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Abstract: It remains a mystery as to how neurons are connected and thereby enable use to think,
and volume reconstruction from series of microscopy sections of brains is a vital technique in
determining this connectivity. Image registration is a key component; the aim of image registration
is to estimate the deformation field between two images. Current methods choose to directly
regress the deformation field; however, this task is very challenging. It is common to trade
off computational complexity with precision when designing complex models for deformation
field estimation. This approach is very inefficient, leading to a long inference time. In this
paper, we suggest that complex models are not necessary and solve this dilemma by proposing
a dual-network architecture. We divide the deformation field prediction problem into two relatively
simple subproblems and solve each of them on one branch of the proposed dual network. The two
subproblems have completely opposite properties, and we fully utilize these properties to simplify
the design of the dual network. These simple architectures enable high-speed image registration.
The two branches are able to work together and make up for each other’s drawbacks, and no loss of
accuracy occurs even when simple architectures are involved. Furthermore, we introduce a series of
loss functions to enable the joint training of the two networks in an unsupervised manner without
introducing costly manual annotations. The experimental results reveal that our method outperforms
state-of-the-art methods in fly brain electron microscopy image registration tasks, and further ablation
studies enable us to obtain a comprehensive understanding of each component of our network.

Keywords: computer vision; image processing; deep learning; image registration; electron
microscopy image; dual network architecture; unsupervised learning

1. Introduction

Image registration is a long-standing problem in computer vision and medical image processing.
The aim of image registration is to estimate the deformation field between two images and warp
source images to reference images according to the estimated deformation field. This task has wide
applicability in neuroscience. To obtain a comprehensive understanding of the circuitry mechanisms
underlying brain neuron structures, mechanically cut sections are imaged by electron microscopy.
Due to the large deformation and artefacts introduced in the data acquisition step, a registration
method that can recover the connectivity among neurons is of great importance.

Current learning-based methods generally directly regress the deformation field from two coarsely
aligned images. Coarse alignment is usually conducted by off-the-shield software, and high alignment

Brain Sci. 2020, 10, 86; doi:10.3390/brainsci10020086 www.mdpi.com/journal/brainsci

http://www.mdpi.com/journal/brainsci
http://www.mdpi.com
https://orcid.org/0000-0003-1450-6902
http://www.mdpi.com/2076-3425/10/2/86?type=check_update&version=1
http://dx.doi.org/10.3390/brainsci10020086
http://www.mdpi.com/journal/brainsci


Brain Sci. 2020, 10, 86 2 of 14

quality is not guaranteed. The whole process is not end to end and cannot fully exploit the advantages
of deep learning. Most methods pursue the high-precision prediction of the deformation field at
the expense of computational complexity. Many well-designed modules are progressively added to
the networks, causing a decrease in inference speed.

In this work, we suggest that a complex architecture is not necessary, and we simply need to
reformulate the original problem. We split the problem into two parts: estimating a linear deformation
and estimating the remaining nonlinear deformation, which can be considered as a residual of
the previous linear deformation.

The linear deformation can be parameterized by an affine transformation. A simple architecture
is sufficient to regress its six parameters. Since linear deformations pay greater attention to the global
transformation of the image, they do not focus on local details. Utilizing this property, we can
use low-resolution inputs to reduce the computational complexity. After the linear deformation
has been estimated, we warp the original images to eliminate this part of the deformation. The
remaining nonlinear deformation is estimated from these linearly warped images. Since a large part of
the deformation represented by the affine transformation has been eliminated, the remaining nonlinear
deformation can be seen as small variations of fine details; such deformation focuses on local structures,
no high-level semantic information is involved, and a shallow neural network is sufficient.

To summarize, we decompose the original problem to reduce the difficulty in solving it. The two
subproblems have completely opposite properties, and we utilize these properties to simplify
the design of the corresponding estimation branches of the overall network, resulting in a simple
architecture. The two branches are combined in a dual manner and make up for each other’s drawbacks.
The resulting dual-network architecture is able to perform image registration with high precision and
high speed.

Furthermore, to eliminate the cost of manual annotation, we propose a training scheme for
unsupervised image registration. No knowledge of ground truth is needed, and the registration quality
is totally regularized by our specially designed losses.

The experimental results reveal that our method outperforms state-of-the-art methods in the fly
brain electron microscopy image registration task, and further ablation studies enable us to obtain a
comprehensive understanding of each component of our network.

2. Related Work

In recent years, an increasing number of biological brain volumes have been reconstructed from
serial-section electron microscopy images, e.g., the adult Drosophila melanogaster brain [1], the larval
zebrafish brain [2], the mouse neocortex [3], and layer 4 of the mouse barrel cortex [4]. Due to severe
deformation introduced by the data acquisition process, image registration is a key component for
eliminating deformation among serial sections and recovering the continuity of the whole brain.
Several mature image registration algorithms have been proposed and made public.

2.1. Traditional Registration Methods

All traditional registration methods calculate a parameterized deformation field based on
the matches of sparse features such as SIFT [5], SURF [6] and BRISK [7]. LeastSquare [8] performs
registration based on SIFT [5] correspondences extracted from adjacent sections, and a least square
problem is optimized to obtain the final registration results. BUnwarpJ [9] utilizes a nonlinear spatial
transformation in the form of cubic B-splines for registration based on coarse registration results (e.g.,
the result of LeastSquare). CW_R_color [10] aligns neighboring section image pairs via area-based
matching and a modified feature extraction method. The elastic method [11] models image registration
as a spring-connected particle system, where every pair of correspondences is connected by zero-length
springs; releasing all the springs would lead to a nonlinear registration. All these methods are based on
iterative optimizations, and it is difficult for them to achieve the efficiency of learning-based methods.
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Their accuracy is largely affected by the quality of the feature matching; however, these hand-crafted
descriptors fail to extract reliable correspondences from complex electron microscopy images.

2.2. Learning-Based Methods

With the development of deep learning, deep learning-based methods have gradually been
proposed in recent years. As a common way to estimate the deformation field, well-developed optical
flow prediction networks [12,13] have been incorporated for image registration. Another technique is
to introduce the brilliant ideas from traditional methods to deep learning such as in [14]. ssEMnet [15]
proposed an end-to-end architecture by aligning feature maps extracted from input image pairs, and
the feature maps are obtained from a pretrained autoencoder. Mitchell et al. [16] leveraged a Siamese
CNN for feature maps and aligned the feature maps in a coarse-to-fine manner. Since deformation
field regression is a challenging task, to guarantee satisfactory accuracy, complex stacked architectures
are utilized, which greatly decrease the prediction speed.

3. Dual Network Architecture

3.1. Motivation

Our aim is to estimate the high-precision deformation field in minimal time. This task is not
trivial since common practices trade off time for accuracy. To this end, we adopt a divide-and-conquer
scheme to split a difficult deformation field estimation problem into two relatively simple subproblems.
In this way, these two subproblems can be solved by neural networks with simple architectures.

We divide the original deformation into a linear part and a nonlinear part. Although common
deformations are nonlinear, we can still extract a linear part therein, and the remaining nonlinear
deformation can be treated as a residual. In practice, linear deformations (especially rigid deformations)
are in the majority because sections are placed in various poses; this situation is inevitable but will
not destroy the morphology of the brains. On the other hand, nonlinear deformation is often caused
by sectioning and ruins the original brain structures, causing issues in subsequent analyses. With
the development of various techniques, many precautions are being taken to largely avoid this type of
artefact. Therefore, instead of directly regressing the deformation field from image pairs, we design a
dual-network architecture whose two branches—LinearNet and NonlinearNet—are aimed at handling
the linear deformation and the remaining nonlinear deformation, respectively. The combination of
the estimated linear deformation and remaining nonlinear deformation forms the final deformation.
Our workflow first estimates the linear deformation and then uses the estimated linear deformation
to warp the source images to eliminate the majority of the deformation; consequently, the remaining
nonlinear deformation is estimated as a residual.

Before utilizing the different characteristics of the linear deformation and nonlinear deformation,
we summarize their properties in the following.

Properties of linear deformations:

• A linear deformation can be parameterized as a rigid transformation, similarity transformation,
affine transformation etc. A small quantity of parameters need to be estimated, and the regression
process is relatively simple.

• A linear deformation focuses on the global transformation of the whole image and is less focused
on spatial variations of local details.

• A linear deformation pays more attention to high-level semantic features, which plays an
important part in global transformation regression. Correspondingly, low-level semantic
information becomes less important, and we can avoid unnecessary computations in this part.

Properties of nonlinear deformations:

• Although some methods choose to parameterize a nonlinear deformation as thin-plate splines
or B-splines to simplify the calculation, these forms can only cover finite types of nonlinear
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deformations. One flexible method is representing a deformation as a field; however, extra
regularization terms, such as smoothness penalties, are needed, and this approach has difficulties
regressing large deformations.

• A nonlinear deformation is not inclined to have global consistency. Every pixelwise spatial
variation can be different; however, in real-world applications, it is usually locally smooth.

• The regression of nonlinear deformations relies more on low-level semantic features, and
high-level semantic information is less useful.

Through analysing the properties of linear and nonlinear deformations, we utilize these properties
to guide the design of our dual-network architecture. The design principles of LinearNet and
NonlinearNet, which fully explore the respective properties of two deformations, are summarized
as follows.

Design principles of LinearNet:

• LinearNet is designed to have a simple architecture, i.e., an encoder with sequential
standard convolutional layers to regress a six-dimensional vector as the parameters of an
affine transformation.

• Only the high-level semantic features will be leveraged to regress the final parameters, and
low-level semantic features are merely used to generate high-level semantic features.

• The inputs of the network are resized to low resolution. Since a linear deformation focuses on a
global transformation, high resolution is unnecessary.

Design principles of NonlinearNet:

• NonlinearNet is designed to be shallow because nonlinear deformations attach minimal
importance to high-level semantic information.

• Low-level semantic information is reused via skip connections [17].
• High-resolution images are needed; therefore, spatial variations at fine details will be

well distinguished.

Through fully utilizing the respective properties of the two deformations, we are able to simplify
the architectures of LinearNet and NonlinearNet as much as possible. Unnecessary computations are
abandoned, enabling us to increase the inference speed and retain satisfactory registration accuracy
simultaneously. In the following, we will describe the detailed overall pipeline of our dual network.

3.2. Overall Pipeline

The overall pipeline of our dual network is illustrated in Figure 1. The network is composed of
two subnetworks, LinearNet and NonlinearNet, which aim to estimate the linear deformation field Fl
and the nonlinear deformation field Fn, respectively.

The inputs of LinearNet are the low-resolution concatenated source and target images (Ik
s , Ik

t ),
where k refers to the 1

k resolution of the original images. LinearNet computes the linear deformation
field Fl , parameterized by six parameters of an affine transformation, and warp the source image
according to Fl , resulting in a warped source image İs = W(Is; Fl), where W denotes a warping function
that can warp the input image according to the input deformation field. The warping process is fully
differentiated and can be implemented as a neural network layer; for detailed information, please refer
to STN [18]. The discrepancy L(It, İs) between It and İs is evaluated as losses to guide the training of
LinearNet. The specific setting of the training losses will be elaborated upon in the next subsection.

Similarly, the inputs of NonlinearNet are high-resolution concatenated previously warped source
and target images ( İs, It). NonlinearNet computes the nonlinear deformation field Fn and warps
a previous warped source image İs according to Fn, resulting in a newly warped source image
Ïs = W(Is; Fn). The discrepancy L(It, Ïs) between It and Ïs is evaluated as losses to guide the training
of NonlinearNet.
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Figure 1. An illustration of our proposed dual network architecture, its aim is to register source
image to reference image. Our network includes two parts: LinearNet and NonlinearNet, which
respectively regress the linear deformation field Fl and the nonlinear deformation field Fn between
reference image and source image. LinearNet regresses the linear deformation field Fl between original
image pairs. Linear deformation field Fl is then used to eliminated linear deformation within source
image by warping, resulting in the warped source image. The warped source image is concatenated
with reference image as inputs for NonlinearNet to regress remaining nonlinear deformation field Fn.
Consequently, the nonlinear deformation field Fn is used to warp previously warped source image
to get final registered image. The difference between reference image and warped source image, and
the difference between reference image and warped source image are all measured as training losses.

3.3. Loss

In this section, we report the components of our training loss function. No ground truth is
involved throughout the process. Instead of coming from labeled data, the supervisory signal is
obtained by minimizing the difference between registered image pairs.

Image Intensity Error. A straightforward metric used to evaluate the registration quality is to
measure the image intensity difference between registered image pairs. Here, the registered image
pairs from two stages are evaluated. This image intensity error is

LI = ‖It − İs‖1 + ‖It − Ïs‖1 (1)

Image structural similarity. Since the image intensity error is only a pixelwise metric, it does not
consider the similarity between the structures. To emphasize the alignments of neuron structures, we
introduce SSIM [19] to measure the structural similarity of registered image pairs.

LSSIM =
1− SSIM(It, İs)

2
+

1− SSIM(It, Ïs)

2
(2)

Since the value of the SSIM metric is between -1 and 1 and since a higher SSIM value is equivalent
to a lower discrepancy between two input images, a linear conversion is used. The detailed formulation
of the SSIM will be described in Section 4.2.
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The constraint for linear deformation estimation. Since the affine transformation involves
scaling the images, at the beginning of the training, the randomly initialized LinearNet may generate
an impractical affine transformation, which will degrade the subsequent optimization. We add an
extra constraint to avoid this situation. We require the estimated affine transformation to be close to
an identity transformation; in other words, every value of the corresponding linear deformation field
must be near zero:

Llc = ‖Fl‖1 (3)

The constraint for nonlinear deformation estimation. Since our nonlinear deformation is
formulated as a field, a fine regularization needs to be adopted to avoid excessive randomness
in the estimated field. A common practice is to add a smoothness loss, as described below.

Lnc = ‖∇Fn‖1 + ‖∇2Fn‖1 (4)

where ∇ and ∇2 are the first-order and second-order differential operators of matrices. Here,
the first-order and second-order smoothness losses are used.

Total Loss. The total loss for training the dual network is the combination of the above three losses:

Ltotal = λ1LI + λ2LSSIM + λ3Llc + λ4Lnc (5)

3.4. Implementation Details

We report the detailed settings of the network architectures and training schemes in
this subsection.

LinearNet. The input resolution of LinearNet is set to 1/2 of the original resolution (256× 256).
The output represents the linear deformation, which is parameterized in the form of an affine
transformation (six parameters need to be estimated). LinearNet has an encoder architecture, where
multiple convolutional layers with a stride of 2 are used to gradually extract high-level semantic
information, and a global average pooling layer (GAP) is adopted to obtain the final six-dimensional
vector. The detailed network settings are shown in Table 1. To avoid the situation where a bad
initialization will cause LinearNet to output an impractical affine transformation, we multiply
the vector with 0.01 and then add it to a vector reshaped from an identity transformation. In this
way, LinearNet is inclined to output an identity transformation at the beginning of training. To make
the network able to output negative values, rectified linear units (ReLUs) [20] are used as the activation
function only in the first several layers.

Table 1. LinearNet architecture.Here k is the kernel size, s is the stride, chns is the number of output
channels for each layer, res is the input image resolution, and input corresponds to the input of each
layer, conv* denotes convolutional layer.

LinearNet

Layer k s chns res Input Activation

conv1 7 2 64 128× 128 images ReLU
conv2 3 2 256 64× 64 conv1 ReLU
conv3 3 2 512 32× 32 conv2 ReLU
conv4 3 2 512 16× 16 conv3 ReLU
conv5 3 2 512 8× 8 conv4 ReLU
conv6 3 1 256 8× 8 conv5 -
conv7 3 1 64 8× 8 conv6 -
conv8 3 1 6 8× 8 conv7 -
GAP 8 1 6 8× 8 conv8 -

NonlinearNet. The goal of NonlinearNet is to estimate the remaining nonlinear deformation after
the linear deformation has been eliminated by LinearNet. Some methods tend to model a nonlinear
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deformation by thin-plate splines or B-splines; however, these representations can only cover a part of
the nonlinear deformation, and most nonlinear deformations cannot be parameterized. In this work,
we represent the nonlinear deformation as a field; at this time, it is easy to optimize since, in practice,
a large proportion of common deformations is a linear deformation.

The input resolution of NonlinearNet is equal to the original resolution (512× 512). The output
is a two-channel matrix with the same resolution as the input images. NonlinearNet has a shallow
encoder-decoder architecture, where multiple convolutional layers and upsampling layers are used
to regress the final deformation field. The detailed network settings are shown in Table 2. To ensure
that the network is able to generate negative values, LeakyReLU [21] is used as the activation function.
To constrain the range of the estimated field to be reasonable, the output of the last layer is activated by
the tanh function and multiplied by 0.1 to constrain the value to the range of−0.1 to 0.1. Note that batch
normalization (BN) [22] is important for nonlinear deformation regression, and we experimentally
found that the introduction of BN will largely accelerate the training process and facilitate convergence.

Table 2. NonlinearNet architecture. Here k is the kernel size, s is the stride, chns is the number of
output channels for each layer, res is the input image resolution, and input corresponds to the input
of each layer where ↑ is a 2× nearest-neighbor upsampling of the layer, conv* denotes convolutional
layer, deconv* denotes transpose convolutional layer.

NonlinearNet

Layer k s chns res Input Activation

conv1 7 2 64 512× 512 images BN+LeakyReLU
conv2 3 2 128 256× 256 conv1 BN+LeakyReLU
conv3 3 2 256 128× 128 conv2 BN+LeakyReLU
conv4 3 2 512 64× 64 conv3 BN+LeakyReLU
conv5 3 1 256 64× 64 ↑conv4+conv3 BN+LeakyReLU
conv6 3 1 128 128× 128 ↑conv5+conv2 BN+LeakyReLU
conv7 3 1 64 256× 256 ↑conv6+conv1 BN+LeakyReLU
conv8 3 1 2 512× 512 ↑conv7 Tanh

Training settings. Our models are implemented on PyTorch [23] and trained for 20 epochs
using the Adam [24] optimizer, with a batch size of 2, on 1 Titan Xp GPU. The learning rate is set
to 0.001 and halved twice at the 10th epoch. The weights in the total loss (Equation (5)) are set as
λ1 = 0.15, λ2 = 0.85, λ3 = 1, λ4 = 0.1.

4. Experiments

4.1. Data

The dataset we use for the evaluation is named CREMI and consists of 5 um3 volumes of serial
section EM of the adult fly brain. The dataset contains 125 section images with an image resolution of
1250× 1250 pixels. It has been manually annotated and registered, and it can be treated as ground
truth. Following standard practice as described in [15,25], a random deformation is applied to each
image and its label to mimic real-world data in the form of an affine transformation along with a thin
plate spline transformation. The affine transformation is controlled by random vectors, and the thin
plate spline deformation is controlled by random vectors on random positions, where the random
vectors are sampled from a normal distribution with zero mean and the random positions are uniformly
distributed over the image grid. This process expands the original dataset to 1240 image pairs, and then,
we use a 0.8/0.1/0.1 split for for training, validation and testing, respectively.

4.2. Performance Metrics

SSIM. As a metric to evaluate the similarity between two images, the SSIM can be used as not
only a training loss function but also a testing measurement. This measures similarity in three aspects:
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illuminance, contrast and structure. We adopt this metric to measure the similarity between registered
image pairs, as shown in Table 3.

SSIM(I1, I2) =
2u1u2 + C1

u2
1 + u2

2 + C1
· 2σ1σ2 + C2

σ2
1 + σ2

2 + C2
· σ12 + C3

σ1σ2 + C3
(6)

where ui refers to the mean intensity of the i-th image, σi refers to the unbiased standard deviation of
the i-th image, σij refers to the correlation coefficient between the i-th image and the j-th image, and C1,
C2, and C3 are three small constants used to avoid infinite values. Here, the mean intensity, unbiased
standard deviation and similarity between normalized images (i.e., correlation coefficient) are used
to represent the illuminance, image contrast and structural similarity, respectively. It is a common
practice to divide the original images into patches and evaluate the SSIM over each patch. A smaller
patch size will lead to finer measurements. The patch size is often set to 3× 3, which is also used in
our work.

Table 3. Quantitative results comparison on fly brain image data.

Method SSIM Dice Time (s)

Elastic Method [11] 0.587 0.764 1.654
LeastSquare [8] 0.591 0.710 3.019
BUnwarpJ [9] 0.606 0.652 2.259

CW_R_color [10] 0.646 - 2.395
Pairwise [26] 0.464 0.575 2.225
ssEMnet [15] 0.688 0.782 0.733

DualNet 0.758 0.812 0.104

Dice. As a standard medical image registration quality metric, Dice is widely used. Since neurons
in the CREMI dataset have been annotated, we can adopt the dice metric to evaluate the registration
quality. Specifically, we register the electron microscopy images along with their corresponding labeled
images, and then, we evaluate the overlap of neurons between the registered labeled images and
the ground truth. This is mathematically formulated as

Dice(A, B) = 2 ∗ |A ∩ B|
|A|+ |B| (7)

where A and B refer to two neurons in the warped labeled images and ground truth, respectively. As a
common practice, we choose the 50 largest neurons and calculate the average Dice metric.

4.3. Comparison with the State of the Art

Some methods with publicly available codes, including the Elastic Method [11], LeastSquare [8],
BUnwarpJ [9], CW_R_color [10], Pairwise [26] and ssEMnet [15], are used as baselines. Table 3 shows
the comparison between our methods and baseline methods in terms of accuracy and speed. Figure 2
shows a qualitative study between our methods and baseline methods.
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Figure 2. The registration results of baseline methods and our DualNet.

Speed. All the methods’ speeds are evaluated on the same equipment. Our DualNet method
outperforms the other methods by a large margin. Traditional methods fail to catch up with
the speed of deep learning-based methods (ssEMnet and DualNet), which tend to be 3–30-times
faster. For traditional methods, their optimization processes have to run once per input. Their
optimization is usually conducted in an iterative manner, which is time consuming and inefficient. In
contrast, once deep learning-based methods have been trained, their models do not need to go through
the complex optimization process during use.

Compared with the deep learning-based method ssEMnet, our DualNet is 7-times faster.
Unlike DualNet, which uses grayscale images as inputs, ssEMnet is designed to have a substantially
more complex architecture to receive feature maps extracted from original image pairs by a pretrained
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encoder. Its loss function is evaluated at the feature level, which means greater computational burden.
In contrast, our proposed loss function is able to substitute the role of the feature-level comparison
and will not cause excessive computational complexity.

Accuracy. In terms of accuracy, our method outperforms all the state-of-the-art methods. The first
metric, SSIM, is aimed at measuring the continuity between registered image pairs. From this aspect,
our method achieves substantially more continuous results. As shown in Figure 2, most methods fail
to eliminate the deformation between the reference images and the source images. CW_R_color and
ssEMnet remove most of the deformation but fail to obtain clear boundaries, in contrast to our method.

The second metric, Dice, is designed to determine whether the proposed method is able to
restore the connectivity between mechanically cut neurons; this ability is of great significance in
the neuroscience field. Furthermore, unlike the previous SSIM metric, Dice is measured with ground
truth, meaning it is more likely to reveal a method’s capability for real-world applications. From this
perspective, our method is more applicable than the other methods.

4.4. Analysis

Figure 3 shows how LinearNet and NonlinearNet work together to generate the final results.
LinearNet outputs an affine transformation to linearly warp the original source images, resulting
in the images in the third column. At this time, the linear deformation has been largely eliminated,
resulting in linearly warped images becoming good initial estimations for subsequent nonlinear
deformation regression. The nonlinear deformation field estimated by NonlinearNet is visualized in
the fourth column. We can see that the nonlinear deformation field focuses on the local variations of
fine details, which coincides with our original design principles. After two-stage warping, the final
results are very similar to the reference images, as shown in the last column.

Figure 3. An illustration of how DualNet works. (1) reference images. (2) source images. (3) linearly
transformed images. (4) nonlinear deformation filed. (5) final results.

When removing NonlinearNet, it is obvious that the remaining LinearNet is not able to obtain
satisfactory registered images, whereas when removing LinearNet, NonlinearNet will have trouble
regressing the global transformation; when high-level semantic features are needed, the current
simple architecture is not sufficient. However, the proposed divide-and-conquer scheme makes
LinearNet and NonlinearNet excel in their advantages and make up for each other’s drawbacks,
resulting in a simple but efficient architecture to accomplish the complex brain image registration task.
Since the architectures of the two subnetworks are all simple, the overall dual-network architecture is
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also very simple, and it has much fewer learnable parameters than widely used architectures such as
the flownet [12] and flownet2 [13] architectures.

During our experiments, we observed that when the linear deformation estimation fails to obtain
correct results, the subsequent nonlinear deformation estimation usually cannot provide promising
results. Once the linear deformation has been well estimated, the further nonlinear deformation
estimation becomes very easy. Based on this phenomenon, we can conclude that introducing a
linear deformation estimation step will dramatically simplify the remaining nonlinear deformation
estimation, and directly estimating a nonlinear deformation is very difficult.

4.5. Ablation Study

To better understand how different elements influence the overall performance, in Tables 4 and 5,
we perform an ablation study by changing the settings of our model.

Table 4. Ablation study on varying loss combination.

Loss SSIM Dice Time (s)

LI 0.711 0.775 0.101
LI + LSSIM 0.732 0.794 0.103

LI + LSSIM + Llc 0.746 0.805 0.103
LI + LSSIM + Llc + Lnc 0.758 0.812 0.104

Table 5. Ablation study on varying input image resolutions.

LinearNet Nonlinearnet SSIM Dice Time (s)

512× 512 512× 512 0.741 0.797 0.135
256× 256 512× 512 0.758 0.812 0.104
128× 128 512× 512 0.742 0.797 0.082

64× 64 512× 512 0.739 0.785 0.067

512× 512 256× 256 0.711 0.768 0.109
256× 256 256× 256 0.708 0.779 0.081
128× 128 256× 256 0.706 0.759 0.067

64× 64 256× 256 0.695 0.763 0.051

Training Loss. To clarify how much each component of the overall loss contributes to the overall
performance, we try different combinations of losses, as shown in Table 4.

We can see from Table 4 that the SSIM loss is of the greatest importance and contributes to
the largest performance boost. This is because the SSIM metric is a sensitive metric that can distinguish
differences at small details. We experimentally found that when LI decreases to near zero, LSSIM still
has a relatively high value and is still able to guide the training of the dual network. The two constraints
are also indispensable; they provide appropriate regularizations for two types of deformation fields,
preventing the estimation of unreasonable deformation fields. Without these two constraints, the dual
network will require far longer to converge since a random initialization sometimes leads to a bad
starting point for optimization, and it will take a long time for the network to return to a good state.
The introduction of these two terms provides the correct optimization direction regardless of whether
the network is well initialized.

Image resolution. Since in our setting the input image resolution has a large impact on the final
performance, to determine the configuration of th input image resolution that will lead to the best
performance with as short a computation time as possible, we test different combinations of input
image resolutions in LinearNet and NonlinearNet, as illustrated in Table 5.

By comparing the figures in the top half and bottom half of Table 5, we can conclude that reducing
the image resolution of the NonlinearNet inputs will lead to a dramatic decrease in the overall accuracy.
Because the nonlinear deformation is very sensitive to local details, the image resolution becomes
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very important for its regression. Therefore, for NonlinearNet, we should also provide as many
high-resolution inputs as possible.

From the results in the first three rows, we can conclude that the increase in input image
resolution may not necessarily improve the performance of LinearNet. The most appropriate image
resolution for LinearNet is 256× 256, and higher or lower resolutions will all lead to a loss of accuracy.
Since LinearNet has a simple architecture, an excessive image resolution will result in its receptive
field being exceeded; under this circumstance, LinearNet cannot extract all the global information,
and a loss of accuracy is inevitable. Too low of an image resolution will not provide sufficiently clear
structural information, and this phenomenon will be magnified by the downsampling operations of
LinearNet; the overall accuracy will also decrease.

Even though reducing the input image resolution will reduce the time required for prediction,
our network has a simple architecture, it is sufficiently fast, and the difference between different image
resolutions is not substantial; thus, we can choose a relatively high solution — 256× 256.

5. Conclusions

In this work, we aim to solve the image registration problem, which is a key component of volume
reconstruction from brain microscopy sections. In contrast to common methods that design complex
models to regress the deformation between two given images, we suggest that complex models are
unnecessary and propose a dual network with a simple architecture to solve this problem. We divide
the original deformation field estimation problem into two subproblems. The two branches of the dual
network fully utilize the individual properties of these subproblems and solve them in a simple yet
efficient manner. To make our method applicable to real-world scenarios, we propose a series of loss
functions to enable unsupervised learning, and no ground truth is needed during training. Experiments
on fly brain electron microscopy images show that our method achieves the best performance with
the lowest time requirement. Comprehensive ablation studies further verify the effectiveness of our
work. In this work, simple convolution layers are used, some modules which have been proven
extremely computation-efficient, e.g., EfficientNet [27], ShuffleNet [28] and MobileNet [29] can also be
adopted in our architecture, we will focus on efficiency in our future work.
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