ
TŴ2)

)
(39)

where φ̄ = φ/m2
s , ϕ = φ/ms, ms = 1 + φTφ, φ = ∇σh(x̂) −

λ∇σg(x̂) tanh(L2(x̂)), η > 0 is a design parameter, L1x̂ is
defined as in Lemma 1, F1 and F2 are tuning parameters
with suitable dimensions, and �(x̂, û) is described by

�(x̂, û) =
{

0, if L1x̂h(x̂) − λL1x̂g(x̂) tanh(L2(x̂)) < 0
1, otherwise

(40)

Remark 3: From the expression of (34) and (39), one shall

find that x̂ = 0 gives birth to H (x̂, Ŵ2) = e = 0 and ˙̂W2 = 0.
That is, when the system state x̂(t) goes to zero, the approx-
imated value function V̂ (x̂) will no longer be updated.
However, the optimal control might not be obtained at finite
time t0, which makes x(t0) = 0. In order to avoid this cir-
cumstance from occurring, probing noise is added to the
control input, that is, persistency of excitation (PE) condition
is required.

By the definition of φ in (39), we have that ∇σh(x̂) = φ +
λ∇σg(x̂) tanh(L2(x̂)). Therefore (38) can be represented by

e = −W̃ T
2 φ + λW̃ T

2 ∇σg(x̂)N(x̂) + D1(x̂) (41)

where N(x̂) = sgn(L2(x̂)) − tanh(L2(x̂)). From (32), (34),
(39) and (41), we derive that

˙̃W2 = η
ϕ

ms

[
−W̃ T

2 φ + λW̃ T
2 ∇σg(x̂)N(x̂) + D1(x̂)

]
− η

2
�(x̂, û)∇σg(x̂)

[
1 − tanh2(L2(x̂))

]
gT(x̂)L1x̂

+ η

[
λ∇σg(x̂)N(x̂)

ϕT

ms
Ŵ2 + (F2Ŵ2 − F1ϕ

TŴ2)

]
(42)

A general schematic programming of the proposed control
algorithm is presented in Fig. 1.

5 Stability analysis and performance of the
closed-loop system

The purpose of this section is to present our main results
by employing Lyapunov’s direct method. Before engaging
IET Control Theory Appl., 2013, Vol. 7, Iss. 17, pp. 2037–2047
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Fig. 1 Proposed control algorithm for uncertain non-linear CT
systems.

in developing the main theorem, we need to provide a mild
assumption as follows:

Assumption 4: The critic NN weight W2 is bounded by a
known positive constant WM2 over the compact set �, that
is, ‖W2‖ ≤ WM2 . Meanwhile, the critic NN approximation
error ε2(x̂) is bounded by a known positive constant εM2

over �, that is, ‖ε2(x̂)‖ ≤ εM2 , for ∀ x̂ ∈ �. In addition, εu∗
in (29) is upper bounded by εa over �, that is ‖εu∗‖ ≤ εa.

With the aid of Assumptions 1–4 and Facts 1–2, our main
theorem is derived as follows:

Theorem 2: Consider the non-linear CT system described by
(1) with associated HJB equation (22). Let Assumptions 1–
4 hold and take the control input for system (1) as in (33).
Moreover, let weights update laws for the identifier NN be
(8) and (9), and let the critic NN weight tuning law be given
by (39). Then, the system identifier error x̃(t), the NN weight
estimates errors W̃1, Ṽ1, and W̃2 are guaranteed to be UUB.

Proof: Consider the Lyapunov function candidate

L(t) = L1(t) + L2(t) + L3(t) (43)

where L1(t) is defined as in Lemma 1, L2(t) = J (t) with

J (t) defined as in Theorem 1, and L3(t) = 1

2
tr

(
W̃ T

2 η−1W̃2

)
.

Taking the time derivative of (43) and using Theorem 1,
we obtain that

L̇(t) = L̇1(t) + L̇2(t) + L̇3(t)

≤ LT
1x̂[h(x̂) − λg(x̂) tanh(L2(x̂))]

− α

2
‖x̃‖2 + B‖x̃‖ + ˙̃W T

2 η−1W̃2 (44)
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By using (42), we derive the last term in (44) as

˙̃W T
2 η−1W̃2 =

[
−W̃ T

2 φ + λW̃ T
2 ∇σg(x̂)N(x̂) + D1(x̂)

] ϕT

ms
W̃2

− 1

2
�(x̂, û)LT

1x̂g(x̂)
[
1 − tanh2(L2(x̂))

]
× gT(x̂)∇σ TW̃2

+ λW̃ T
2 ∇σg(x̂)N(x̂)

ϕT

ms
Ŵ2

+ W̃ T
2 (F2Ŵ2 − F1ϕ

TŴ2)

= −W̃ T
2 ϕϕTW̃2 + D̄1(x̂)ϕ

TW̃2 + W̃ T
2 D̄2(x̂)

− 1

2
�(x̂, û)LT

1x̂g(x̂)
[
1 − tanh2(L2(x̂))

]
× gT(x̂)∇σ TW̃2

+ W̃ T
2 (F2Ŵ2 − F1ϕ

TŴ2) (45)

where D̄1(x̂) = D1(x̂)
ms

and D̄2(x̂) = λ∇σg(x̂)N(x̂) ϕT

ms
W2.

Observe that

W̃ T
2 (F2Ŵ2 − F1ϕ

TŴ2)

= W̃ T
2 F2W2 − W̃ T

2 F2W̃2 − W̃ T
2 F1ϕ

TW2 + W̃ T
2 F1ϕ

TW̃2

Denote ZT = [W̃ T
2 ϕ, W̃ T

2 ]. Then, (45) can be developed by

˙̃W T
2 η−1W̃2 = −ZTKZ + ZTG − 1

2
�(x̂, û)LT

1x̂g(x̂)

× [
1 − tanh2(L2(x̂))

]
gT(x̂)∇σ TW̃2 (46)

where

K =
⎡
⎢⎣ I −FT

1

2
−F1

2
F2

⎤
⎥⎦ G =

[
D̄1(x)

D̄2(x) + F2W2 − F1ϕ
TW2

]

Combining (44) with (46) and selecting F1 and F2 such that
K is positive definite, we obtain that

L̇(t) ≤ LT
1x̂[h(x̂) − λg(x̂) tanh(L2(x̂))]

− α

2
‖x̃‖2 + B‖x̃‖ − σmin(K)‖Z‖2 + ϑM ‖Z‖

− 1

2
�(x̂, û)LT

1x̂g(x̂)
[
1 − tanh2(L2(x̂))

]
gT(x̂)∇σ TW̃2

(47)

where σmin(K) denotes the minimum eigenvalue of K , and
ϑM is the upper bound of ‖G‖, that is, ‖G‖ ≤ ϑM .

Owing to the definition of �(x̂, û) in (40), (47) is divided
into the following two cases for discussion:

Case 1: �(x̂, û) = 0. By the definition of �(x̂, û) in (40), we
know that the first term in (47) is negative. Since ‖x̂‖ > 0 is
guaranteed by persistent excitation, one can draw the con-
clusion that there exists a constant τ , such that 0 < τ ≤ ‖˙̂x‖
implies −‖L1x̂‖τ ≥ LT

1x̂
˙̂x based on Archimedean property of
2043
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R [32]. Then, (47) can be developed by

L̇(t) ≤ −τ‖L1x̂‖ − α

2
(‖x̃‖ − B/α)

2

− σmin(K)

(
‖Z‖ − 1

2
ϑM /σmin(K)

)2

+ 1

2
B

2/α + 1

4
ϑ2

M /σmin(K) (48)

Therefore we can derive that (48) implies that L̇(t) < 0 as
long as one of the following conditions holds

‖L1x̂‖ >
2σmin(K)B2 + αϑ2

M

4τασmin(K)

or

‖x̃(t)‖ >
B

α
+ 1

α

√
B2 + αϑ2

M

2σmin(K)

or

‖Z‖ >
1

2σmin(K)

(
ϑM +

√
ϑ2

M + 2B2σmin(K)/α

)

Case 2: �(x̂, û) = 1. By the definition of �(x̂, û) in (40),
we know that the first term in (47) is non-negative, which
implies that the control (33) may not stabilise system (17).
Under this circumstance, (47) becomes

L̇(t) ≤ LT
1x̂h(x̂) − λLT

1x̂g(x̂)

[
tanh(L2(x̂))

+ 1

2λ
[1 − tanh2(L2(x̂))]gT(x̂)∇σ TW̃2

]

− σmin(K)

(
‖Z‖ − 1

2
ϑM /σmin(K)

)2

− α

2
(‖x̃‖ − B/α)

2 + 1

2
B

2/α + 1

4
ϑ2

M /σmin(K) (49)

Denote B(Li(x̂)) = tanh(Li(x̂)), i = 1, 2. By using Taylor
series, we have that

B(L1(x̂)) − B(L2(x̂))

= Ḃ(L2(x̂))
(
L1(x̂) − L2(x̂)

) + O
(
(L1(x̂) − L2(x̂))

2
)

= 1

2λ

[
1 − tanh2(L2(x̂))

]
gT(x̂)∇σ TW̃2

+ O
(
(L1(x̂) − L2(x̂))

2
)

(50)

From (50), we obtain that

tanh(L2(x̂)) + 1

2λ

[
1 − tanh2(L2(x̂))

]
gT(x̂)∇σ TW̃2

= tanh(L1(x̂)) − O
(
(L1(x̂) − L2(x̂))

2
)

(51)

Substituting (51) into (49) and adding and subtracting
LT

1x̂g(x̂)εu∗ to the right-hand side of (49), we derive that

L̇(t) ≤ LT
1x̂

(
h(x̂) + g(x̂)u∗) − LT

1x̂g(x̂)εu∗

+ λLT
1x̂g(x̂)O

(
(L1(x̂) − L2(x̂))

2
)

− σmin(K)

(
‖Z‖ − 1

2
ϑM /σmin(K)

)2

− α

2
(‖x̃‖ − B/α)

2 + 1

2
B

2/α + 1

4
ϑ2

M /σmin(K) (52)
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By using Lemma 1, we can rewrite (52) as

L̇(t) ≤ −σmin(�(x̂))

(
‖L1x̂‖ − 1

2
θM /σmin(�(x̂))

)2

− σmin(K)

(
‖Z‖ − 1

2
ϑM /σmin(K)

)2

− α

2
(‖x̃‖ − B/α)

2 + μ (53)

where θM = gM (εa + λεb), εb is the upper bound of
O((L1(x̂) − L2(x̂))2), and μ is defined as follows

μ = 1

2
B

2/α + 1

4
θ 2

M /σmin(�(x̂)) + 1

4
ϑ2

M /σmin(K)

Consequently, we can obtain that (53) implies that L̇(t) < 0
as long as one of the following conditions holds

‖L1x̂‖ >
θM

2σmin(�(x̂))
+

√
μ

σmin(�(x̂))

or

‖x̃(t)‖ >
B

α
+

√
2μ

α

or

‖Z‖ >
ϑM

2σmin(K)
+

√
μ

σmin(K)

Combining Cases 1 and 2 and using the standard Lyapunov
extension theorem [30], one can come to the conclusion that
the system identifier error x̃(t), NN weight estimates errors
W̃1, Ṽ1 and W̃2 are UUB. �

6 Simulation results

Consider the affine non-linear CT system described by [21]

ẋ(t) = f (x) + g(x)u (54)

where

f (x) =
[ −x1 + x2

−0.5x1 − 0.5x2 + 0.5x2[cos(2x1) + 2]2

]

g(x) =
[

0
cos(2x1) + 2

]

The objective is to control the system with control limits of
|u| ≤ 1.2. The non-quadratic cost function is given by

V (x) =
∫∞

0

(
Q(x) + 2λ

∫ u

0

tanh−T(υ/λ) dυ

)
dt

where Q(x) = x2
1 + x2

2. Meanwhile, the priori knowledge of
f (x) is assumed to be unavailable, which is distinctly differ-
ent from it employed in [21]. For the sake of deriving the
knowledge of system dynamics, an identifier NN as in (6)
IET Control Theory Appl., 2013, Vol. 7, Iss. 17, pp. 2037–2047
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is employed. The identifier gains are selected as

A = [−1 1; −0.5 − 0.5], χ = [1 0; −0.5 0], l1 = 40

l2 = 40, k1 = 15, k2 = 45, N1 = 8

and the gains for the critic NN are chosen as

η = 38, λ = 1.2, N2 = 8

The activation function for the critic NN is chosen as

σ(x) = [x2
1 x2

2 x1x2 x4
1 x4

2 x3
1x2 x2

1x2
2 x1x3

2]T

and the critic NN weights are denoted as Ŵ2 =
[W 1

2 · · · W 8
2 ]T. The initial weights Ŵ1 and V̂1 for the identi-

fier NN are selected randomly within an interval of [−10, 10]
and [−5, 5], respectively. Meanwhile, the initial weights for
the critic NN are chosen to be zeros, and the initial system
state is selected to be x0 = [3 − 0.5]T. It is significant to
point out that, under this circumstance, the initial control
can not stabilise system (54). That is, no initial stabilis-
ing control is required for implementation of the algorithm.
From this fact, one shall find that a distinct advantage of
the developed algorithm in this paper as compared with
the method proposed in [21] lies in that there is no spe-
cial requirement imposed on the initial control rather than
the initial stabilising control is indispensable in [21]. To
guarantee the PE qualitatively, a small exploratory signal
n(t) = sin5(t) cos(t) + sin5(2t) cos(0.2t) is added to control
policy u(t) for the first 10 s.

The computer simulation results are presented in Figs. 2–
8. Fig. 2 presents the trajectories of system state x(t). Fig. 3
indicates the performance of the system identification error.
Fig. 4 shows the 2-norm of the weights for the identifier
NN. Fig. 5 provides the performance of the convergence
of the critic NN weights. Fig. 6 presents the optimal con-
troller with actuator saturation. In order to make comparison
with the controller without considering the actuator satura-
tion, we use Figs. 7 and 8 to show the system state and the
controller designed separately regardless of the actuator sat-
uration. The actuator saturation actually exists; therefore, the
control input is limited to the bounded value when it over-
runs the saturation bound. From Figs. 2–8, it is observed
that the identifier NN weights and the critic NN weights

Fig. 2 Evolution of state x(t) for learning process
IET Control Theory Appl., 2013, Vol. 7, Iss. 17, pp. 2037–2047
doi: 10.1049/iet-cta.2013.0472
Fig. 3 System identification error x̃(t)

Fig. 4 Two-norm of identifier NN weights ‖Ŵ1‖ and ‖V̂1‖

Fig. 5 Convergence of critic NN weights Ŵ2

are tuned simultaneously. It is also observed that the sys-
tem states, and the estimates weights of both the identifier
NN and the critic NN are all guaranteed to be UUB, while
2045
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Fig. 6 Control input u

Fig. 7 Evolution of state x(t) without considering actuator
saturation

Fig. 8 Control input u without considering actuator saturation

keeping closed-loop system stable. In addition, comparing
Fig. 6 with Fig. 8, one shall find that the restriction of
actuator saturation has been successfully overcome.
2046
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7 Conclusions

This paper develops an online adaptive optimal control
scheme for solving the infinite-horizon optimal control prob-
lem of uncertain non-linear CT systems with saturation
actuators. An identifier–critic architecture is first time used
to approximate the HJB equation. Two NNs are employed
in this architecture: a robust NN is utilised to estimate
the uncertain system dynamics and a critic NN is used to
derive the optimal control instead of typical action–critic
dual networks. Based on the developed architecture, the
identifier NN and the critic NN are tuned simultaneously.
Meanwhile, no initial stabilising control is required. By
using Lyapunov’s direct method, the weights of the iden-
tifier NN and the critic NN are guaranteed to be UUB,
while keeping the closed-loop system stable. A limitation
of the method is that the structure of non-linearities should
be known first. In our future work, we will focus on design-
ing optimal controllers for unknown non-affine non-linear
CT systems without initial stabilising control policy.
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