
www.ietdl.org

Published in IET Control Theory and Applications
Received on 4th September 2012
Revised on 24th January 2013
Accepted on 11th April 2013
doi: 10.1049/iet-cta.2012.0486

ISSN 1751-8644

Numerical adaptive learning control scheme for
discrete-time non-linear systems
Qinglai Wei Derong Liu
The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy
of Sciences, Beijing 100190, People’s Republic of China
E-mail: derong.liu@ia.ac.cn

Abstract: In this study, a novel numerical adaptive learning control scheme based on adaptive dynamic programming (ADP)
algorithm is developed to solve numerical optimal control problems for infinite horizon discrete-time non-linear systems. Using
the numerical controller, the domain of definition is constrained to a discrete set that makes the approximation errors always
exist between the numerical controls and the accurate ones. Convergence analysis of the numerical iterative ADP algorithm
is developed to show that the numerical iterative controls can make the iterative performance index functions converge to
the greatest lower bound of all performance indices within a finite error bound under some mild assumptions. The stability
properties of the system under the numerical iterative controls are proved, which allow the present iterative ADP algorithm
to be implemented both on-line and off-line. Finally, two simulation examples are given to illustrate the performance of the
present method.
1 Introduction

Optimal control of non-linear systems has always been the
key focus of the control field in the latest several decades [1–
4]. For the traditional optimal control schemes, in order
to find the solution of optimal control problems, it often
requires the control domain of definition to be a continu-
ous space, such as the whole domain of real space [5]. This
allows one to obtain optimal control solutions with arbi-
trary precision. As the development of digital computers,
numerical control (NC) attracts more and more attention to
researchers [6–8]. The NC concept employs a digital pro-
cessing and output device, such as a digital computer, in
control systems. Many functions of the conventional con-
troller are replaced in an NC system by a computer program
denoted as the NC program. In this situation, the accurate
optimal control can hardly be obtained and there always
exists an approximation error between the NC and the accu-
rate one. This makes invalid the traditional optimal control
schemes implemented by numerical controllers. To over-
come this difficulty, a new optimal control method for NC
systems must be considered.

Adaptive dynamic programming, proposed by Werbos [9,
10], is an effective adaptive learning control approach
to solve optimal control problems for non-linear systems
forward-in-time. Iterative adaptive dynamic programming
(ADP) is a very important component of ADP to obtain the
solution of Hamilton–Jacobi–Bellman (HJB) equation indi-
rectly and have received lots of attention [11–17]. There are
two main iterative ADP algorithms that are based on pol-
icy and value iterations, respectively [18]. Policy iteration
algorithms for optimal control of continuous-time systems
1472
© The Institution of Engineering and Technology 2013
with continuous state and action spaces were given in [16].
In 2011, Wang et al. [19] studied finite-horizon optimal
control problems of discrete-time non-linear systems with
unspecified terminal time. Value iteration algorithms for
optimal control of discrete-time non-linear systems were
given in [20]. In [21], a value iteration algorithm, which is
referred to as greedy iterative HDP algorithm, is proposed
for finding the optimal control law and the convergence
of the algorithm is also proved. While for value itera-
tion algorithms, the stability of system under the iterative
control cannot be guaranteed. In [22], an iterative θ -ADP
algorithm is proposed, which permits the ADP algorithm
to be implemented without the initial admissible control
sequence, where the stability and convergence properties
are both guaranteed. Although iterative ADP algorithms
attract more and more attentions [23–31], for nearly all of
the iterative ADP algorithms, the iterative control in each
iteration is required to be accurately obtained. These itera-
tive ADP algorithms can be called ‘accurate iterative ADP
algorithms’.

For the NC problem, however, the definition domain of
the control (control set for brief) is always discrete, which
means the accurate control cannot generally be obtained. In
this situation, the convergence properties in the accurate iter-
ative ADP algorithms may be invalid. Although in [32, 33],
an iterative ADP algorithm with finite approximation error
is proposed based on the iterative θ -ADP algorithm, while
the domain of control is still required to be continuous. This
means that the target control can always be defined. While
for the NC problem, the target control may not belong to the
discrete control set, which means that the target control may
not be defined. Furthermore, for the algorithms in [32, 33]
IET Control Theory Appl., 2013, Vol. 7, Iss. 11, pp. 1472–1486
doi: 10.1049/iet-cta.2012.0486

www.ietdl.org
and many other iterative ADP algorithms, such as value
iteration algorithms [20, 21, 27, 28], only the convergence
of the iterative performance index function is discussed.
In this situation, the stability of the iterative control can-
not be guaranteed. This makes the iterative ADP algorithm
in [20, 21, 27, 28, 32, 33] only implementable off-line. Till
now, to the best of our knowledge, there are no discussions
on the convergence and the stability properties of the itera-
tive ADP algorithms implemented by a numerical controller.
This presents a great challenge for on-line applications of
iterative ADP algorithms, which motivates our research.

In this paper, it is the first time that the iterative ADP
algorithm is studied with a numerical controller. Inspired
by [22, 32, 33], a new numerical iterative θ -ADP algorithm
is developed to obtain the numerical optimal control scheme
by introducing a digital computer into the ADP structure.
Convergence and optimality proofs are given to guarantee
that the iterative performance index function converges to a
finite neighbourhood of the optimal performance index func-
tion. We emphasise that the stability properties of iterative
controls are also analysed, which make the non-linear sys-
tem stable during the iteration of the numerical θ -iterative
ADP algorithm. In summary, the main contributions of the
present algorithm include:

1. A new numerical iterative ADP algorithm is developed
to obtain the numerical optimal control law and optimal
performance index function iteratively.
2. Convergence and optimality properties are proved to
make the iterative performance index function converge to
a finite neighbourhood of the optimal performance index
function.
3. Any of the iterative controls obtained by the present
numerical iterative ADP algorithm can stabilise the non-
linear system. This makes the present algorithm imple-
mentable both on-line and off-line.
4. The least upper bound of the approximation error (admis-
sible approximation error for brief) can also be obtained in
order to justify quantitatively the convergence and stability
properties.

2 Problem statement

In this paper, we study deterministic discrete-time non-linear
systems

xk+1 = F(xk , uk), k = 0, 1, 2, . . . (1)

where xk ∈ R
n is the n-dimensional state vector and uk ∈ R

m

is the m-dimensional control vector. Let A ⊂ R
m be the set

of NCs where we assume 0 ∈ A. Let x0 be the initial state.
Let uk = (uk , uk+1, . . .) be an arbitrary control sequence from
k to ∞. The performance index function for state x0 under
the control sequence u0 = (u0, u1, . . .) is defined as

J (x0, u0) =
∞∑

k=0

U (xk , uk) (2)

where U (xk , uk) > 0 for ∀ xk , uk �= 0, is the utility func-
tion. In this paper, the results are based on the following
assumptions.

Assumption 1: System (1) is controllable and the function
F(xk , uk) is Lipschitz continuous for ∀ xk , uk .
IET Control Theory Appl., 2013, Vol. 7, Iss. 11, pp. 1472–1486
doi: 10.1049/iet-cta.2012.0486
Assumption 2: The system state xk = 0 is an equilibrium
state of system (1) under the control uk = 0, i.e. F(0, 0) = 0.

Assumption 3: The feedback control uk = u(xk) is a Lips-
chitz continuous function for ∀ xk and satisfies uk = u(xk) =
0 for xk = 0.

Assumption 4: The utility function U (xk , uk) is a continuous
positive-definite function for ∀ xk , uk .

Define the set of control sequences as Uk = {uk : uk =
(uk , uk+1, . . .), ∀uk+i ∈ R

m, i = 0, 1, . . .}. Then, for an arbi-
trary control sequence uk ∈ Uk , the optimal performance
index function can be defined as

J ∗(xk) = min
{
J (xk , uk) : uk ∈ Uk

}
(3)

According to Bellman’s principle of optimality, J ∗(xk) sat-
isfies the discrete-time HJB equation

J ∗(xk) = min
uk ∈Rm

{U (xk , uk) + J ∗(F(xk , uk))} (4)

Then, the law of optimal single control vector can be
expressed as

u∗(xk) = arg min
uk ∈Rm

{U (xk , uk) + J ∗(F(xk , uk))} (5)

Generally, J ∗(xk) is impossible to obtain by solving the HJB
equation (4) directly. In [22], an iterative θ -ADP algorithm
is proposed to solve the performance index function and
control law by iterations. The iterative θ -ADP algorithm can
be expressed as the following equations, with the iteration
index i increasing from 0 to infinity.⎧⎨

⎩
vi(xk) = arg min

uk ∈Rm
{U (xk , uk) + Vi(xk+1)}

Vi+1(xk) = min
uk ∈Rm

{U (xk , uk) + Vi(xk+1)}
(6)

where V0(xk) = θ�(xk), �(xk) ∈ �̄xk , is the initial perfor-
mance index function and θ > 0 is a large finite positive
constant. The set of positive-definite functions �̄xk is defined
as follows [22, 32].

Definition 1: The set of initial positive-definite functions is
defined as

�̄xk = {�(xk) : �(xk) > 0 is positive definite and

∃ν(xk) ∈ R
m, �(F(xk , ν(xk))) < �(xk)}. (7)

In [22], it is proved that the iterative performance index
function Vi(xk) converges to J ∗(xk), as i → ∞ (Theorem 3.5
in [22] for details). It also shows that for i = 0, 1, . . . , the
iterative control law vi(xk) stabilises the non-linear system
(1) when the accurate iterative control laws and accurate
iterative performance index functions are obtained.

In real-world implementations, especially for the NC sys-
tems, however, for ∀i = 0, 1, . . . , the accurate iterative con-
trol law vi(xk) and the iterative performance index function
Vi(xk) are generally impossible to obtain. For the situa-
tion that the control uk ∈ A, the iterative θ -ADP algorithm
in [22] may be invalid. First, for NC systems, the set of
NCs A is discrete. This means that there are always finite
elements in the set of NCs A, which makes the iterative con-
trol law and iterative performance index function obtainable
1473
© The Institution of Engineering and Technology 2013

www.ietdl.org
only with errors. Second, as uk ∈ A, the convergence prop-
erty of the iterative performance index function cannot be
guaranteed, and the stability of the system under the con-
trol also cannot be proved. Furthermore, even if we solve
the iterative control law and the iterative performance index
function at every iteration step, it is not clear whether the
error between the iterative performance index functions and
J ∗(xk) is finite for ∀i. These make the optimal performance
index function and optimal control law nearly impossible to
obtain by the iterative θ -ADP algorithm in [22].

3 Properties of the numerical iterative θ-ADP
algorithm

In this section, a new numerical iterative θ -ADP algorithm
is developed to obtain the numerical optimal controller for
non-linear systems (1). Convergence and stability proofs will
also be given in this section.

3.1 Derivation of the numerical iterative θ -ADP
algorithm

In the present numerical iterative θ -ADP algorithm, the per-
formance index functions and control laws are updated by
iterations, with the iteration index i increasing from 0 to
infinity. Then, for ∀ xk ∈ R

n, let the initial performance index
function be V̂0(xk) = θ�(xk), where θ > 0 is a large finite
positive constant. The numerical iterative control law v̂0(xk)
can be computed as follows

v̂0(xk) = arg min
uk ∈A{U (xk , uk) + V̂0(xk+1)} (8)

where V̂0(xk+1) = θ�(xk+1). The performance index func-
tion can be updated by

V̂1(xk) = min
uk ∈A{U (xk , uk) + V̂0(xk+1)}

= U (xk , v̂0(xk)) + V̂0(F(xk , v̂0(xk)) (9)

For i = 1, 2, . . . , the numerical iterative θ -ADP algorithm
will iterate between the iterative control law

v̂i(xk) = arg min
uk ∈A{U (xk , uk) + V̂i(xk+1)} (10)

and the iterative performance index function

V̂i+1(xk) = min
uk ∈A{U (xk , uk) + V̂i(xk+1)}

= U (xk , v̂i(xk)) + V̂i(F(xk , v̂i(xk))) (11)

Remark 1: As the set of NCs A is discrete, we can say that
for ∀ i ≥ 0, v̂i(xk) �= vi(xk) in general. Then, we have for
∀ i ≥ 1, the iterative performance index function V̂i(xk) �=
Vi(xk), which means that there exists an error between V̂i(xk)
and Vi(xk). It should be pointed out that the iterative approxi-
mation error is not a constant. The fact is that as the iteration
index i → ∞, the boundary of iterative approximation errors
will also increase to infinity. The following lemma will show
this property.
1474
© The Institution of Engineering and Technology 2013
Lemma 1: Let xk ∈ R
n be an arbitrary controllable state

and Assumptions 1–4 hold. For i = 1, 2, . . . , define a new
iterative performance index function as

�i(xk) = min
uk ∈Rm

{U (xk , uk) + V̂i−1(xk+1)} (12)

where V̂i(xk) is defined in (11). If the initial iterative per-
formance index function �0(xk) = V̂0(xk) = θ�(xk) and for
i = 1, 2, . . . , there exists a finite constant ε that makes

V̂i(xk) − �i(xk) ≤ ε (13)

hold uniformly, then we have

V̂i(xk) − Vi(xk) ≤ iε (14)

where ε is called uniform approximation error.

Proof: The theorem can be proved by mathematical induc-
tion. First, let i = 1. We have

�1(xk) = min
uk ∈Rm

{U (xk , uk) + V̂0(xk+1)}
= min

uk ∈Rm
{U (xk , uk) + V0(F(xk , uk))}

= V1(xk) (15)

Then, according to (13), we can obtain

V̂1(xk) − V1(xk) ≤ ε (16)

Assume that (14) holds for i − 1. Then, for i, we have

�i(xk) = min
uk ∈Rm

{U (xk , uk) + V̂i−1(xk+1)}
≤ min

uk ∈Rm
{U (xk , uk) + Vi−1(xk+1) + (i − 1)ε}

= Vi(xk) + (i − 1)ε (17)

Then, according to (13), we can obtain (14). �

Lemma 1 shows that although the approximation error for
each single step is finite and may be small, as the iteration
index i → ∞ increases, the bounds of approximation errors
between V̂i(xk) and Vi(xk) may also increase to infinity. To
overcome these difficulties, we must discuss the conver-
gence and stability properties of the iterative ADP algorithm
with finite approximation errors. For convenience of analy-
sis, we transform the expressions of the approximation error.
According to the definitions of V̂i(xk) and �i(xk) in (11) and
(12), we have �i(xk) ≤ V̂i(xk). Then, for ∀ i = 0, 1, . . . , there
exists a σ ≥ 1 that makes

�i(xk) ≤ V̂i(xk) ≤ σ�i(xk) (18)

hold uniformly. Hence, we can give the following theorem.

Theorem 1: Let xk ∈ R
n be an arbitrary controllable state

and Assumptions 1–4 hold. For ∀ i = 0, 1, . . . , let �i(xk) be
IET Control Theory Appl., 2013, Vol. 7, Iss. 11, pp. 1472–1486
doi: 10.1049/iet-cta.2012.0486

www.ietdl.org
expressed as (12) and V̂i(xk) be expressed as (11). Let γ <
∞ and 1 ≤ δ < ∞ be constants that make

J ∗(F(xk , uk)) ≤ γ U (xk , uk) (19)

and

J ∗(xk) ≤ V0(xk) ≤ δJ ∗(xk) (20)

hold uniformly. If there exists a σ , that is, 1 ≤ σ < ∞, that
satisfies

σ ≤ 1 + δ − 1

γ δ
(21)

then the iterative performance index function V̂i(xk)
converges to a bounded neighbourhood of J ∗(xk), as
i → ∞.

Proof: According to (18)–(20), using the mathematical
induction, for ∀i = 0, 1, . . . , the iterative performance index
functions V̂i(xk) satisfies

V̂i(xk) ≤ σ

(
1 +

i∑
j=1

γ jσ j−1(σ − 1)

(γ + 1)j
+ γ iσ i(δ − 1)

(γ + 1)i

)
J ∗(xk)

(22)

From (22), we can see that for j = 1, 2, . . . , the sequence is
a geometrical series. If (21) holds, then the right side of (22)
is convergent for i → ∞, which proves the conclusion. �

Theorem 2: Let xk ∈ R
n be an arbitrary controllable state.

If for ∀xk , Theorem 1 holds and σ satisfies (21), then for
∀i = 0, 1, . . . , the numerical iterative control law v̂i(xk) is an
asymptotically stable control law for system (1).

Proof: As V̂0(xk) = V0(xk) = θ�(xk), we have that V̂0(xk) is
a positive-definite function for i = 0. Using the mathemat-
ical induction, assume that the iterative performance index
function V̂i(xk), i = 0, 1, . . . , is positive definite. Then, for
i + 1, according to Assumptions 1–4, we can obtain

V̂i+1(0) = U (0, v̂i(0)) + V̂i(F(0, v̂i(0))) = 0 (23)

for xk = 0. When xk → ∞, as the utility function U (xk , uk)

is a positive function for xk , we have V̂i+1(xk) → ∞. Hence,
V̂i+1(xk) is a positive-definite function and the mathematical
induction is completed. Next, let χi be defined as

χi = σ

(
1 +

i∑
j=1

γ jσ j−1(σ − 1)

(γ + 1)j
+ γ iσ i(δ − 1)

(γ + 1)i

)

and V̄i(xk) = χiJ ∗(xk). As σ ≤ 1 + (δ − 1/γ δ), we have
χi+1 ≤ χi, which means V̄i+1(xk) ≤ V̄i(xk). Then, we can
obtain

V̄i(xk) ≥ V̄i+1(xk) = U (xk , v̄i(xk)) + V̄i(xk+1) (24)

where v̄i(xk) = arg minuk ∈A{U (xk , uk) + V̄i(xk+1)}. So, we
have V̄i(xk+1) − V̄i(xk) ≤ −U (xk , v̄i(xk)) < 0. Hence, V̄i(xk)
is a Lyapunov function and v̄i(xk) is an asymptotically stable
control law for ∀ i = 0, 1,

As v̄i(xk) is an asymptotically stable control law, we
have xk+N → 0 as N → ∞, that is V̄i(xk+N) → 0. Since
IET Control Theory Appl., 2013, Vol. 7, Iss. 11, pp. 1472–1486
doi: 10.1049/iet-cta.2012.0486
0 < V̂i(xk) ≤ V̄i(xk) holds for ∀ xk , then we can obtain 0 <

V̂i(xk+N) ≤ V̄i(xk+N) as N → ∞. So we have V̂i(xk+N) →
0 as N → ∞. As V̂i(xk) is a positive-definite function,
we can conclude xk+N → 0 as N → ∞ under the control
law v̂i(xk). �

3.2 Properties of the numerical iterative θ -ADP
algorithm

Although Theorem 1 gives the convergence criterion, while
we can see that the parameters σ , γ and δ are very diffi-
cult to achieve, which make the convergence criterion (21)
quite difficult to verify. To overcome this difficulty, a new
convergence conditions must be developed to guarantee the
convergence of the numerical iterative θ -ADP algorithm. For
the convenience of analysis, we define a new performance
index function as

V̂i+1(xk , v̂i(xk)) = U (xk , v̂i(xk)) + V̂i(F(xk , v̂i(xk))) (25)

where we can see that V̂i+1(xk) = V̂i+1(xk , v̂i(xk)) and
V̂0(xk) = V̂0(xk , 0). Then, we have the following definition.

Definition 2: The iterative performance index function
V̂i+1(xk , v̂i(xk)) is a Lipschitz continuous function for
∀ v̂i(xk), if there exists an L ∈ R that makes

‖V̂i+1(xk , v̂i(xk)) − V̂i+1(xk , v̂′
i(xk))‖ ≤ L‖v̂i(xk) − v̂′

i(xk)‖
(26)

hold, where v̂′
i(xk) ∈ A and v̂′

i(xk) �= v̂i(xk).

For the NC system, the set of NCs A is discrete. Then,
according to the grid principle, let Pj, j = 1, 2, . . . , m, be the
discrete grids for the jth dimension in A. Let Z be the set of
positive integers. As A ⊂ R

m, then using the grid principle,
we can define A as

A = {u(p1, . . . , pm) : p1, . . . , pm ∈ Z , 1 ≤ p1

≤ P1, . . . , 1 ≤ pm ≤ Pm} (27)

to denote all the control elements in A, where P1, . . . , Pm are
all positive integers. Thus, for ∀xk ∈ R

n and ∀ i = 0, 1, . . . ,
there exists a sequence of positive numbers pi

1, . . . , pi
m that

makes

u(pi
1, . . . , pi

m) = v̂i(xk) (28)

hold, where 1 ≤ pi
1 ≤ P1, . . . , 1 ≤ pi

m ≤ Pm. Then, according
to (25), we can rewrite V̂i(xk , v̂i(xk)) as

V̂i+1(xk , v̂i(xk)) = min
uk ∈A{U (xk , uk) + V̂i(xk+1)}

= U (xk , u(pi
1, . . . , pi

m))

+ V̂i(F(xk , u(pi
1, . . . , pi

m))

= V̂i+1(xk , u(pi
1, . . . , pi

m)) (29)

Next, for ∀u(pi
1, . . . , pi

m) ∈ A, 1 ≤ pi
j ≤ Pj, j = 1, . . . , m, we

can define a neighbourhood set of u(pi
1, . . . , pi

m) as

Ā(pi
1, . . . , pi

m) = {u(p̄i
1, . . . , p̄i

m) : j = 1, 2, . . . , m, u(p̄i
1, . . . , p̄i

m)

∈ A, |pi
j − p̄i

j| ≤ �} (30)

where � ∈ Z is defined as the radius of Ā(pi
1, . . . , pi

m).
1475
© The Institution of Engineering and Technology 2013

www.ietdl.org
Remark 2: From (30), we can see that for an m-dimensional
control vector u(pi

1, . . . , pi
m) inside the set of NCs A

and for ∀� ≥ 1, there are (2� + 1)m elements in the
set Ā(pi

1, . . . , pi
m), where u(pi

1, . . . , pi
m) is also included in

Ā(pi
1, . . . , pi

m). If u(pi
1, . . . , pi

m) is located at the boundary
of A, the elements in Ā(pi

1, . . . , pi
m) is reduced correspond-

ingly. For the control vectors in the same neighbourhood
set, for convenience of analysis, we assume that there
exists the same Lipschitz constant. If the Lipschitz constants
are different, the largest one will be adopted to guarantee
the effectiveness of the algorithm and the details will be
discussed later in the paper.

Define a new performance index function ϒi+1(xk , ṽi(xk))
as

ϒi+1(xk , ṽi(xk)) = min
uk ∈Rm

{U (xk , uk) + V̂i(xk+1)}
= U (xk , ṽi(xk)) + V̂i(F(xk , ṽi(xk))) (31)

We can see that �i+1(xk) = ϒi+1(xk , ṽi(xk)). As ṽi(xk) can-
not be obtained, it is very difficult to analyse its proper-
ties. While for ∀ u(pi

1, . . . , pi
m), we can obtain Ā(pi

1, . . . , pi
m)

by (30) immediately. So, if ṽi(xk) is inside Ā(pi
1, . . . , pi

m)
with the radius � ≥ 1, then the properties of ṽi(xk) can
be obtained. In the following, the relationship between
ṽi(xk) and Ā(pi

1, . . . , pi
m) will be analysed. Before that, some

lemmas are necessary.

Lemma 2: Let O = (pi
1, . . . , pi

m) denote the origin of the
m-dimensional coordinate system and let OL be an arbi-
trary vector in the m-dimensional space. If we let ϑj, j =
1, 2, . . . , m, be the intersection angle between OL and the
jth coordinate axis, then we have

∑m
j=1 cos2 ϑj = 1.

Proof: Let L = (li
1, . . . , li

m) be an arbitrary point in the m-
dimensional coordinate system. Then we have OL = ((li

1 −
pi

1), . . . , (li
m − pi

m)). According to the definition of ϑj, we
have cos ϑj = (|li

j − pi
j|)/(|OL|), where

|OL| =
√

(li
1 − pi

1)
2 + · · · + (li

m − pi
m)2

Then we have

m∑
j=1

cos2 ϑj = (|li
1 − pi

1|)2 + · · · + (|li
m − pi

m|)2

(li
1 − pi

1)
2 + · · · + (li

m − pi
m)2

= 1

�

Lemma 3: Let O = (pi
1, . . . , pi

m) denote the origin of the m-
dimensional coordinate system and let OL be an arbitrary
vector in the m-dimensional space. Let Aj, j = 1, 2 . . . , m, be
points on the jth coordinate axis of m-dimensional space and
∀j = 1, 2, . . . , m, OAj = OL. If we let ϑj = min{ϑ1, . . . , ϑm},
then we have

AjL ≤
√

m − 1

m
OL

/
cos

(
1

2
arcsin

(√
m − 1

m

))
(32)

Proof: Let ϑ1 = · · · = ϑm = arccos(1/
√

m), then we can see
that ϑj reaches the maximum. Let αj = ∠OAjL. We can
1476
© The Institution of Engineering and Technology 2013
obtain αj = 1
2 (π − ϑj). According to sine rule [34], we have

AjL ≤ sin ϑj

sin αj
OL (33)

As cos ϑj = (1/m), we have sin ϑj = √
(m − 1/m), and

sin αj = cos(1/2 arcsin(
√

(m − 1/m))). Taking sin ϑj and
sin αj into (33), we can obtain the conclusion. �

Lemma 4: Let O = (pi
1, . . . , pi

m) denote the origin of the m-
dimensional coordinate system and let A� = (�pi

1, . . . , �pi
m)

be an arbitrary point in Ā(pi
1, . . . , pi

m), where 1 ≤ � ≤ (2� +
1)m. Let L = (p̄i

1, . . . , p̄i
m) be an arbitrary point that satisfies

OL ≥ max1≤�≤(2�+1)m{OA�}. If the radius � of Ā(pi
1, . . . , pi

m)
satisfies the following inequality

� ≥ 3(m − 1) + √
3(m − 1)

3m
(34)

then there exists an � that satisfies

A�L ≤ OL (35)

Proof: Without loss of generality, let L = (p̄i
1, . . . , p̄i

m) be
located in the first quadrant. According to Lemmas 2
and 3, we can see that if intersection angles satisfy ϑ1 =
· · · = ϑm = arccos(1/

√
m), the value on the left-hand side

of (32) reaches its maximum for each coordinate axis.
In this situation, we can let L = (pi

1 + �, . . . , pi
m + �). Let

A� = (0, . . . , 0, pi
m + �) and A′

� = (pi
1 + � − 1, . . . , pi

m−1 +
� − 1, pi

m + �). Then, we can see that the points A�, A′
� and

L are on the same line. Let ϑ ′
� = ∠B′

�OL. Then, we have

cos ϑ ′
� = (OA′

�)
2 + (OL)2 − (LA′

�)
2

2OA′
�OL

(36)

Taking the coordinates of A′
� and L into (36), we can obtain

cos ϑ ′
� = (� − 1)m + 1√

m
√

(� − 1)2m − (� − 1)2 + �2
(37)

Next, extend the line OA′
� to B′

�, so that it satisfies OB′
� =

OL. Then �OB′
�L is an isosceles triangle. It is obvious

that when ϑ ′
� ≤ π/3, that is cos ϑ ′

� ≥ 1/2, we can obtain
B′

�L ≤ OL. According to (37), we can obtain (34). On the
other hand, according to sine rule [31], we can obtain
(sin ϑ ′

�)/(B
′
�L) = (sin ∠OB′

�L)/(OL), and (sin ϑ ′
�)/(A

′
�L) =

(sin ∠OA′
�L)/(OL). If ∠OB′

�L ≤ ∠OA′
�L ≤ π/2, we can eas-

ily obtain A′
�L ≤ B′

�L ≤ OL. If π/2 ≤ ∠OA′
�L ≤ π , then

∠OA′
�L is the maximum angle in �OA′

�L, which obtain
A′

�L ≤ OL directly. The proof is completed. �

Given the above preparation, we derive the following
theorem.

Theorem 3: Let v̂i(xk) = u(pi
1, pi

2, . . . , pi
m) ∈ A and let

u(�pi
1, �pi

2, . . . , �pi
m) ∈ Ā(pi

1, pi
2, . . . , pi

m), 1 ≤ � ≤ (2� + 1)m,
be an arbitrary control vector. If the radius � of
Ā(pi

1, pi
2, . . . , pi

m) satisfies (34), then there exists a positive
number L ∈ R that satisfies

‖V̂i+1(xk , u(pi
1, . . . , pi

m)) − ϒi+1(xk , ṽi(xk))‖
≤ L max

1≤�≤(2�+1)m
{‖u(pi

1, . . . , pi
m) − u(�p

i
1, . . . , �p

i
m)‖} (38)
IET Control Theory Appl., 2013, Vol. 7, Iss. 11, pp. 1472–1486
doi: 10.1049/iet-cta.2012.0486

www.ietdl.org
Proof: According to the definitions of the iterative
performance index functions V̂i+1(xk , u(pi

1, . . . , pi
m)) and

ϒi+1(xk , ṽi(xk)) in (29) and (31), respectively, we can see
that if we put the control ṽi(xk) into the set of NCs A,
then we have V̂i(xk , ṽi(xk)) = ϒi(xk , ṽi(xk)). For the control
u(pi

1, . . . , pi
m), according to Definition 2, there exists an L

that makes

‖V̂i+1(xk , u(pi
1, . . . , pi

m)) − ϒi+1(xk , ṽi(xk))‖
≤ L‖u(pi

1, . . . , pi
m) − ṽi(xk)‖ (39)

hold. As ṽi(xk) cannot be obtained accurately, the distance
between ṽi(xk) and u(pi

1, . . . , pi
m) is unknown. Hence, ṽi(xk)

must be replaced by other known vector. Next, we will show
that

‖u(pi
1, . . . , pi

m) − ṽi(xk)‖
≤ max

1≤�≤(2�+1)m
{‖u(pi

1, . . . , pi
m) − u(�p

i
1, . . . , �p

i
m)‖}. (40)

As ṽi(xk) is put into A, then ṽi(xk) becomes the neigh-
bouring point of u(pi

1, . . . , pi
m) and we can put ṽi(xk) into

Ā(pi
1, . . . , pi

m) which makes ṽi(xk) ∈ Ā(pi
1, . . . , pi

m). Next, we
will prove the conclusion by contradiction. Assume that the
inequality (40) does not hold. Then, we have

‖u(pi
1, . . . , pi

m) − ṽi(xk)‖
> max

1≤�≤(2�+1)m
{‖u(pi

1, . . . , pi
m) − u(�p

i
1, . . . ,� pi

m)‖} (41)

as ṽi(xk) belongs to the set Ā(pi
1, . . . , pi

m). As there are
m dimensions in Ā(pi

1, . . . , pi
m), we can divide it into 2m

quadrants.
Without loss of generality, let ṽi(xk) be located in the first

quadrant where L = (p̄i
1, . . . , p̄i

m) is the corresponding coor-
dinate. If we let O = (pi

1, . . . , pi
m) be the origin, then we have

OL = ‖u(pi
1, . . . , pi

m) − ṽi(xk)‖. As (34) holds, according to
Theorem 4, if OL is the max vector in Ā(pi

1, . . . , pi
m), then

there exists an vector OA′
� ∈ Ā(pi

1, . . . , pi
m) with the coordi-

nate A′
� = (�pi

1, . . . , �pi
m), that makes (35) hold. Let L1 be the

Lipschitz constant. Then we can obtain∥∥∥V̂i+1(xk , u(pi
1, . . . , pi

m)) − ϒi+1(xk , ṽi(xk))

∥∥∥
= L1‖u(pi

1, . . . , pi
m) − ṽi(xk)‖

≥ L1‖u(�p
i
1, . . . , �p

i
m) − ṽi(xk)‖

=
∥∥∥V̂i+1(xk , ui

�(�p
i
1, . . . , �p

i
m)) − ϒi+1(xk , ṽi(xk))

∥∥∥ (42)

According to the definition of ϒi+1(xk , ṽi(xk)) in (31),
we know that V̂i+1(xk , u(pi

1, . . . , pi
m)) ≥ ϒi+1(xk , ṽi(xk)) and

V̂i+1(xk , ui
�(�pi

1, . . . , �pi
m)) ≥ ϒi+1(xk , ṽi(xk)) hold, for ∀i =

0, 1, Thus, according to (42), we can obtain

V̂i+1(xk , u(pi
1, . . . , pi

m)) > V̂i+1(xk , ui
�(�p

i
1, . . . , �p

i
m)) (43)

This contradicts with the definition of V̂i+1(xk , u(pi
1, . . . , pi

m))
in (29). Therefore the assumption is false and the inequality
(40) holds. The proof is completed. �

Remark 3: From Theorem 3 we can see that to obtain (38),
the inequality (34) should be satisfied. While according to
(30), for ∀ � = 1, 2, . . . , the elements in the set Ā(pi

1, . . . , pi
m)
IET Control Theory Appl., 2013, Vol. 7, Iss. 11, pp. 1472–1486
doi: 10.1049/iet-cta.2012.0486
is exponentially increasing. This may cause serious compu-
tational burden. Fortunately, this situation will never happen.
From (34), we can see that if the dimension 1 ≤ m ≤ 4, we
have � ≤ 1, which means only the points in Ā(pi

1, . . . , pi
m)

with radius � = 1 will be calculated. For 4 < m < ∞,
we can see that 1 < (3(m − 1) + √

3(m − 1)/3m) < 2. This
means for m > 4, the radius � = 2 is enough. Therefore the
number of the points that needs to compute in Ā(pi

1, . . . , pi
m)

is never more than 5m, which releases the computation
burden very much.

According to the definitions of the iterative performance
index functions V̂i+1(xk , u(pi

1, . . . , pi
m)) and ϒi+1(xk , ṽi(xk)) in

(29) and (31), respectively, for ∀i = 0, 1, . . . , we can define

V̂i+1(xk , u(pi
1, . . . , pi

m)) − ϒi+1(xk , ṽi(xk)) = εi+1(xk) (44)

where ε0(xk) = 0. Then, for any εi+1(xk) expressed in (44),
there exists a σi+1(xk) that satisfies

ϒi+1(xk , ṽi(xk)) = V̂i+1(xk , u(pi
1, . . . , pi

m)) − εi+1(xk)

= V̂i+1(xk , u(pi
1, . . . , pi

m))

σi+1(xk)
(45)

Theorem 4: Let the iterative performance index function
V̂i+1(xk , u(pi

1, . . . , pi
m)) and the numerical iterative control

u(pi
1, . . . , pi

m) be obtained by (28)–(29), respectively. If for
xk ∈ R

n, we define the admissible approximation error as

ε̄i+1(xk) = Li(p
i
1, . . . , pi

m) max
1≤�≤(2�+1)m

× {‖u(pi
1, . . . , pi

m) − u(�p
i
1, . . . ,� pi

m)‖} (46)

where Li(pi
1, . . . , pi

m) is Lipschitz constant and ε̄0(xk) = 0,
then for ∀ i = 0, 1, . . . , we have

εi+1(xk) ≤ ε̄i+1(xk) (47)

Proof: As V̂i+1(xk , u(pi
1, . . . , pi

m)) is Lipschitz continuous,
according to (27), we have

∥∥∥V̂i+1(xk , u(pi
1, . . . , pi

m)) − ϒi+1(xk , ṽi(xk))

∥∥∥
≤ Li(p

i
1, . . . , pi

m)(u(pi
1, . . . , pi

m) − ṽi(xk)) (48)

where Li(pi
1, . . . , pi

m) is the Lipschitz constant. According to
(40), we can draw the conclusion. �

For the set of NC A expressed in (27), as A is known,
then for any control u(pi

1, . . . , pi
m) ∈ A, we can obtain

Ā(pi
1, . . . , pi

m) immediately. Hence, if the Lipschitz con-
stant Li(pi

1, . . . , pi
m) is known, then the error ε̄i+1 can be

obtained by (46). Next, we will give a method to obtain
Li(pi

1, . . . , pi
m). Let u(�pi

1, . . . , �pi
m) ∈ Ā(pi

1, . . . , pi
m) be an
1477
© The Institution of Engineering and Technology 2013

www.ietdl.org
arbitrary control vector. Then, we can obtain∥∥∥V̂i+1(xk , u(pi
1, . . . , pi

m)) − V̂i+1(xk , u(�p
i
1, . . . , �p

i
m))

∥∥∥
= L̄�

i (p
i
1, . . . , pi

m)‖u(pi
1, . . . , pi

m) − u(�p
i
1, . . . , �p

i
m)‖ (49)

where L̄�
i (p

i
1, . . . , pi

m) > 0, � = 1, 2, . . . , (2� + 1)m, i = 0,
1, Let

L̄i(p
i
1, . . . , pi

m) = max
1≤�≤(2�+1)m

{L̄�
i (p

i
1, . . . , pi

m)} (50)

be the local Lipschitz constant. Then (49) can be written as∥∥∥V̂i+1(xk , u(pi
1, . . . , pi

m)) − V̂i+1(xk , u(�p
i
1, . . . , �p

i
m))

∥∥∥
≤ L̄i(p

i
1, . . . , pi

m)‖u(pi
1, . . . , pi

m) − u(�p
i
1, . . . , �p

i
m)‖ (51)

For ∀ u(pi
1, . . . , pi

m) ∈ A, we can define the global Lipschitz
constant L̄i as

L̄i = max{L̄i(p
i
1, . . . , pi

m) : 1 ≤ pi
j ≤ Pj, j = 1, 2, . . . , m}

(52)

Thus, from (50) and (52), we can easily obtain

Li(p
i
1, . . . , pi

m) ≤ L̄i (53)

Remark 4: From (49)–(52), we can see that if we want
to obtain the global Lipschitz constant L̄i, then all the
controls u(pi

1, . . . , pi
m) in the set of NCs A should be

searched. This means for ∀ i = 0, 1, . . . , we should run
P1 · P2 · · · · · Pm · (2� + 1)m times of computation to obtain
L̄i by (52). So, the computational burden is very heavy.
In this paper, to simplify the algorithm, the local Lips-
chitz constant Li(pi

1, . . . , pi
m) is used instead of the global

one. We use the control vector u(pi
1, . . . , pi

m) which satis-
fies (28). Obtaining Ā(pi

1, . . . , pi
m) according to (30), we can

obtain L̄i(pi
1, . . . , pi

m) by (50). Then, the approximation error
ε̄i+1(xk) can easily be obtained by (46).

In the above, we give an effective method to obtain
the approximation error ε̄i+1(xk) of the numerical iterative
θ -ADP algorithm. In the following, we will show how
to obtain the admissible approximation error to guarantee
the convergence criterion of the present numerical itera-
tive ADP algorithm. According to (19), we can define γ =
max{J ∗(F(xk , uk))/U (xk , uk) : xk ∈ R

n, uk ∈ A}. If we let

γ̃i+1 =
{

Vi(F(xk , uk))

U (xk , uk)
: xk ∈ R

n, uk ∈ A

}
(54)

then we can obtain γ̃i+1 ≥ γ . Before the next theorem, we
make some denotations. Let

σ̄i+1(xk) = V̂i+1(xk , u(pi
1, . . . , pi

m))

V̂i+1(xk , u(pi
1, . . . , pi

m)) − ε̄i+1(xk)
(55)

and

δi+1(xk) = V̂0(xk , 0)

V̂i+1(xk , u(pi
1, . . . , pi

m))
(56)
1478
© The Institution of Engineering and Technology 2013
Theorem 5: Let the iterative performance index function
V̂i+1(xk , u(pi

1, . . . , pi
m)) be defined in (25) and the numeri-

cal iterative control u(pi
1, . . . , pi

m) be defined in (28). For
∀i = 0, 1, . . . , if the approximation error satisfies

ēi+1(xk) ≤ Vi+1(xk , u(pi
1, . . . , pi

m))

V̂0(xk , 0)(γ̃i+1 + 1) − Vi+1(xk , u(pi
1, . . . , pi

m))

× (V̂0(xk , 0) − Vi+1(xk , u(pi
1, . . . , pi

m))) (57)

then we have the numerical iterative control law
u(pi

1, . . . , pi
m) stabilises the non-linear system (1) and simul-

taneously makes the iterative performance index function
V̂i+1(xk , u(pi

1, . . . , pi
m)) converge to a finite neighbourhood

of J ∗(xk), as i → ∞.

Proof: From (20), we can define δ = max{(V0(xk)/J ∗(xk)) :
xk ∈ R

n}. From (54)–(56), for ∀ xk ∈ R
n, we can obtain

⎧⎪⎨
⎪⎩

σi+1(xk) ≤ σ̄i+1(xk)

1 + δi+1(xk) − 1

γ̃i+1δi+1(xk)
≤ 1 + δ − 1

γ δ

(58)

So, if

σ̄i+1(xk) ≤ 1 + δi+1(xk) − 1

γ̃i+1δi+1(xk)
(59)

holds, then we have (58) holds. Putting (55) and (56) into
(59), we can obtain (57).

On the other hand, according to (54) and the definition of
σ in (18), we have

σ = max
xk ∈Rn ,i=0,1,...

{σi+1(xk)} ≤ max
xk ∈Rn ,i=0,1,...

{σ̄i+1(xk)}

≤ max
xk ∈Rn ,i=0,1,...

{
1 + δi+1(xk) − 1

γ̃i+1δi+1(xk)

}
≤ 1 + δ − 1

γ δ
(60)

According to Theorems 1 and 2, we can draw the conclusion.
�

Theorem 6: Let the iterative performance index function
V̂i+1(xk , u(pi

1, . . . , pi
m)) be defined in (25) and the numeri-

cal iterative control u(pi
1, . . . , pi

m) be defined in (28). If for
∀ xk ∈ R

n, we have

U (xk , uk) ≥ U (xk , 0) (61)

and for ∀ i = 0, 1, . . . , the approximation error satisfies (see
(62))

then we have that the numerical iterative control law
u(pi

1, . . . , pi
m) stabilises the non-linear system (1) and simul-

taneously makes the iterative performance index functions
V̂i+1(xk , u(pi

1, . . . , pi
m)) converge to a finite neighbourhood

of J ∗(xk), as i → ∞.
ēi+1(xk) ≤ V2
i+1(xk , u(pi

1, . . . , pi
m))(V̂0(xk , 0) − Vi+1(xk , u(pi

1, . . . , pi
m)))

V̂0(xk , 0)(Vi+1(xk , u(pi
1, . . . , pi

m)) − U (xk , 0)) + Vi+1(xk , u(pi
1, . . . , pi

m))(V̂0(xk , 0) − Vi+1(xk , u(pi
1, . . . , pi

m)))
(62)
IET Control Theory Appl., 2013, Vol. 7, Iss. 11, pp. 1472–1486
doi: 10.1049/iet-cta.2012.0486

www.ietdl.org
Proof: If we let

γ̂i+1 = max

{Vi+1(xk , u(pi
1, . . . , pi

m))

U (xk , 0)
− 1: xk ∈ R

n, uk ∈ A

}
(63)

then we can obtain γ̂i+1 ≥ (J ∗(xk))/(U (xk , u∗(xk))) − 1 ≥
γ . So, if σ̄i+1(xk) ≤ 1 + (δi+1(xk) − 1/γ̂i+1δi+1(xk)), then we
have (21) holds, which means that iterative performance
index functions V̂i+1(xk , u(pi

1, . . . , pi
m)) converge to a finite

neighbourhood of J ∗(xk) according to Theorem 1. According
to (55), (56) and (63), and we can obtain (62). �

Remark 5: We can see that if the utility function U (xk , uk)
satisfies (61), then the convergence criterion in (62) becomes
much simpler than the one in (57). We should say that
many real utility functions satisfy the criterion in (62). For
example, all the quadratic form utility functions (or state-
depended ones) with the expressions xT

k Qxk + uT
k Ruk for

Q, R > 0 in [13, 15, 18–22, 24, 26, 32] satisfy this prop-
erty. Moreover, all the utility functions with the expressions
R(xk) + W (uk) for Q(xk), W (uk) > 0 in [14, 16] also satisfy
this property. Therefore the criterion in (62) is not strong
and can easily be satisfied for real optimal control systems.
In this paper, to release the computation quantity, we adopt
the utility that satisfies (61).

From Theorems 5 and 6 we can see that the information
of the parameter γi+1 should be used while the value of γi+1

is usually difficult to obtain. So in the following part, we
give a more simplified convergence justification theorem of
the iterative ADP algorithm.

Theorem 7: Let the iterative performance index function
V̂i(xk , u(pi

1, . . . , pi
m)) and the numerical iterative control

u(pi
1, . . . , pi

m) be obtained by (28) and (29), respectively.
Let ε̄i+1 be expressed as in (46). For ∀i = 0, 1, . . . , if the
utility function U (xk , uk) satisfies (61) and the iterative
approximation error satisfies

ε̄i+1(xk) ≤ V̂i(xk , u(pi
1, . . . , pi

m)) − V̂0(xk , 0)

V̂0(xk , 0) − U (xk , 0)

× (V̂i(xk , u(pi
1, . . . , pi

m)) − U (xk , 0)) (64)

then we have the numerical iterative control law
u(pi

1, . . . , pi
m) stabilises the non-linear system (1) and simul-

taneously makes the iterative performance index function
V̂i+1(xk , u(pi

1, . . . , pi
m)) converge to a finite neighbourhood

of J ∗(xk), as i → ∞.

Proof: First, we look at (19) and (20). Without loss of gener-
ality, we let γ̃ (xk) = (J ∗(xk) − U (xk , u∗(xk))/U (xk , u∗(xk)))

and δ̃(xk) = (V0(xk)/J ∗(xk)). Then, we can obtain γ̃ (xk)

δ̃(xk) = (V0(xk)/U (xk , u∗(xk))) − δ̃(xk). According to (56),
we can obtain maxxk ∈Rn ,i=0,1,...{δi+1(xk)} ≤ maxxk ∈Rn δ̃(xk),
and maxxk ∈Rn ,i=0,1,...{(V̂0(xk , 0)/U (xk , 0)) − δ̃i+1(xk)} ≥
maxxk ∈Rn{γ̃ (xk)δ̃(xk)} = γ δ. Next, we note that if σ̄i+1(xk)
satisfies

σ̄i+1(xk) ≤ 1 + (δ̃i+1(xk) − 1)U (xk , 0)

V̂0(xk , 0) − δ̃i+1(xk)U (xk , 0)
(65)
IET Control Theory Appl., 2013, Vol. 7, Iss. 11, pp. 1472–1486
doi: 10.1049/iet-cta.2012.0486
then we have

σ = max
xk ∈Rn ,i=0,1,...

σ̄i+1(xk)

≤ max
xk ∈Rn ,i=0,1,...

{
1 + (δ̃i+1(xk) − 1)U (xk , 0)

V̂0(xk , 0) − δ̃i+1(xk)
U (xk , 0)

}

≤ 1 + δ − 1

γ δ
(66)

holds. Putting (55) and (56) into (65), we can obtain (64).
The proof is completed. �

Remark 6: From Theorem 7, we can see that the parame-
ter γi+1 is omitted in (64) and this makes the convergence
criterion much simpler. This is the significant merit of this
method, which is an important property we must point out.
From (65) we can see that for ∀ i = 0, 1, . . . , the right-hand
side of the inequality is not necessarily larger than 1. This
means the approximation error ε̄i+1 may be smaller than
zero, which makes the convergence criterion (64) invalid,
which is a shortcoming of this justification method. In
Section 5, we will give a simulation example to show this
property. To summarise, we recommend to verify the con-
vergence property by (62) to guarantee the effectiveness of
the convergence criterion.

3.3 Summary of the numerical iterative θ -ADP
algorithm

Now, we summarise the numerical iterative θ -ADP
algorithm.

Step 1. Choose randomly an array of initial states x0 and
choose the approximation precision ζ . Give the set of NCs
A by the expression (27). Give the max iteration index imax.

Step 2. Choose a large enough θ . Let i = 0 and V̂0(xk) =
θ�(xk), where �(xk) ∈ �̄xk .

Step 3. According to A, implement the numerical iterative
θ -ADP algorithm (8)–(9) to obtain v̂0(xk) and V̂1(xk).

Step 4. Obtain u(p0
1, . . . , p0

m) = v̂0(xk) by (28) and obtain
Ā(p0

1, p0
2, . . . , p0

m) by (30). Obtain V̂1(xk , u(p0
1, . . . , p0

m)) by
(29).

Step 5. Solve the Lipschitz constant L0(p0
1, p0

2, . . . , p0
m)

according to (50). Compute ε̄1(xk) by (46).

Step 6. If ε̄1(xk) satisfies (62), then let i = i + 1 and go to
next step; otherwise, go to Step 11.

Step 7. For i = 1, 2, . . . , implement the numerical iter-
ative θ -ADP algorithm (10)–(11) to obtain v̂i(xk) and
V̂i+1(xk). Obtain u(pi

1, . . . , pi
m) = v̂i(xk) by (28) and obtain

Ā(pi
1, . . . , pi

m) by (30). Obtain V̂i+1(xk , u(pi
1, . . . , pi

m)) by
(29).

Step 8. Obtain the Lipschitz constant Li(pi
1, . . . , pi

m) accord-
ing to (50). Compute ε̄i+1(xk) by (46).

Step 9. If ε̄i+1(xk) satisfies (62), then go to next step.
Otherwise, go to Step 11.

Step 10. If |V̂i+1(xk) − V̂i(xk)| ≤ ζ , then the iterative perfor-
mance index function is converged and go to Step 11; else
if i > imax, then go to Step 11; else, let i = i + 1 and go to
Step 7.

Step 11. Stop.
1479
© The Institution of Engineering and Technology 2013

www.ietdl.org
4 Simulation studies

To evaluate the performance of our numerical iterative θ -
ADP algorithm, we choose two examples with quadratic
utility function for numerical experiments.

Example 1: Our first example is chosen as the example
in [22, 32, 35, 36]. We consider the following system

x1(k + 1) = [x2
1(k) + x2

2(k) + u(k)] cos(x2(k))

x2(k + 1) = [x2
1(k) + x2

2(k) + u(k)] sin(x2(k)) (67)

Let xk = [x1(k), x2(k)]T denote the system state vector and
uk = u(k) denote the control. Let A = {−2, −2 + ς , −2 +
2ς , . . . , 2}, where ς is the grid step. The performance
index function is defined as (4) with the utility function
U (xk , uk) = xT

k Qxk + uT
k Ruk , where Q = R = I and I is the

identity matrix with suitable dimensions. The initial state is
x0 = [1, −1]T.

The iterative ADP algorithm runs for 30 iteration steps to
guarantee the convergence of the iterative performance index
function. The curves of the admissible approximation error
obtained by (62) and (64) are displayed in Figs. 1 and 2,
respectively. From Fig. 2, we can see that the for some states
xk , the admissible approximation error is smaller than zero,

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.05

0.1

0.15

0.2

State variable x
1

State variable x
2

A
pp

ro
xi

m
at

io
n

er
ro

r

Fig. 1 Curve of the admissible approximation error obtained by
(62)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.05

0.1

0.15

0.2

State variable x
1State variable x

2

A
dm

is
si

bl
e

ap
pr

ox
im

at
io

n
er

ro
r

Fig. 2 Curve of the admissible approximation error obtained by
(64)
1480
© The Institution of Engineering and Technology 2013
which makes the convergence criterion (64) invalid. While
from Fig. 1, we can see that the admissible approximation
error curve is above zero which makes the convergence
criterion (62) effective for all xk .

To show the effectiveness of the numerical iterative ADP
algorithm, we choose four different grid steps. Let ς = 10−8,
10−4, 10−2, 10−1, respectively. The trajectories of the itera-
tive performance index function are shown in Figs. 3a–d,
respectively. For ς = 10−8 and ς = 10−4, implement the
approximate optimal control for system (67), respectively.
Let the implementation time be Tf = 40. The trajectories
of the states and controls are displayed in Figs. 4a–d,
respectively. When ς = 10−2, we can see that the itera-
tive performance index function is not completely converged
within 30 iteration steps. The trajectories of the state are dis-
played in Fig. 5a and the corresponding control trajectory is
displayed in Fig. 5b. When ς = 10−1, we can see that the
iterative performance index functions is not convergent. The
control system is not stable.

In this paper, it is shown that if the inequality (57)
holds, then for ∀ i = 0, 1, . . . , the numerical iterative control
v̂i(xk) stabilises the system (67), which makes the numerical
iterative θ -ADP algorithm implementable both on-line and
off-line. In Figs. 6a–d, we give the system state and control
trajectories of the system (67) under the iterative control
law v̂0(xk) with ς = 10−8 and ς = 10−4, respectively. In
Figs. 7a–d, we give the system state and control trajecto-
ries of the system (67) under the iterative control law v̂0(xk)
with ς = 10−2 and ς = 10−1, respectively.

Remark 7: In [32, 33], only the convergence of the iter-
ative performance index function is considered, while the
convergence of the iterative performance index function can-
not guarantee the stability of the system. From Fig. 3c,
for ς = 10−2, we can see that the iterative performance
index function is convergent. From Figs. 7a and b we can
see that the system is not stable under the iterative control
v̂0(xk). This makes the iterative ADP algorithm in [32, 33]
is only implementable off-line. While from the simulation
results such as Figs. 6a–d, we can see that if the approxi-
mation error satisfies (62) the stability of the system under
the numerical controller can be satisfied, which makes the
numerical iterative θ -ADP algorithm implementable both
on-line and off-line. This is an obvious advantage of the
present algorithm in this paper.

Example 2: We now examine the performance of the present
algorithm in a practical torsional pendulum system [37]. The
dynamics of the pendulum is given as follows⎧⎪⎪⎨

⎪⎪⎩
dθ

dt
= ω

J
dω

dt
= u − M gl sin θ − fd

dθ

dt

(68)

where M = 1/3 kg and l = 2/3 m are the mass and length of
the pendulum bar, respectively. Let J = 4/3Ml2 and fd = 0.2
be the rotary inertia and frictional factor, respectively. Let
g = 9.8 be the gravity acceleration. Discretising the system
function and the performance index function using Euler
method [38] with the sampling interval �t = 0.1s leads to[

x1(k+1)

x2(k+1)

]
=

[
0.1x2k + x1k

−0.49 sin(x1k) − 0.1fd × x2k + x2k

]

+
[

0
0.1

]
uk (69)
IET Control Theory Appl., 2013, Vol. 7, Iss. 11, pp. 1472–1486
doi: 10.1049/iet-cta.2012.0486

www.ietdl.org
0 10 20 30

6

6.2

6.4

6.6

6.8

Iteration steps
a b

c d

P
er

fo
rm

an
ce

 in
de

x
fu

nc
tio

n

0 10 20 30
5.5

6

6.5

7

7.5

8

8.5

Iteration steps

P
er

fo
rm

an
ce

 in
de

x
fu

nc
tio

n
0 10 20 30

8

9

10

11

12

13

Iteration steps

P
er

fo
rm

an
ce

 in
de

x
fu

nc
tio

n

0 10 20 30
2.5

3

3.5

4

4.5

5

Iteration steps

P
er

fo
rm

an
ce

 in
de

x
fu

nc
tio

n

Fig. 3 Trajectories of the iterative performance index functions

a ς = 10−8

b ς = 10−4

c ς = 10−2

d ς = 10−1

0 10 20 30 40
−1

−0.5

0

0.5

1

Time steps
a b

c d

S
ta

te
s

0 10 20 30 40
−1

−0.5

0

0.5

Time steps

C
on

tr
ol

0 10 20 30 40
−1

−0.5

0

0.5

1

Time steps

S
ta

te
s

0 10 20 30 40
−1

−0.5

0

0.5

Time steps

C
on

tr
ol

x
1

x
2

x
1

x
2

Fig. 4 Control and state trajectories

a State trajectories for ς = 10−8

b Control trajectory for ς = 10−8

c State trajectories for ς = 10−4

d Control trajectory for ς = 10−4
IET Control Theory Appl., 2013, Vol. 7, Iss. 11, pp. 1472–1486 1481
doi: 10.1049/iet-cta.2012.0486 © The Institution of Engineering and Technology 2013

www.ietdl.org
0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1

Time steps
a

b

S
ta

te
s

0 5 10 15 20 25 30 35 40
−1.5

−1

−0.5

0

0.5

Time steps

C
on

tr
ol

x
1

x
2

Fig. 5 Control and state trajectories

a State trajectories for ς = 10−2

b Control trajectory for ς = 10−2

0 10 20 30 40
−1.5

−1

−0.5

0

0.5

1

Time steps
a b

c d

S
ta

te
s

0 10 20 30 40
−0.5

−0.4

−0.3

−0.2

−0.1

0

Time steps

C
on

tr
ol

0 10 20 30 40
−1.5

−1

−0.5

0

0.5

1

Time steps

S
ta

te
s

0 10 20 30 40
−0.5

−0.4

−0.3

−0.2

−0.1

0

Time steps

C
on

tr
ol

x
1

x
2

x
1

x
2

Fig. 6 Control and state trajectories under v̂0(xk)

a State trajectories for ς = 10−8

b Control trajectory for ς = 10−8

c State trajectories for ς = 10−4

d Control trajectory for ς = 10−4
1482 IET Control Theory Appl., 2013, Vol. 7, Iss. 11, pp. 1472–1486
© The Institution of Engineering and Technology 2013 doi: 10.1049/iet-cta.2012.0486

www.ietdl.org
0 10 20 30 40
−1.5

−1

−0.5

0

0.5

1

Time steps
a b

c d

S
ta

te
s

0 10 20 30 40
−0.5

−0.4

−0.3

−0.2

−0.1

0

Time steps

C
on

tro
l

0 10 20 30 40
−1.5

−1

−0.5

0

0.5

1

Time steps

S
ta

te
s

0 10 20 30 40
−0.5

−0.4

−0.3

−0.2

−0.1

0

Time steps
C

on
tro

l

x1
x2

x1
x2

Fig. 7 Control and state trajectories under v̂0(xk)

a State trajectories for ς = 10−2

b Control trajectory for ς = 10−2

c State trajectories for ς = 10−1

d Control trajectory for ς = 10−1
−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

State variable x
1

State variable x
2

A
dm

is
si

bl
e

ap
pr

ox
im

at
io

n
er

ro
r

Fig. 8 Curve of the admissible approximation error obtained by
(62)

where x1k = θk and x2k = ωk . Assume that the sampling
interval satisfies the Shannon’s sampling theorem [39]. Let
the initial state be x0 = [1, −1]T. The utility function is
chosen the same as the one in Example 1.

The numerical iterative θ -ADP algorithm runs for 16 iter-
ation steps to guarantee the convergence of the iterative
performance index function. The curve of the admissible
approximation error obtained by (62) is displayed in Fig. 8.

Let the grid step of the control be ς = 10−6 to guarantee
the convergence condition (62). The convergence trajec-
tory of the iterative performance index function is shown
in Fig. 9a. To illustrate the performance of the present
numerical iterative θ -ADP algorithm, our results will be
compared with traditional value iteration algorithm, which is
IET Control Theory Appl., 2013, Vol. 7, Iss. 11, pp. 1472–1486
doi: 10.1049/iet-cta.2012.0486
0 2 4 6 8 10 12 14 16
40

50

60

70

80

90

Iteration steps
a

b

Ite
ra

tiv
e

pe
rfo

rm
an

ce
 in

de
x

fu
nc

tio
n

0 5 10 15 20 25 30
0

10

20

30

40

50

Iteration stepsIte
ra

tiv
e

pe
rfo

rm
an

ce
 in

de
x

fu
nc

tio
n

Fig. 9 Convergence trajectories of the iterative performance
index functions

a Trajectory obtained by numerical iterative θ -ADP algorithm
b Trajectory obtained by value iteration algorithm

widely used in [20, 21, 27, 28]. Let the initial performance
index function be V0(xk) ≡ 0. We implement the value iter-
ation algorithm for 30 iterations. The convergence trajectory
obtained value iteration algorithm is shown in Fig. 9b.

Remark 8: From Figs. 9a and b we can see that the two iter-
ative performance index functions obtained by the numerical
1483
© The Institution of Engineering and Technology 2013

www.ietdl.org
0 50 100
−1.5

−1

−0.5

0

0.5

1

Time steps
a

S
ys

te
m

 s
ta

te
s

0 50 100
−1

0

1

2

3

Time steps
b

O
pt

im
al

 c
on

tro
l

x1
x2

0 50 100
−1.5

−1

−0.5

0

0.5

1

S
ys

te
m

 s
ta

te
s

Time steps
c

0 50 100
−1

0

1

2

3

O
pt

im
al

 c
on

tro
l

Time steps
d

x1
x2

Fig. 10 Optimal control and state trajectories

a Optimal state trajectories obtained by numerical iterative θ -ADP algorithm
b Optimal control trajectory obtained by numerical iterative θ -ADP algorithm
c Optimal state trajectories obtained by value iteration algorithm
d Optimal control trajectory obtained by value iteration algorithm

0 50 100
−1

−0.5

0

0.5

1

Time steps
a

S
ys

te
m

 s
ta

te
s

0 50 100
0

2

4

6

Time steps
b

Ite
ra

tiv
e

co
nt

ro
l

x
1

x
2

0 50 100
−4

−2

0

2

4

Time steps
c

S
ys

te
m

 s
ta

te
s

0 50 100
−0.5

0

0.5

Time steps
d

Ite
ra

tiv
e

co
nt

ro
l

x
1

x
2

Fig. 11 Iterative state and control trajectories under the first iteration control law

a State trajectories under v̂0(xk) obtained by numerical iterative θ -ADP algorithm
b First iteration control trajectory v̂0(xk) by numerical iterative θ -ADP algorithm
c State trajectories under v̄0(xk) obtained by value iteration algorithm
d First iteration control trajectory v̄0(xk) by value iteration algorithm
1484 IET Control Theory Appl., 2013, Vol. 7, Iss. 11, pp. 1472–1486
© The Institution of Engineering and Technology 2013 doi: 10.1049/iet-cta.2012.0486

www.ietdl.org
iterative θ -ADP algorithm and the value iteration algorithm
are both convergent, while the convergence properties of the
two iterative performance index functions are different. For
the numerical iterative θ -ADP algorithm, the iterative perfor-
mance index function is monotonically non-increasing and
convergent. However, for the value iteration algorithm, the
iterative performance index function is monotonically non-
decreasing and convergent. This is an obvious difference
between the two algorithms because of the different choice
of the initial performance index function.

The optimal state and control trajectories by the numerical
iterative θ -ADP algorithm are shown in Figs. 10a and b,
respectively. The optimal state and control trajectories by the
traditional value iteration algorithm are shown in Figs. 10c
and d, respectively.

From the simulation results, we can see that the numeri-
cal iterative θ -ADP algorithm effectively obtains the optimal
control law of the torsional pendulum system. On the other
hand, we point out that for value iteration, it cannot make the
system stable under the iterative control law, while for the
numerical iterative θ -ADP algorithm, the stability of the sys-
tem can be guaranteed. In Fig. 11a, we give the system state
trajectories of the system (69) under the iterative control law
v̂0(xk) by numerical iterative θ -ADP algorithm. The corre-
sponding control trajectory is shown in Fig. 11b. Let v̄0(xk)
be the control law of the first iteration obtained by value
iteration algorithm. Then the system state trajectories of the
system (69) under the iterative control law v̄0(xk) by value
iteration algorithm are shown in Fig. 11c. The corresponding
control trajectory is shown in Fig. 11d.

Remark 9: From the simulation results, we see that the
stability of the system under the iterative control law
obtained by the value iteration algorithm cannot be guar-
anteed. This makes the value iteration algorithms can only
implemented off-line to obtain the optimal control law. For
our present numerical iterative θ -ADP algorithm, it is suc-
cessfully obtain the optimal control law for the torsional
pendulum system. If the approximation error is satisfied,
then the iterative performance index function is convergent
to the finite neighbourhood of the optimal performance index
functions. We emphasise that the stability of the system is
also guaranteed. This is an great advantage of the present
algorithm in this paper comparing the iteration algorithms.

5 Conclusions

In this paper, we have developed an effective numerical iter-
ative θ -ADP algorithm to find the infinite horizon optimal
control for discrete-time non-linear systems. In the numer-
ical iterative θ -ADP algorithm, any of the iterative control
is stable for the non-linear system which means the present
algorithm can be used both on-line and off-line. Conver-
gence analysis of the performance index function for the
iterative ADP algorithm is proved and the stability proofs
are also given. Finally, two simulation examples are given
to illustrate the performance of the present algorithm.

6 Acknowledgments

This work was supported in part by the National Natu-
ral Science Foundation of China under Grants 61034002,
61233001, 61273140, in part by Beijing Natural Science
IET Control Theory Appl., 2013, Vol. 7, Iss. 11, pp. 1472–1486
doi: 10.1049/iet-cta.2012.0486
Foundation under Grant 4132078, and in part by the Early
Career Development Award of SKLMCCS.

7 References

1 Padhi, R., Balakrishnan, S.N.: ‘Optimal dynamic inversion control
design for a class of nonlinear distributed parameter systems with con-
tinuous and discrete actuators’, IET Control Theory Appl., 2007, 1, (6),
pp. 1662–1671

2 Meng, D., Jia, Y., Du, J.: ‘Robust iterative learning control design
for uncertain time-delay systems based on a performance index’, IET
Control Theory Appl., 2010, 4, (5), pp. 759–772

3 Jiang, Q., Xi, H.S., Yin, B.Q.: ‘Adaptive optimisation of timeout pol-
icy for dynamic power management based on semi-Markov control
processes’, IET Control Theory Appl., 2010, 4, (10), pp. 1945–1958

4 Iyasere, E., Salah, M., Dawson, D., Wagner, J., Tatlicioglu E.: ‘Opti-
mum seeking-based non-linear controller to maximise energy capture
in a variable speed wind turbine’, IET Control Theory Appl., 2012, 6,
(4), pp. 526–532

5 Lewis, F.L., Syrmos, V.L.: ‘Optimal control’ (John Wiley, 1995)
6 Kushner, H.J.: ‘Numerical algorithms for optimal controls for non-

linear stochastic systems with delays’, IEEE Trans. Autom. Control,
2010, 55, (9), pp. 2170–2176

7 Younkin, G., Hesla, E.: ‘Origin of numerical control’, IEEE Ind. Appl.
Mag., 2008, 14, (5), pp. 10–12

8 Zhang, C., Ordonez, R.: ‘Numerical optimization-based extremum
seeking control with application to ABS design’, IEEE Trans. Autom.
Control, 2007, 52, (3), pp. 454–467

9 Werbos, P.J.: ‘Advanced forecasting methods for global crisis warning
and models of intelligence’, Gen. Syst. Yearb., 1977, 22, pp. 25–38

10 Werbos, P.J.: ‘A menu of designs for reinforcement learning over
time’, in Miller W.T., Sutton R.S., Werbos P.J. (Eds): ‘Neural
networks for control’ (MIT Press, 1991), pp. 67–95

11 Li, X.D., Xiao, T.F., Zheng H.X.: ‘Adaptive discrete-time iterative
learning control for non-linear multiple input multiple output sys-
tems with iteration-varying initial error and reference trajectory’, IET
Control Theory Appl., 2011, 5, (9), pp. 1131–1139

12 Liu, D., Zhang, Y., Zhang, H.: ‘A self-learning call admission con-
trol scheme for CDMA cellular networks’, IEEE Trans. Neural Netw.,
2005, 16, (5), pp. 1219–1228

13 Wei, Q., Zhang, H., Dai, J.: ‘Model-free multiobjective approximate
dynamic programming for discrete-time nonlinear systems with gen-
eral performance index functions’, Neurocomputing, 2009, 72, (7–9),
pp. 1839–1848

14 Murray, J.J., Cox, C.J., Lendaris, G.G., Saeks, R.: ‘Adaptive dynamic
programming’, IEEE Trans. Syst. Man Cybern. C, Appl. Rev., 2002,
32, (2), pp. 140–153

15 Wang, F., Zhang, H., Liu, D.: ‘Adaptive dynamic programming: an
introduction’, IEEE Comput. Intell. Mag., 2009, 4, (2), pp. 39–47

16 Abu-Khalaf, M., Lewis, F.L.: ‘Nearly optimal control laws for non-
linear systems with saturating actuators using a neural network HJB
approach’, Automatica, 2005, 41, (5), pp. 779–791

17 Lin, W.S., Chang, L.H., Yang, P.C.: ‘Adaptive critic anti-slip control
of wheeled autonomous robot’, IET Control Theory Appl., 2007, 1,
(1), pp. 51–57

18 Lewis, F.L., Vrabie, D.: ‘Reinforcement learning and adaptive dynamic
programming for feedback control’, IEEE Circuits Syst. Mag., 2009,
9, (3), pp. 32–50

19 Wang, F., Jin, N., Liu, D., Wei, Q.: ‘Adaptive dynamic program-
ming for finite-horizon optimal control of discrete-time nonlinear
systems with ε-error bound’, IEEE Trans. Neural Netw., 2011, 22,
(1), pp. 24–36

20 Beard, R.: ‘Improving the closed-loop performance of nonlinear sys-
tems’. PhD thesis, Rensselaer Polytechnic Institute, Troy, New York,
USA, 1995

21 Al-Tamimi, A., Lewis, F.L., Abu-Khalaf, M.: ‘Discrete-time nonlinear
HJB solution using approximate dynamic programming: convergence
proof’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2008, 38, (4),
pp. 943–949

22 Wei, Q., Liu, D.: ‘Adaptive dynamic programming with stable value
iteration algorithm for discrete-time nonlinear systems’. Proc. Int. Joint
Conf. Neural Networks, Brisbane, Australia, June 2012, pp. 1–6

23 Dierks, T., Jagannathan, S.: ‘Online optimal control of affine nonlinear
discrete-time systems with unknown internal dynamics by using time-
based policy update’, IEEE Trans. Neural Netw. Learn. Syst., 2012,
23, (7), pp. 1118–1129

24 Zhang, H., Wei, Q., Liu, D.: ‘An iterative adaptive dynamic program-
ming method for solving a class of nonlinear zero-sum differential
games’, Automatica, 2011, 47, (1), pp. 207–214
1485
© The Institution of Engineering and Technology 2013

www.ietdl.org
25 Wei, Q., Liu, D.: ‘An iterative ε-optimal control scheme for a class
of discrete-time nonlinear systems with unfixed initial state’, Neural
Netw., 2012, 32, pp. 236–244

26 Zhang, H., Wei, Q., Luo, Y.: ‘A novel infinite-time optimal tracking
control scheme for a class of discrete-time nonlinear systems via the
greedy HDP iteration algorithm’, IEEE Trans. Syst. Man Cybern. B,
Cybern., 2008, 38, (4), pp. 937–942

27 Lincoln, B., Rantzer, A.: ‘Relaxing dynamic programming’, IEEE
Trans. Autom. Control, 2006, 51, (8), pp. 1249–1260

28 Zhang, H., Luo, Y., Liu, D.: ‘The RBF neural network-based near-
optimal control for a class of discrete-time affine nonlinear systems
with control constraint’, IEEE Trans. Neural Netw., 2009, 20, (9),
pp. 1490–1503

29 Jin, N., Liu, D., Huang, T., Pang, Z.: ‘Discrete-time adaptive dynamic
programming using wavelet basis function neural networks’. Proc.
IEEE Symp. Approximate Dynamic Programming and Reinforcement
Learning, Honolulu, USA, April 2007, pp. 135–142

30 Liu, D., Wang, D., Zhao, D., Wei, Q., Jin, N.: ‘Neural-network-based
optimal control for a class of unknown discrete-time nonlinear systems
using globalized dual heuristic programming’, IEEE Trans. Autom. Sci.
Eng., 2012, 9, (3), pp. 628–634

31 Yang, Q., Jagannathan, S.: ‘Reinforcement learning controller design
for affine nonlinear discrete-time systems using online approximators’,
IEEE Trans. Syst. Man Cybern. B, Cybern., 2012, 42, (2), pp. 377–390
1486
© The Institution of Engineering and Technology 2013
32 Liu, D., Wei, Q.: ‘Finite-approximation-error based optimal control
approach for discrete-time nonlinear systems’, IEEE Trans. Syst. Man
Cybern. B, Cybern., 2013, 43, (2), pp. 779–789

33 Wei, Q., Liu, D.: ‘A new optimal control method for discrete-time
nonlinear systems with approximation errors’. Proc. World Congress
on Intelligent Control and Automation, Beijing, China, July 2012,
pp. 185–190

34 Agricola, I., Friendrich, T.: ‘Elementary geometry’ (American Math-
ematical Society, 2008)

35 Navarro-Lopez, E.M.: ‘Local feedback passivation of nonlinear
discrete-time systems through the speed-gradient algorithm’, Automat-
ica, 2007, 43, (7), pp. 1302–1306

36 Sira-Ramirez, H.: ‘Non-linear discrete variable structure sys-
tems in quasi-sliding mode’, Int. J. Control, 1991, 54, (5),
pp. 1171–1187

37 Si, J., Wang, Y.T.: ‘On-line learning control by association
and reinforcement’, IEEE Trans. Neural Netw., 2001, 12, (2),
pp. 264–276

38 Padhi, R., Unnikrishnan, N., Wang, X., Balakrishnan, S.N.: ‘A single
network adaptive critic (SNAC) architecture for optimal control syn-
thesis for a class of nonlinear systems’, Neural Netw., 2006, 19, (10),
pp. 1648–1660

39 Marks, I.I., Robert, J.: ‘Introduction to Shannon sampling and inter-
polation theory’ (Springer–Verlag, 1991)
IET Control Theory Appl., 2013, Vol. 7, Iss. 11, pp. 1472–1486
doi: 10.1049/iet-cta.2012.0486

