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In this paper, a data-based method is developed for analyzing the controllability and
observability of discrete-time linear systems in noisy environment. This method uses mea-
sured data to estimate the controllability matrix and the observability matrix without
identifying system models. The unbiasedness and consistency of this estimate with mea-
surement noise and system noise are proven, respectively. As the estimated error of system
parameters will not accumulate in calculating the controllability matrix and observability
matrix, this method has a higher precision than traditional methods, especially in high-
dimensional state space. In the simulation, the advantages of the data-based method in
accuracy and convergence are illustrated.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

In the past twenty years, with the rapid development of science technology especially the information technology, pro-
duction equipment and production process have become more and more complex. Traditional control methods, which estab-
lish precise mathematical models based on the physical–chemical mechanism to control and forecast the complex processes,
become increasingly more difficult. There are large amounts of data which contain the information of production process and
equipment operation generated and stored in many companies every day. How to use online and off-line data effectively to
control, forecast and evaluate the production process without establishing precise mathematical models, has become an
urgent problem to solve.

Data-based control appears in control fields in recent years. Since its birth, it has attracted much attention by many
researchers. There are many researches that have been done on data-based control, although the calls are not the same.
In 1993, Spall proposed a model-free control based on SPSA (simultaneous perturbation stochastic approximation)
[24,25]. In 1994, Hjalmarsson developed iterative feedback tuning (IFT), which optimizes the controller based on gradient
iteration with the measured data of closed loop control system [10–12]. In 1995, Safonov proposed unfalsified control
(UC), which is a model-free adaptive control method without requiring mathematical models [21,22]. In 2000, Suardabassi
and Savaresi studied virtual reference feedback tuning (VRFT) to identify parameters of controllers directly with input and
output data [5,7]. Iterative learning control (ILC) proposed by Uchiyama has been one of the hot areas in control fields [6,18].
Most of iterative learning methods are based on compression mapping and fixed point theorem. Lazy learning (LL) is a kind
of supervised machine learning [1,4], and was first used for control by Schaal and Atkeson in 1994 [23]. Approximate
dynamic programming (ADP) is a hot topic of control theory and practice [3,19,20,29,30]. Q-learning, one of the ADP
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schemes, is also a model-free control method that evaluates Q-function with off-line and online data and generates optimal
control by Q-function [14,27,28].

Although the methods of data-based control are different, most of them need the assumption that the systems are con-
trollable and observable. Controllability and observability are two basic properties in control theory [2,8,17]. Up to now,
there have been many works on the state controllability and observability of linear and nonlinear systems. In 1977, Robert
and Arthur extended controllability and observability from linear systems to nonlinear systems [9]. In 1993 and 1996, Liven
and Narendra studied the properties of nonlinear dynamical systems using neural networks, including controllability, stabil-
ization, observability, identification and control [15,16]. However, all of these traditional criteria of controllability and
observability need to identify system equations, which are in contrary to data-based methods. How to verify these properties
under the premise of not establishing models is a problem that needs to be solved, which motivates establishing data-based
criteria of controllability and observability. [26] proposed data-based methods for analyzing the controllability and observ-
ability of discrete-time linear systems. It offered a novel idea to analyze the system properties with data-based method.
However, the method proposed by [26] cannot deal with the problem of measurement noise and system noise. In the real
world, the noise is unavoidable. Our work in this paper is to establish data-based criteria of controllability and observability
in noisy environment.

In this paper, a data-based method is developed for analyzing the controllability and observability of discrete-time linear
systems with noises. First, we use measured input and output data to construct the estimates of the controllability matrix
and observability matrix, respectively. Second, the unbiasedness and consistency of the estimates are proven under the
assumption of measurement noise and system noise, respectively. At last, the precision of our method is verified to be much
smaller than traditional methods by simulations, especially in high-dimensional state space.

This paper is organized as follows. In Section 2, the criteria of controllability and observability are recalled for discrete-
time linear systems. In Section 3, the validity of the controllability analysis method is proven in the measurement noisy and
system noisy environment, respectively. In Section 4, the validity of observability analysis is proven in noisy environment. In
Section 5, the errors of estimate with traditional methods and data-based method are discussed. Section 6 shows the per-
formance of traditional methods and data-based method in two kinds of noisy environment.

2. Preliminaries

In this paper, we consider the following linear discrete-time control system:
xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ;
yðkÞ ¼ CxðkÞ þ DuðkÞ;

�
ð1Þ
where xðkÞ 2 Rn;uðkÞ 2 Rm, and yðkÞ 2 Rp are the state, the input and the output of system ð1Þ, respectively. The matrices
A 2 Rn�n;B 2 Rn�m;C 2 Rp�n and D 2 Rp�m are unknown, time-invariant and have no random variables as their elements.

In control theory, controllability and observability are two basic characteristics of linear systems. Controllability describes
the ability of an input to move the state of a system from any initial state to any other final state in a finite time interval.
Observability is a measure of how well internal states of a system can be inferred by knowledge of its external outputs
[2]. The criteria of controllability and observability of linear systems in classical control theory are as follows.

Lemma 1 [2]. The system (1) is completely state controllable, if
rank½Wc� ¼ n;
where n is the dimension of the state xðkÞ, and Wc ¼ ½B;AB; . . . ;An�1B� is named controllability matrix of the systems.
This criterion is also a necessary and sufficient condition for the state reachability. Furthermore, if the matrix A is non-

singular, then the above criterion will become a necessary and sufficient condition for the state controllability.

Lemma 2 [2]. The system (1) is completely state observable, if
rank½Wo� ¼ n;
C2 3
where Wo ¼
CA
..
.

CAn�1

664 775;n is the dimension of the state xðkÞ, and Wo is called observability matrix of the systems.
In traditional methods, all of the matrices in (1) need to be identified in order to analyze the system properties. Wang and
Liu [26] proposed a novel data-based method, which can directly analyze the controllability and observability of the system
by using measured data. However, this method cannot deal with the systems with noises. In this paper, a new data-based
method is established to deal with the systems with different kinds of noises, which can also ensure higher calculation pre-
cision than traditional methods.
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3. Data-Based Controllability Analysis

In this section, we present the data-based criterion of controllability of discrete-time linear systems. The estimates of con-
trollability matrices of the systems with no noise, measurement noise and system noise are provided, respectively, and the
unbiasedness and consistency of the estimates in each case are proven.

Compared with traditional approaches which have to identify the matrices A and B to compute Wc for verifying the con-
trollability of the system, Wang and Liu [26] developed a data-based method as follows to obtain the matrix Wc directly.

Lemma 3 [26]. Do m groups of tests on the system. For all the m groups, let all the initial states x½i�ð0Þ � 0 2 Rn ð1 6 i 6 mÞ, and
the corresponding inputs
u½i�ðkÞ � u½i� ¼ ½0; . . . ;1; . . . ; 0� 2 Rmð0 6 k 6 n� 1Þ; ð2Þ
where the ith element of u½i� is 1 and other elements are zeros. Then, measure x½i�ðkÞ at time instants k ¼ 1;2; . . . ;n. Define
XðkÞ ¼ ½x½1�ðkÞ; x½2�ðkÞ; . . . ; x½m�ðkÞ� ð0 6 k 6 nÞ;
Pj ¼ XðjÞ � Xðj� 1Þ ð1 6 j 6 nÞ;
P ¼ ½P1; P2; . . . ; Pn�:

ð3Þ
The system (1) is completely state controllable, if
rank½P� ¼ n;
where P is defined in (3).
Lemma 3 realizes data-based controllability criterion with m groups of special constant inputs defined by (2) and no

noise. However, in practice, it is difficult to obtain such m groups of data without any noise, so a new data-based method
is presented to deal with the systems with noises and more general inputs.

Theorem 1. Do M groups of tests on the system (1). For all M groups of tests, let all the initial states x½i�ð0Þ � 0 2 Rn ð1 6 i 6 MÞ,
and select any M vectors u½i� ¼ ½u1i;u2i; . . . ;umi�T 2 Rmð1 6 i 6 MÞ. Let U ¼ ½u½1�; u½2�; . . . ;u½M��, satisfying that U is row nonsingular
ðrankðUÞ ¼ mÞ. For the ith group of tests, the corresponding inputs are
u½i�ðkÞ � u½i� ¼ ½u1i;u2i; . . . ; umi�T ð0 6 k 6 n� 1Þ: ð4Þ
Then, measure x½i�ðkÞ at time instants k ¼ 1;2; . . . ;n. Define
XðkÞ ¼ ½x½1�ðkÞ; x½2�ðkÞ; . . . ; x½M�ðkÞ� ð0 6 k 6 nÞ;

cW cj ¼ ðXðjÞ � Xðj� 1ÞÞUTðUUTÞ�1 ð1 6 j 6 nÞ;

cW c ¼ ½cW c1;cW c2; . . . ;cW cn�:

ð5Þ
System (1) is completely state controllable if
rank½cW c� ¼ n;
where cW c is defined in (5).
Proof. For the ith test, with the initial state x½i�ð0Þ � 0 and the control inputs as u½i�ðkÞ in (4), the state measurements will be
x½i�ð1Þ ¼ Bu½i�

x½i�ð2Þ ¼ ABu½i� þ Bu½i�

..

.

x½i�ðkÞ ¼ Ak�1Bu½i� þ � � � þ ABu½i� þ Bu½i�

..

.

x½i�ðnÞ ¼ An�1Bu½i� þ � � � þ ABu½i� þ Bu½i�:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð6Þ
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According to (6), the equations can be written in matrix form as
Xð1Þ ¼ BU

Xð2Þ ¼ ðABþ BÞU
..
.

XðkÞ ¼ ðAk�1Bþ Ak�2Bþ � � � þ BÞU
..
.

XðnÞ ¼ ðAn�1Bþ An�2Bþ � � � þ BÞU;

8>>>>>>>>>><
>>>>>>>>>>:

ð7Þ
where XðkÞ and U are defined in Theorem 1. As Xð0Þ ¼ ½x½1�ð0Þ; x½2�ð0Þ; . . . ; x½M�ð0Þ� ¼ 0, according to (7), we have
Xð1Þ � Xð0Þ ¼ BU

Xð2Þ � Xð1Þ ¼ ABU

..

.

XðjÞ � Xðj� 1Þ ¼ Aj�1BU

..

.

XðnÞ � Xðn� 1Þ ¼ An�1BU:

8>>>>>>>>>><
>>>>>>>>>>:
Since U is row nonsingular, the estimate can be obtained
cW c1 ¼ ðXð1Þ � Xð0ÞÞUTðUUTÞ�1 ¼ BcW c2 ¼ ðXð2Þ � Xð1ÞÞUTðUUTÞ�1 ¼ AB

..

.

cW cj ¼ ðXðjÞ � Xðj� 1ÞÞUTðUUTÞ�1 ¼ Aj�1B

..

.

cW cn ¼ ðXðnÞ � Xðn� 1ÞÞUTðUUTÞ�1 ¼ An�1B:

8>>>>>>>>>>>><
>>>>>>>>>>>>:
As a result, the estimate of Wc is
cW c ¼ ½cW c1;cW c2; . . . ;cW cn�
¼ ½B;AB; . . . ;An�1B�
¼Wc;
where Wc is the controllability matrix of system (1), which is defined in Lemma 1. The proof is completed. h

Theorem 1 realizes the data-based controllability criterion with any M groups of nonzero constant inputs. As M � m in
practice, the assumption of rankðUÞ ¼ m is usually satisfied.

Remark 1. In Theorem 1, we set the initial states of the m groups of tests to be zero. Actually, the initial states can take any
values. If the initial states are not zero ðx½i�ð0Þ – 0 2 RnÞ, just do one more group of test with the input always zero ðu½0�ðkÞ � 0
for 8k P 0Þ. Then we have
x½0�ð1Þ ¼ Ax½0�ð0Þ
x½0�ð2Þ ¼ A2x½0�ð0Þ
..
.

x½0�ðnÞ ¼ Anx½0�ð0Þ:

8>>>>><
>>>>>:
For each of the other m groups of tests with the initial states nonzero and the input defined by (4), we have
x½i�ð1Þ ¼ Ax½0�ð0Þ þ Bu½i�

x½i�ð2Þ ¼ A2x½0�ð0Þ þ ABu½i� þ Bu½i�

..

.

x½i�ðnÞ ¼ Anx½0�ð0Þ þ An�1Bu½i� þ � � � þ ABu½i� þ Bu½i�:

8>>>>><
>>>>>:
Redefine XðkÞ as
XðkÞ ¼ ½x½1�ðkÞ � x½0�ðkÞ; x½2�ðkÞ � x½0�ðkÞ; . . . ;

x½n�ðkÞ � x½0�ðkÞ� ð0 6 k 6 nÞ:
Then, we can obtain cW c by the same way as in Theorem 1.
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Corollary 1. Assume that the measured data contains measurement noise.
x̂ðkÞ ¼ xðkÞ þxmðkÞ;
where xmðkÞ 2 Rn is measurement noise, and satisfies a normal distribution with expected value 0 and standard deviation r, i.e.,
xmðkÞ � N ð0;r2InÞ. According to Theorem 1, the estimate of Wc is given by,
cW c ¼ ½cW c1;cW c2; . . . ;cW cn�;cW cj ¼ ðbXðjÞ � bXðj� 1ÞÞUTðUUTÞ�1
; j ¼ 1;2; . . . ; n;
where bXðjÞ 2 Rn�M is the measured value of XðjÞ;Wc ¼ ½Wc1;Wc2; . . . ;Wcn� ¼ ½B;AB; . . . ;An�1B� is the controllability matrix of (1).
Then cW c is an unbiased and consistent estimate of Wc.
Proof. The proof is divided into two parts.

(i) The proof of unbiasedness
Since bXðjÞ is the measured value of XðjÞ, according to the definition of XðjÞ and x̂ðkÞ
bXðjÞ ¼ ½x̂½1�ðjÞ; x̂½2�ðjÞ; . . . ; x̂½M�ðjÞ�

¼ ½x½1�ðjÞ þx½1�m ðjÞ; x½2�ðjÞ þx½1�m ðjÞ; . . . ; x½M�ðjÞ þx½1�m ðjÞ�

¼ XðjÞ þXðjÞ;
where XðjÞ ¼ ½x½1�m ðjÞ;x½2�m ðjÞ; . . . ;x½M�m ðjÞ�. Since x½i�mðjÞ; i ¼ 1;2; . . . ;M, comes from different groups of tests, it is reasonable to
assume that each one of them is independent from the another. So the expected value of cW cj is
EfcW cjg ¼ EfðbXðjÞ � bXðj� 1ÞÞUTðUUTÞ�1g

¼ EfbXðjÞ � bXðj� 1ÞgUTðUUTÞ�1

¼ EfXðjÞ þXðjÞ � Xðj� 1Þ �Xðj� 1ÞgUTðUUTÞ�1

¼ ðXðjÞ � Xðj� 1ÞÞUTðUUTÞ�1 þ EfXðjÞ �Xðj� 1ÞgUTðUUTÞ�1
:

ð8Þ
As EfXðjÞg ¼ 0; j ¼ 1;2; . . . ;n, we get
EfcW cjg ¼ ðXðjÞ � Xðj� 1ÞÞUTðUUTÞ�1

¼Wcj

¼ Aj�1B:
Therefore, we have
EfcW cg ¼Wc;
which proves the unbiasedness.
(ii) The proof of consistency

According to the translational invariance of variance and (8), the variance of cW cj is
VarfcW cjg ¼ VarfðXðjÞ �Xðj� 1ÞÞUTðUUTÞ�1g:
Define
DðjÞ ¼ DXðjÞUTðUUTÞ�1
;

where DXðjÞ ¼ XðjÞ �Xðj� 1Þ. Then the variance of cW cj can be rewritten as
VarfcW cjg ¼ VarðDðjÞÞ:
Let diðjÞ be the ith row of DðjÞ; i ¼ 1;2; . . . ; n, and DXiðjÞ is the ith row of DXðjÞ, i ¼ 1;2; . . . ;n. Then we have
diðjÞ ¼ DXiðjÞUTðUUTÞ�1
:

According to the definition of DXðjÞ,
EfdiðjÞg ¼ EfDXiðjÞgUTðUUTÞ�1 ¼ 0:
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So the variance of diðjÞ is
VarfdiðjÞg ¼ EfdT
i ðjÞdiðjÞg

¼ EfðUUTÞ�1
UDXT

i ðjÞDXiðjÞUTðUUTÞ�1g

¼ ðUUTÞ�1
UEfDXT

i ðjÞDXiðjÞgUTðUUTÞ�1
:

ð9Þ
According to the definition of DXiðjÞ, we can obtain
EfDXT
i ðjÞDXiðjÞg ¼ EfðXiðjÞ �Xiðj� 1ÞÞTðXiðjÞ �Xiðj� 1ÞÞg

¼ EfXT
i ðjÞXiðjÞg þ EfXT

i ðj� 1ÞXiðj� 1Þg
¼ 2r2IM ;

ð10Þ
where IM is an identity matrix of order M. As XðjÞ and Xðj� 1Þ are independent, we have EfXT
i ðjÞXiðj� 1Þg ¼

EfXT
i ðj� 1ÞXiðjÞg ¼ 0. By (9) and (10), we have
VarfdiðjÞg ¼ 2r2ðUUTÞ�1
:

According to [13], as M !1, we have
ðUUTÞ�1 ! 0:
So the variance of diðjÞ is
VarfdiðjÞg ! 0; as M !1:
Furthermore, Xi1 ðjÞ and Xi2 ðjÞ are independent, when i1 – i2. So we can get
Covðdi1 ðjÞ;di2 ðjÞÞ ¼ 0; for i1 – i2;
where Covða; bÞ is the covariance of a and b. Then, the following conclusion can be obtained
VarfcW cjg ¼ VarfDðjÞg ! 0; as M !1:
This means that, as an estimate of Wcj;cW cj is consistent. Furthermore, cW c is also the consistent estimate of Wc.
Combining ðiÞ and ðiiÞ, the proof is completed. h

In practice, the expectation of measurement noise is usually zero. If not, we can estimate the expectation by identification
methods. Let the estimate of expectation of measurement noise bEðxmðkÞÞ ¼ l̂k. Then we have x0mðkÞ ¼ xmðkÞ � l̂k with the
expected value 0. Then we can analyze the controllability of the system by Corollary 1. In the rest of this article, the expec-
tation of noise is also assumed to be zero.

Corollary 2. Assume that the system contains noise
xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ þxsðkÞ;
where xsðkÞ 2 Rn is system noise, and satisfies a normal distribution with expected value 0 and standard deviation r, i.e.,
xsðkÞ � N ð0;r2InÞ. According to Theorem 1, the estimate of Wc is given by,
cW c ¼ ½cW c1;cW c2; . . . ;cW cn�;cW cj ¼ ðXðjÞ � Xðj� 1ÞÞUTðUUTÞ�1
; j ¼ 1;2; . . . ;n;
where XðjÞ 2 Rn�M is the measured state of the system with noise, Wc ¼ ½Wc1;Wc2; . . . ;Wcn� ¼ ½B;AB; . . . ;An�1B� is the controlla-
bility matrix of (1). Then cW c is an unbiased and consistent estimate of Wc.
Proof. The proof is divided into two parts.

(i) The proof of unbiasedness
For the ith test, according to system equation with noise, the state measurements and control inputs have the relation-
ship as follow
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x½i�ð1Þ ¼ Bu½i� þx½i�s ð0Þ
x½i�ð2Þ ¼ ABu½i� þ Bu½i� þ Ax½i�s ð0Þ þx½i�s ð1Þ

..

.

x½i�ðkÞ ¼ Ak�1Bu½i� þ � � � þ ABu½i� þ Bu½i� þ Ak�1x½i�s ð0Þ
þ � � � þ Ax½i�s ðk� 2Þ þx½i�s ðk� 1Þ

..

.

x½i�ðnÞ ¼ An�1Bu½i� þ � � � þ ABu½i� þ Bu½i� þ An�1x½i�s ð0Þ
þ � � � þ Ax½i�s ðn� 2Þ þx½i�s ðn� 1Þ:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:
According to the definition of X and U in Theorem 1, we have
Xð1Þ ¼ BU þXsð0Þ
Xð2Þ ¼ ðABþ BÞU þ AXsð0Þ þXsð1Þ

..

.

XðkÞ ¼ ðAk�1Bþ � � � þ ABþ BÞU þ Ak�1Xsð0Þ
þ � � � þ AXsðk� 2Þ þXsðk� 1Þ

..

.

XðnÞ ¼ ðAn�1Bþ � � � þ ABþ BÞU þ An�1Xsð0Þ
þ � � � þ AXsðn� 2Þ þXsðn� 1Þ;

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:
where XsðkÞ ¼ ½x½1�s ðkÞ;x½2�s ðkÞ; . . . ;x½M�s ðkÞ�. As xsðkÞ; k ¼ 0;1; . . . ;n, are independent and identically distributed,
XsðkÞ; k ¼ 0;1; . . . ;n, are also independent and identically distributed. Let XsðkÞ ¼ Xs; k ¼ 0;1; . . . ;n. Then we can obtain
Xð1Þ ¼ BU þXs

Xð2Þ ¼ ðABþ BÞU þ ðAþ InÞXs

..

.

XðkÞ ¼ ðAk�1Bþ � � � þ ABþ BÞU
þðAk�1 þ � � � þ Aþ InÞXs

..

.

XðnÞ ¼ ðAn�1Bþ � � � þ ABþ BÞU
þðAn�1 þ � � � þ Aþ InÞXs:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð11Þ
As Xð0Þ ¼ ½x½1�ð0Þ; x½2�ð0Þ; . . . ; x½M�ð0Þ� ¼ 0, according to (11), we have
Xð1Þ � Xð0Þ ¼ BU þXs

Xð2Þ � Xð1Þ ¼ ABU þ AXs

..

.

XðkÞ � Xðk� 1Þ ¼ Ak�1BU þ Ak�1Xs

..

.

XðnÞ � Xðn� 1Þ ¼ An�1BU þ An�1Xs:

8>>>>>>>>>><
>>>>>>>>>>:
So the expected value of cW cj is
EfcW cjg ¼ EfðXðjÞ � Xðj� 1ÞÞUTðUUTÞ�1g

¼ EfðAj�1BU þ Aj�1XsÞUTðUUTÞ�1g

¼ Aj�1Bþ EfAj�1XsU
TðUUTÞ�1g

¼ Aj�1Bþ Aj�1EfXsgUTðUUTÞ�1

¼ Aj�1B:
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Furthermore, the expected value of cW c can be obtained as
EfdWcg ¼ Ef½dWc 1;dWc 2; . . . ;dWc n�g

¼ ½EfdWc 1g; EfdWc 2g; . . . ; EfdWc ng�
¼ ½B;AB; . . . ;An�1B�
¼Wc;
which proves the unbiasedness.
(ii) The proof of consistency

Similar to Corollary 1, we can get
VarfcW cjg ¼ VarfAj�1XsU
TðUUTÞ�1g:
Let DðjÞ ¼ Aj�1XsU
TðUUTÞ�1

;HðjÞ ¼ Aj�1Xs, diðjÞ and hiðjÞ are the ith row of DðjÞ and HðjÞ, respectively. According to the prop-
erty of multivariate normal distribution,
hiðjÞ � N ð0;RÞ: r1 0 � � � 0
2 3
As M groups of tests are independent, the elements of R are all zeros except the main diagonal. Let R ¼
0 r2 � � � 0
..
. ..

. . .
. ..

.

0 0 � � � rM

6664
7775

and rmax ¼maxfr1;r2; . . . ;rMg. ri is determined by A and r, so rmax is bounded when M !1. Then the variance of diðjÞ can
be obtained as follows.
VarfdiðjÞg ¼ VarfhiðjÞUTðUUTÞ�1g

¼ EfðUUTÞ�1
UhT

i ðjÞhiðjÞUTðUUTÞ�1g

¼ ðUUTÞ�1
UEfhT

i ðjÞhiðjÞgUTðUUTÞ�1

¼ ðUUTÞ�1
URUTðUUTÞ�1

:

Taking the norm of VarfdiðjÞg leads to
kVarfdiðjÞgk 6 kðUUTÞ�1
UrmaxUTðUUTÞ�1k ¼ rmaxkðUUTÞ�1k:
According to [13], as M !1, we have
ðUUTÞ�1 ! 0:
So we have
VarfdiðjÞg ! 0; as M !1:
Then, the variance of the cW cj is
VarfcW cjg ¼ VarfDðjÞg ! 0; as M !1:
This means that, as the estimate of Wcj;cW cj is consistent. Furthermore, dWc is a consistent estimate of Wc.
Combining ðiÞ and ðiiÞ, the proof is completed. h
Remark 2. For any initial state xð0Þ – 0 2 Rn, As in Remark 1, do one more group of test with the initial state xð0Þ and the
input u½0� � 0 2 Rm for 8k P 0. Then we have
x0ðnÞ ¼ Anxð0Þ: ð12Þ
According to the system Eq. (1), we have
xðnÞ ¼ Anxð0Þ þ An�1Buð0Þ þ � � � þ ABuðn� 2Þ þ Buðn� 1Þ:
Let xðnÞ ¼ 0. Then
½B;AB; . . . ;An�1B�

uðn� 1Þ
..
.

uð1Þ
uð0Þ

2
66664

3
77775 ¼ �Anxð0Þ:
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Combining the definition of Wc and (12), we have
Wc

uðn� 1Þ
..
.

uð1Þ
uð0Þ

2
66664

3
77775 ¼ �x0ð0Þ:
Since rankðWcÞ ¼ n, the equations have solutions. Especially, when the input space is one dimensional space ðuðkÞ 2 RÞ,
the equations above have a unique solution.

Remark 2 shows us that if a linear discrete-time system is controllable, it can move any initial state to zero within at most
n steps. It also provides a new idea to design the controller based on the controllability matrix, which contains more infor-
mation about the system than the system parameter matrices A and B.

4. Data-Based Observability Analysis

Similar to the controllability, the method for analyzing the observability of the system (1) can be obtained. [26] estab-
lished data-based criterion of observability by the following lemma.

Lemma 4. Let n initial states of the system be given as follows,
x½i�ð0Þ ¼ ½0; . . . ;0;1; 0; . . . ; 0�T 2 Rn ð1 6 i 6 nÞ; ð13Þ
where the ith element of x½i�ð0Þ is 1, and all other elements are zeros. Then, measure the corresponding output y½i�ðkÞ at time instants
k ¼ 0;1; . . . ;n� 1, while setting the inputs as u½i�ðkÞ � 0 2 Rm. Define
YðkÞ ¼ ½y½1�ðkÞ; y½2�ðkÞ; . . . ; y½n�ðkÞ� ð0 6 k 6 nÞ:
Assume that the initial states of (1) can be set as in (13). Then the system is completely state observable, if and only if
rank½Q � ¼ n:

Similar to the previous discussion of controllability, we improved this algorithm to make it applicable to more general

data. First, do N groups of tests on the system (1). Select any N linearly independent vectors
x½i� ¼ ½x1i; x2i; . . . ; xni�T ð1 6 i 6 NÞ as the initial states of system (1), and let all the inputs
u½i�ðkÞ � 0 2 Rm ð1 6 i 6 N;0 6 k 6 n� 1Þ. Let X ¼ ½x½1�; x½2�; . . . ; x½N��, and then X is nonsingular. Store the measured output data
y½i�ð0Þ; y½i�ð1Þ; . . . ; y½i�ðn� 1Þ, for i ¼ 1;2; . . . ;N. Define
YðkÞ ¼ ½y½1�ðkÞ; y½2�ðkÞ; . . . ; y½N�ðkÞ� ð0 6 k 6 n� 1Þ:
Then, according to the definitions of X and YðkÞ, we can obtain the following matrix
cW o ¼

Yð0ÞXTðXXTÞ�1

Yð1ÞXTðXXTÞ�1

..

.

Yðn� 1ÞXTðXXTÞ�1

2
666664

3
777775: ð14Þ
Theorem 2. System (1) is completely state observable if
rank½cW o� ¼ n;
where cW o is defined in (14).
Proof. With the initial states x½i�ð0Þ ¼ x½i�, and the inputs u½i�ðkÞ � 0, the output of (1) will be
y½i�ð0Þ ¼ Cx½i�ð0Þ ¼ Cx½i�

y½i�ð1Þ ¼ CAx½i�ð0Þ ¼ CAx½i�

..

.

y½i�ðn� 1Þ ¼ CAn�1x½i�ð0Þ ¼ CAn�1x½i�;

8>>>>><
>>>>>:
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where A and C are unknown. From the definition of x½i�, we have
½y½1�ð0Þ; y½2�ð0Þ; . . . ; y½n�ð0Þ� ¼ C½x½1�; x½2�; . . . ; x½n��
½y½1�ð1Þ; y½2�ð1Þ; . . . ; y½n�ð1Þ� ¼ CA½x½1�; x½2�; . . . ; x½n��
..
.

½y½1�ðnÞ; y½2�ðnÞ; . . . ; y½n�ðnÞ� ¼ CAn�1½x½1�; x½2�; . . . ; x½n��:

8>>>><
>>>>:
According to the definitions of X and U, we can get
Yð0Þ ¼ CX

Yð1Þ ¼ CAX

..

.

Yðn� 1Þ ¼ CAn�1X:

8>>>><
>>>>:
Since X is nonsingular, we can obtain
cW o ¼

Yð0ÞXTðXXTÞ�1

Yð1ÞXTðXXTÞ�1

..

.

Yðn� 1ÞXTðXXTÞ�1

2
666664

3
777775 ¼

C

CA

..

.

CAn�1

2
66664

3
77775 ¼Wo;
where Wo is the observability matrix of (1). According to Lemma 2, the proof is completed. h
Corollary 3. Assume that the measured data of output yðkÞ contains measurement noise,
ŷðkÞ ¼ yðkÞ þ mmðkÞ;
where mmðkÞ 2 Rp is the measurement noise, and satisfies a normal distribution with expected value 0 and standard deviation r, i.e.,
mmðkÞ � N ð0;r2IpÞ. According to Theorem 2, the estimate of Wo is given by,
dWo ¼ ½cW o1;cW o2; . . . ;cW on�;cW oj ¼ bY ðj� 1ÞXTðXXTÞ�1
; j ¼ 1;2; . . . ; n;
where bY ðjÞ 2 Rp�M is the measured value of YðjÞ. Then cW o is an unbiased and consistent estimate of Wo.
Proof. The proof is divided into two parts.

(i) The proof of unbiasedness
Since bY ðjÞ is the measured value of YðjÞ, according to the definition of YðjÞ and ŷðkÞ
bY ðjÞ ¼ ½ŷ½1�ðjÞ; ŷ½2�ðjÞ; . . . ; ŷ½M�ðjÞ�

¼ ½y½1�ðjÞ þ m½1�m ðjÞ; y½2�ðjÞ þ m½2�m ðjÞ; . . . ; y½M�ðjÞ þ m½M�m ðjÞ�
¼ YðjÞ þ VðjÞ;
where VðjÞ ¼ ½m½1�m ðjÞ; m½2�m ðjÞ; . . . ; m½M�m ðjÞ�. Since m½i�mðjÞ; i ¼ 1;2; . . . ;M, comes from different groups of tests, it is reasonable to
assume that each one of them is independent from others,
EfcW ojg ¼ E bY ðj� 1ÞXTðXXTÞ�1
n o

¼ E bY ðj� 1Þ
n o

XTðXXTÞ�1

¼ E Yðj� 1Þ þ Vðj� 1Þf gXTðXXTÞ�1

¼ Yðj� 1ÞXTðXXTÞ�1 þ EfVðj� 1ÞgXTðXXTÞ�1
:

As EfVðjÞg ¼ 0 ðj ¼ 0;1; . . . ;nÞ, we have
EfcW ojg ¼ Yðj� 1ÞXTðXXTÞ�1

¼Woj ¼ CAj�1
:

Therefore, we can conclude
EfcW og ¼Wo:
The unbiasedness is proven.
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(ii) The proof of consistency
According to the translational invariance of variance, we can obtain
VarfcW ojg ¼ VarfVðj� 1ÞXTðXXTÞ�1g:
As VðjÞ; j ¼ 0;1; . . . ;n, are independent and identically distributed, we can let VðjÞ ¼ V . Define
D ¼ VXTðXXTÞ�1
:

Let di be the ith row of D and v i be the ith row of V. So we have
di ¼ v iX
TðXXTÞ�1

:

According to the assumption of V, we have
Efdig ¼ 0:
So the variance of di is
Var dif g ¼ E dT
i di

n o
¼ E ðXXTÞ�1

X � vT
i v i � XTðXXTÞ�1

n o
¼ ðXXTÞ�1

X � EfvT
i v ig � XTðXXTÞ�1

:

ð15Þ
According to the definition of v i and V, we can obtain
EfvT
i v ig ¼ r2IM: ð16Þ
Substituting (16) into (15), Varfdig can be written as
Varfdig ¼ r2ðXXTÞ�1
:

According to [13], as M !1, we have
ðXXTÞ�1 ! 0:
So we can obtain
Varfdig ! 0; as M !1:
Then we have
VarfcW ojg ¼ VarfDg ! 0; as M !1:
This means that, cW oj is a consistent estimate of Woj. Furthermore, dWo is also the consistent estimate of Wo.
Combining ðiÞ and ðiiÞ, the proof is completed. h
Corollary 4. Assume that the system contains noise
yðkÞ ¼ CxðkÞ þ msðkÞ;
where msðkÞ 2 Rp is system noise, and satisfies a normal distribution with expected value 0 and standard deviation r, i.e.,
msðkÞ � N ð0;r2Þ. According to Theorem 2, the estimate of Wo is given by,
cW o ¼ ½cW o1;cW o2; . . . ;cW on�;cW oj ¼ Yðj� 1ÞXTðXXTÞ�1
; j ¼ 1;2; . . . ;n;
where YðjÞ 2 Rp�M is the measured output of the system with noise. Then, cW o is an unbiased and consistent estimate of Wo.
Proof. Under the conditions of this corollary, it is equivalent to Corollary 3. The proof is omitted. h
5. Precision Analysis

As mentioned previously, our method does not identify system matrices. So the corresponding identification errors of
A;B; C and D will not present in the result. Taking the controllability for example, assume that the estimates of A and B in
traditional methods are
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eA ¼ Aþ DA;eB ¼ Bþ DB:
By the above formula, the estimate of Wc can be obtained as
fW c ¼ ½eB; eAeB; . . . ; eAn�1eB�
¼ ½fW c1;fW c2; . . . ;fW cn�:
So we have
DfW c ¼ fW c �Wc:
For the ith block of fW c , we have
fW ci ¼ eAi�1eB
¼ ðAþ DAÞi�1ðBþ DBÞ
¼ ðAi�1 þ C1

i�1Ai�1DAþ � � �
þ ðDAÞi�1ÞðBþ DBÞ:
where Cj
n is binomial coefficient. Ignore the high order terms of errors, then we have
fW ci 	 ðAi�1 þ ði� 1ÞAi�1DAÞðBþ DBÞ
¼ Ai�1Bþ ði� 1ÞAi�1DABþ Ai�1DB

þ ði� 1ÞAi�1DADB

	 Ai�1Bþ ði� 1ÞAi�1DABþ Ai�1DB:
Let DfW ci ¼ fW ci �Wci, and we can get
DfW ci ¼ fW ci �Wci

	 ði� 1ÞAi�1DABþ Ai�1DB:
It can be seen from the above result that DfW ci will grow exponentially with the index i increasing. Therefore, we can con-
clude that the estimation error kDfW ck in traditional methods grows exponentially with the dimension of state space n. The
criteria of controllability in traditional methods may be infeasible in the high dimension space.

To overcome this difficulty, the data-based method is proposed, which can keep the estimation error growing linearly.
The estimate of Wc can be obtained with the Theorem 1 and its corollaries,
cW c ¼ ½cW c1;cW c2; . . . ;cW cn�:
For each cW ci; i ¼ 1; . . . ;n, its error matrix is
DcW ci ¼ cW ci �Wci:
The estimation error of Wc is
kDcW ck ¼ kcW c �Wck

6

Xn

i¼1

kDcW cik

6 nD̂:
where D̂ ¼ maxfkDcW c1k; kDcW c2k; . . . ; kDcW cnkg. Therefore, we can conclude that the upper bound of estimation error kDcW ck
is linear growth with the dimension of state space n.

6. Simulation Study

In this section, two examples of systems containing measurement noise and system noise respectively are provided. The
estimation errors with traditional methods and data-based method are illustrated in the simulation results.

6.1. Discrete-Time Linear Systems with Measurement Noise

Assume that the measured data contains measurement noise
x̂ðkÞ ¼ xðkÞ þxmðkÞ;
ŷðkÞ ¼ yðkÞ þ mmðkÞ;

�
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where xmðkÞ � Nð0;rm1InÞ and mmðkÞ � Nð0;rm2IpÞ. In this example, we set rm ¼ rm1 ¼ rm2. The system equation is defined
by (1).The elements of A;B; C take random values within the interval ½�1;1� and D ¼ 0.

For controllability analysis, let the dimension of state space and input space be n ¼ 3 and m ¼ 2, respectively. Besides, the
standard deviation of measurement noise is rm ¼ 0:05. Let the number of the measured data N vary from 101 to 5000, the
estimation errors of Wc with traditional methods and data-based method are shown in Fig. 1(a). Then, let n vary from 3 to 6,
while setting N ¼ 1000 and keeping other parameters unchanged. The change of estimation errors is shown in Fig. 1(b). Let-
ting m vary from 2 to 5 with N ¼ 1000 and other parameters unchanged, the change of estimation errors is shown in Fig. 1(c).
Letting rm vary in ½0:01;0:02;0:035;0:05;0:07;0:1� with N ¼ 1000 and other parameters unchanged, the change of estima-
tion errors is shown in Fig. 1(d).

For observability analysis, let the dimension of state space, input space and output space be n ¼ 4;m ¼ 3 and p ¼ 3,
respectively. Besides, the standard deviation of measurement noise is rm ¼ 0:05. Letting the number of the measured data
N vary from 101 to 5000, the estimation errors of Wo with traditional methods and data-based method are shown in Fig. 2(a).
Then, letting n vary from 4 to 7 with N ¼ 1000 and other parameters unchanged, the change of estimation errors is shown in
Fig. 2(b). Letting p vary from 3 to 6 with N ¼ 1000 and other parameters unchanged, the change of estimation errors is shown
in Fig. 2(c). Let rm vary in ½0:01;0:02;0:035;0:05;0:07;0:1�, while setting N ¼ 1000 and keeping other parameters unchanged.
The change of estimation errors is shown in Fig. 2(d).

Under the condition that measured data contains measurement noise, error convergence rate of the data-based method is
faster than traditional methods as shown in Fig. 1(a) and Fig. 2(a). At the same time, these two figures also confirm the consis-
tency of the data-based method. Estimation error of traditional methods increases exponentially with the dimension of the
state space, while the error of data-based method increases linearly as shown in Fig. 1(b) and Fig. 2(b). This advantage can
be seen more clearly in high-dimensional space. It is shown in Fig. 1(c)–(d) that the dimension of input space m and the variance
of measurement noise r2 influence the estimation errors of these two methods linearly. Nevertheless, the error of the data-
based method is less and has a lower increasing rate than traditional methods. Similar results are shown in Fig. 2(c)–(d).
6.2. Discrete-Time Linear Systems with System Noise

Consider the following system:
Fig. 1.
errors w
xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ þxsðkÞ;
yðkÞ ¼ CxðkÞ þ DuðkÞ þ msðkÞ;

�

where the elements of A;B;C take random value within the interval ½�1;1� and D ¼ 0;xsðkÞ � Nð0;rs1InÞ and
msðkÞ � Nð0;rs2IpÞ. In this example, we set rs ¼ rs1 ¼ rs2.
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Fig. 2. Estimation errors of observability with measurement noise. (a) The change of estimation errors with respect to N. (b) The change of estimation errors
with respect to n. (c) The change of estimation errors with respect to p. (d) The change of estimation errors with respect to rm.
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For controllability analysis, let the dimension of state space and input space be n ¼ 4 and m ¼ 3, respectively. Besides, the
standard deviation of measurement noise is rm ¼ 0:05. Let the number of the measured data N vary from 101 to 5000, and
we can obtain estimation error of Wc with traditional methods and data-based method shown in Fig. 3(a). Then, letting n
vary from 4 to 7 with N ¼ 1000 and other parameters unchanged, the change of estimation errors is shown in Fig. 3(b). Let-
ting m vary from 3 to 6 with N ¼ 1000 and other parameters unchanged, the change of estimation errors is shown in Fig. 3(c).
Letting rs vary in ½0:01;0:02; 0:035;0:05;0:07;0:1�with N ¼ 1000 and other parameters unchanged, the change of estimation
errors is shown in Fig. 3(d).

For observability analysis, let the dimension of state space, input space and output space be n ¼ 4;m ¼ 3 and p ¼ 4,
respectively. Besides, the standard deviation of measurement noise is rm ¼ 0:05. Let the number of the measured data N vary
from 101 to 5000, and we can obtain the estimation error of Wo with traditional methods and data-based method shown in
Fig. 4(a). Then, letting n vary from 4 to 7 with N ¼ 1000 and other parameters unchanged, the change of estimation errors is
shown in Fig. 4(b). Letting p vary from 4 to 7 with N ¼ 1000 and other parameters unchanged, the change of estimation error
is shown in Fig. 4(c). Letting rs vary in ½0:01;0:02;0:035;0:05;0:07;0:1� with N ¼ 1000 and other parameters unchanged, the
change of estimation errors is shown in Fig. 4(d).

Under the condition that the system contains system noise, error convergence rate of the data-based method is also faster
than traditional methods as shown in Fig. 3(a) and Fig. 4(a). These two figures also confirm the consistency of the data-based
method. Under this condition, estimation error of these two methods increases exponentially with the dimensions of the
state space n as shown in Fig. 3(b) and Fig. 4(b). Nevertheless, the data-based method has much less error than traditional
methods, especially in high-dimensional state space. It is shown in Fig. 3(c)–(d) that the dimension of input m and the var-
iance of system noise r2 influence the estimation errors of these two methods linearly. However, the error of the data-based
method is less and has a increasing lower rate than traditional methods. Similar results are shown in Fig. 4(c)–(d).
7. Conclusions

In this paper, we developed a data-based method with general data to analyze the controllability and the observability of
discrete-time linear systems in noisy environment. This method uses the measured input and output data to estimate the
controllability matrix and observability matrix directly for analyzing the corresponding properties. Compared with tradi-
tional methods, we have shown that the developed method possesses has a higher precision. Furthermore, compared with
the method of [26], it eases the requirements on input/output data and can analyze the controllability and the observability
effectively in noisy environment. We hope that this method can be used to analyze nonlinear systems in the future and
inspire new data-based methods for control systems.
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