
METHODS
published: 07 February 2020

doi: 10.3389/fncom.2020.00007

Frontiers in Computational Neuroscience | www.frontiersin.org 1 February 2020 | Volume 14 | Article 7

Edited by:

Huajin Tang,

Zhejiang University, China

Reviewed by:

Radwa Khalil,

Jacobs University Bremen, Germany

Malu Zhang,

National University of Singapore,

Singapore

*Correspondence:

Yi Zeng

yi.zeng@ia.ac.cn

†These authors have contributed

equally to this work

Received: 10 June 2019

Accepted: 20 January 2020

Published: 07 February 2020

Citation:

Shi M, Zhang T and Zeng Y (2020) A

Curiosity-Based Learning Method for

Spiking Neural Networks.

Front. Comput. Neurosci. 14:7.

doi: 10.3389/fncom.2020.00007

A Curiosity-Based Learning Method
for Spiking Neural Networks

Mengting Shi 1,2†, Tielin Zhang 1† and Yi Zeng 1,2,3,4*†

1 Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China,
2University of Chinese Academy of Sciences, Beijing, China, 3Center for Excellence in Brain Science and Intelligence

Technology, Chinese Academy of Sciences, Shanghai, China, 4National Laboratory of Pattern Recognition, Institute of

Automation, Chinese Academy of Sciences, Beijing, China

Spiking Neural Networks (SNNs) have shown favorable performance recently.

Nonetheless, the time-consuming computation on neuron level and complex

optimization limit their real-time application. Curiosity has shown great performance in

brain learning, which helps biological brains grasp new knowledge efficiently and actively.

Inspired by this leaning mechanism, we propose a curiosity-based SNN (CBSNN)

model, which contains four main learning processes. Firstly, the network is trained with

biologically plausible plasticity principles to get the novelty estimations of all samples in

only one epoch; secondly, the CBSNN begins to repeatedly learn the samples whose

novelty estimations exceed the novelty threshold and dynamically update the novelty

estimations of samples according to the learning results in five epochs; thirdly, in order

to avoid the overfitting of the novel samples and forgetting of the learned samples,

CBSNN retrains all samples in one epoch; finally, step two and step three are periodically

taken until network convergence. Compared with the state-of-the-art Voltage-driven

Plasticity-centric SNN (VPSNN) under standard architecture, our model achieves a higher

accuracy of 98.55%with only 54.95% of its computation cost on theMNIST hand-written

digit recognition dataset. Similar conclusion can also be found out in other datasets,

i.e., Iris, NETtalk, Fashion-MNIST, and CIFAR-10, respectively. More experiments and

analysis further prove that such curiosity-based learning theory is helpful in improving the

efficiency of SNNs. As far as we know, this is the first practical combination of the curiosity

mechanism and SNN, and these improvements will make the realistic application of SNNs

possible on more specific tasks within the von Neumann framework.

Keywords: curiosity, spiking neural network, novelty, STDP, voltage-driven plasticity-centric SNN

1. INTRODUCTION

As neural networks are inspired by the brain at multiple levels and show higher accuracy and
wider adaptability compared with algorithms with fixed parameters, they have become one of
the important methods for the development of artificial intelligence. The deep neural network
(DNN) inspired by the visual cortex has demonstrated its effectiveness in many aspects, such
as: visual tasks (He et al., 2017), audio recognition (Audhkhasi et al., 2017), natural language
processing (Yogatama et al., 2018), reinforcement learning (Pathak et al., 2017) and etc. However,
due to the poor adaptability and interpretability of traditional Artificial Neural Networks (ANNs),
more studies have focused on Spiking Neural Networks (SNNs) whose computational units (e.g.,
Leaky Integrate and Fire Model Gerstner and Kistler, 2002, Hodgkin-Huxley Model, Izhikevich
Model Izhikevich, 2003, and Spike Response Model Gerstner, 2001) and plastic learning methods
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(e.g., Spike-Timing-Dependent Plasticity Dan and Poo, 2004;
Frémaux and Gerstner, 2016 and Hebbian learning Song et al.,
2000) are more similar to that of the human brain, making it
more potential to achieve high levels of cognitive tasks (Maass,
1997; Zenke et al., 2015; Khalil et al., 2017b).

At present, SNNs have been well implemented in some

brain regions modeling and cognitive functions simulation,
like image classification (Zhang et al., 2018b), working memory

maintenance (Zhang et al., 2016), decision-making tasks

(Héricé et al., 2016; Zhao et al., 2018), cortical development
(Khalil et al., 2017a), contingency perception (Pitti et al., 2009)

etc. However, even though the training methods proposed

by Zhang et al. (2018a) and Shrestha and Orchard (2018)
make SNNs performance comparable to ANNs, they are at
the cost of a large amount of time. This is because: (1) the
network has a certain degree of overfitting problem when
fed with a large number of training samples passively; (2)
the SNN’s training itself is difficult which needs to process
sequential spiking signals; (3) until now, the SNNs are
still running on the von Neumann framework instead
of the specific designed neural chips, which makes the
simulation of neurons inefficient, since the information
transformation between CPU and memory usually cost
too much time.

Traditional learning methods typically get representations of
training data from stationary batches, with little regard to the
fact that information becomes incrementally available over time
(Parisi et al., 2019). A system with brain-inspired intelligence
should be composed of inputs, outputs, and plastic components
that change in response to experiences in an environment,
and autonomously discover novel adaptive algorithms
(Soltoggio et al., 2018).

While the curiosity-based learning system in the brain
helps us to grasp new knowledge efficiently and actively.
From the microscopic point of view, as shown in Figure 1,

FIGURE 1 | Pathways in the brain that respond to curiosity.

the continuity of cognitive process in the brain sometimes
may be interrupted by some specific unfamiliar or uncertain
stimulus, which are mostly from the response of mesolimbic
pathway. This pathway is reward pathway (Dreyer, 2010),
which connects the ventral tegmental area in the midbrain,
to the ventral striatum of the basal ganglia in the forebrain
(Ikemoto, 2010) and starts to releases neurotransmitters when
facing unfamiliar information, like dopamine, serotonin, and
opioid which could regulate characteristics associated with
curiosity, like:

Memory: The novelty of stimuli can be considered as the
result of continual comparison between the current state and
previous experiences, which will cover the brain regions related
to long-term and short-term memory, e.g., the hippocampus
and parahippocampus gyrus. After the comparison, individuals
can give a corresponding level of novelty for specific stimuli
(Sahay et al., 2011).
Attention and Learning: With the limitation of energy and
efficiency of the biological system, attention plays a vital role
in focusing on the stimuli most important or relevant. Some
patients with a degenerative disease, for example, Alzheimer’s
disease, show bad performance on identifying novel stimuli,
during which cells in some brain regions, like hippocampus,
don’t run well and thus prevent the communication with
assessing or rewarding process. Attention is a continuous and
gradual learning process during which striatum and precuneus
get involved in influencing levels of curiosity in terms of novelty
(Zola et al., 2011).
Motivation: Curiosity has been described as a desire for
learning and knowledge, especially what is unknown (Kang
et al., 2009). The idea that dopamine modulates novelty seeking
is supported by evidence that novel stimuli excite dopamine
neurons and activate brain regions receiving dopaminergic
input. In an fMRI study, activation in ventral striatum encoded
both standard reward prediction errors and enhanced reward
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prediction errors during novelty driven exploration (Costa et al.,
2014).

Curiosity-based exploration behaviors depend on the estimation
of difficulty or novelty of tasks, which are related to one previous
learning situation andwould update gradually (Faraji et al., 2018).
An intuitive paradigm that may enlighten us is designed in
Baranes et al. (2014), during which the subjects are allowed to
choose games with different levels to get high score freely. After
mastering simple skills, people are more likely to repeat hard
or novel games frequently instead of spending time on overly
comfortable or familiar experiments. This result shows that the
difficulty and novelty of tasks have a significant impact on the
motivation of exploration.

In this paper, we propose a curiosity-based SNN (CBSNN),
and the learning process of this model includes four steps:

Step (1): Before the predefined starting time, the CBSNN is
trained with a traditional method to get the novelty
estimations of all samples in only one epoch;

Step (2): Once the current iteration time is over the starting
time, the CBSNNbegins to repeatedly learn the samples
whose novelty estimations exceed the novelty threshold
and dynamically update the novelty estimations of
samples according to the learning results within the
retrain interval (we use five epochs later);

Step (3): When the duration of step (2) reaches the retrain
interval, the CBSNN retrains all samples once (one
epoch) in order to avoid the overfitting of the novel
samples and forgetting of the learned samples.

Step (4): The model repeats step (2) and (3) until the
algorithm converges.

The MNIST hand-written digit recognition dataset is used to
verify the performance of our proposed model. Through a series
of experiments, we analyze how the proposed method affects the
computation efficiency and learning accuracy of the traditional
SNN. By comparing with the state-of-the-art Voltage-driven
Plasticity-centric SNN (VPSNN) (Zhang et al., 2018a) under
standard architecture, our model achieves higher accuracy of
98.55% with only 54.95% of its computation resources.

2. RELATED WORKS

Several curiosity-related works have been proposed in different
research areas, which include but are not limited to active
learning, curriculum learning, sample selection strategies, and
reinforcement learning.

Active learning is good at select discriminating samples
dynamically from large training data sets and training the model
efficiently (Zhou et al., 2017). It pays more attention to some
informative and representative data to overcome the labeling
bottleneck (Konyushkova et al., 2017). However, the curiosity-
based learning strategy dynamically evaluates the difficulty or
novelty of the sample and makes a selection based on the current
learning situation of the network. The quality of learning results

not only depends on the representativeness of the sample itself,
but also is more related to the specific learning process.

Bengio et al. (2009) proposed curriculum learning to imitate
the characteristics of human learning process, and let the model
learn from simple to difficult in multiple stages (Ugur et al.,
2007; Chernova and Veloso, 2009). It defines the difficulty
level of sample before training, and gives the initial weight
distribution. However, in curiosity-based learning process, we
tend to predefine an evaluation function, which could be many
forms, and let the model adjust dynamically.

Cheng et al. (2018) proposed an active sample selection
strategy that reaches state-of-the-art accuracy on visual
models ResNet-50, DenseNet-121, and MobileNet-V1,
which has a lower computation cost compared with
previous networks.

Besides, Schmidhuber (1991a,b) used adaptive “world model”
to implement neural controllers and reinforcement learning.
The system is “curious” in the sense that it described how the
particular algorithm may be augmented by dynamic curiosity
and boredom in a natural manner. Pathak et al. (2017)
introduced a curiosity assessment module which represents the
difference between predicted situation and real situation as an
intrinsic reward signal to make agents complete games quicker
than just using external reward. Savinov et al. (2019) further
uses this strategy to pay more attention to those remarkable
situations in order to speed up the completion of tasks by
agents and avoid the model falling into local optimum to
a certain extent. Inspired by the infants’ ability to generate
novel structured behaviors in unstructured environments that
lack clear extrinsic reward signals, Haber et al. (2018)
mathematically modeled this mechanism using a neural network
that implements curiosity-driven intrinsic motivation to create a
self-supervised agent.

However, most of current studies only discuss the possibility
of application and performance improvement of curiosity-based
learning mechanism under the traditional ANNs’ framework. In
this paper, we try to combine this brain-inspired curiosity-based
learning mechanism with more biologically plausible SNN to
improve its current problems in computation efficiency under
the traditional computing system, so that it can be applied more
widely in the future.

3. METHODS

In this section, we will introduce the network architecture
(including neuron model and network structure) and the
learning process of CBSNN in detail.

3.1. The Architecture of CBSNN
The network should be designed with different neuron model,
synapse model, network structure or learning method in order
to solve different tasks. Diehl and Cook (2015) designed a
simple two-layered SNN to achieve MNIST (LeCun, 1998)
classification. Zhang et al. (2016) had a recurrent part to store
memory and eliminate noise. To have a better performance on
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FIGURE 2 | The neuron model and SNN architecture. (A) The simulation of a basic LIF neuron. When current I(t) inputs to the neuron, the membrane potential V (t)

gradually begins to accumulate and the conductance gE begins to increase. Once the membrane potential reaches the firing threshold, the neuron produces a spike

and delivers it to the postsynaptic neuron, while the membrane potential V (t) returns to the resting state and enters transient refractory period. (B) The architecture of a

standard SNN. The network is fully connected and the input dataset should be transformed into spike sequence.

complex dataset, Shrestha and Orchard (2018) used feed-forward
and back propagation procedure at the same time.

In this paper, we adopt a standard three-layered structure,
which is similar to Zhang et al. (2018a) to verify the validity of
the curiosity-based mechanism in training SNN.

3.1.1. The Neuron Model
Here we adopt the Leaky integrate-and-fire (LIF) neuron model
as the basic processing unit. In the LIF model, the neuron will be
regarded as a node. Regardless of the transmission of electrical
signals in neurons, the variation of the potential difference u(t)
between inside and outside the membrane at time t satisfies
the Equation (1).

Cm
du(t)

dt
= −

u(t)

Rm
+ I(t) (1)

where Cm is the membrane capacitance in which m is the
abbreviation of membrane, Rm is the membrane resistance, and
I(t) is the weighted sum of all input currents (the weight is usually
the connection value wi,j between neuron i and j). If we use V(t)
to denote membrane potential, VL to denote leaky potential, gL
to denote leaky conductance, then we could have Equation (2)
which demonstrates the change of membrane potential.

Cm
dV(t)

dt
= −gL(V(t)− VL)+ I(t) (2)

Under the consideration of real brain, we introduce excitatory
conductance gE and excitatory reversal potential VE and we can
have the membrane potential updating Equation (3) based on
excitatory conductance.

{

τE
dgE
dt
= −gE + η

∑

j∈NE
wj,iδt

τm
dV(t)
dt
= −(V(t)− VL)−

gE
gL
(V(t)− VE)

(3)

When membrane potential integrates up to the firing threshold
Vth, the neuron produces a spike, and sends it to postsynaptic

neurons. After that, the membrane potential is reset to resting
state and the neuron enters into refractory time. The simulation
results are shown in Figure 2A.

3.1.2. The Network Structure
In this paper, we adopt a standard three layers SNN like
(Zhang et al., 2018a). As shown in Figure 2B, the first layer
receives sequential signals converted from original dataset; the
second layer abstracts the input information using non-linear
characteristic; the third layer produces the final classification
signals which will be used to transmit error signals and generate
novelty estimates with the help of the teacher signals.

3.2. The Learning Method of CBSNN
In this section, we will introduce the detailed curiosity-based
learning method on SNN (CBSNN). As shown in Figure 3, we
first transform the original input data into sequential signals.
Then learning process of CBSNN contains four steps: (1) Before
the starting time Tstart of sample selection (we use one epoch
later), the CBSNN is able to train all examples in order to get
the novelty estimation of whole dataset; (2) Once the current
iteration time is over the predefined starting time Tstart , the
CBSNN begins to repeatedly select the sample whose novelty
estimation NEk exceeds the threshold NEth, and dynamically
update the novelty estimations NEk of samples according to the
learning results within the retrain interval Ire (we use 5 epochs
later); (3) When the duration of step (2) reaches the retrain
interval Ire, the CBSNN retrains all data once (one epoch) in
order to avoid the overfitting of the novel samples and forgetting
of the learned samples; (4) themodel repeats step (2) and (3) until
the algorithm converges.

3.2.1. Step 1: Traditional Training Before Starting

Time Tstart
At the beginning of learning, we put all data into the SNN before
the starting time Tstart . With sequential signals passing in feed
forward, the change of membrane potential 1VFF

i of neuron i
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FIGURE 3 | The learning process of CBSNN in spatial and temporal. It processes the sequential input signal and is trained by four steps.

and excitatory conductance 1gE in this stage are first updated by
Equation (3). Then according to the equilibrium tuning which
is one of the efficient ways to solve the non-differential problem
of SNN (Scellier and Bengio, 2017), the membrane potential is
changed again by Equation (4) (Zhang et al., 2018a).

1VES
i = −ηi

Vi − (
∑N

j wj,iVj −
∑N

j Vth,i)

−(Vi − VL)−
gE
gL
(Vi − VE)

(4)

Combining the result of these two stages shown in Equation (5),
we get the final change of membrane potential of neuron i in an
unsupervised way.

1Vi =
t

T
1VFF

i + (1−
t

T
)1VES

i (5)

In order to let the model have a better performance and calculate
the novelty estimation of samples, we introduce the teacher signal

VT . By optimizing the loss function C =
∑L3

i=1(Vi − VT)
2, the

membrane potentials of final layer are changed as Equation (6) in
supervised way.

dVi = −ηc(Vi − VT) (6)

3.2.2. Step 2: Curiosity Learning Based on Novelty

Estimation NE and Novelty Threshold NEth
The weights among these three layers can be updated with
multiform Spike-Timing-Dependent Plasticity (STDP) (Dan and

Poo, 2004). Here we use a simple but effective one: bi-STDP.
Once the current iteration is up to the predefined starting time
Tstart , the weights of the model will be passively changed through

Equation (7) (V
′

i , is the derivation of Vi).

1wj,i ∝ VjV
′

i (7)

After the updating of weights, we should get the assessment
of samples’ learning situation in order to provide an efficient
way to select appropriate samples to train in the next iterations.
According to the curiosity theory, humans tend to explore
novel and difficult problems rather than spend time on general
and simple samples in the learning process. Inspired by this,
we define the novelty estimation NE for samples during the
SNN learning process. As shown in Equation (8), instead of
error rate, we adopt a similarity evaluation method: the cosine
distance between training outputs Vk and the corresponding
teacher signals VT , to get more concrete novelty estimation of
the sample k.

NEk(Vk,VT) = 1− cos < Vk,VT >= 1−
Vk · VT

‖Vk‖ ‖VT‖
(8)

According to the novelty estimation NEk of the sample k and
predefined novelty threshold NEth, we can obtain the sample
selection strategy as shown in Equation (9). And when S(k)
equals to 1, the kth sample is selected. Then, the CBSNN
repeatedly trains the samples whose novelty estimations exceed
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the threshold NEth and temporarily ignores the simple samples
which have already learned well, and dynamically updates the
novelty estimations of samples using Equation (8) based on the
learning results.

S(k) =

{

1 NEk ≥ NEth
0 NEk < NEth

(9)

3.2.3. Step 3: Anti Overfitting and Catastrophic

Forgetting Based on Retrain Interval Ire
If the model only selects novel samples to train in every iteration,
it is inevitable to cause overfitting of novel samples and forgetting
of simple samples. So themodel needs to review the whole dataset
(novel and non-novel) once the duration of dynamic training
of step (2) reaches the retrain interval Ire (Kirkpatrick et al.,
2017). The more detailed learning process of CBSNN is shown
in Algorithm 1.

Algorithm 1 The learning process of CBSNN

1. Initialize Tstart = 1, NEth = 0.05, Ire = 5 and other parameters
of the network.
2. Load dataset (X, Y)
3. Start training procedure

Xs ← X, Ys ← Y , e0 ← Tstart

for every epoch e do
if e 6 Tstart then. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . step 1 ▽

SNNTraining(Xs, Ys, fullsample=True)
end if

if e > Tstart then

if e− e0! = Ire then. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . step 2▽
NE(Vk,VT)← 1− cos < Vk,VT > Equation (8)
(Xs,Ys) ← select(NE(Vk,VT) ≥ NEth)

Equation (9)
SNNTraining(Xs, Ys, fullsample=False)

else. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . step 3▽
Xs ← X, Ys← Y , e0← e
SNNTraining(Xs, Ys, fullsample=True)

end if

end if

end for

4. Start testing procedure

Function: SNNTraining(Xs, Ys, fullsample=True)

for every batch b do
for every differential time 1t do

1VFF
i,b
← Feed forward (Xs,b) by Equation (3)

1VES
i,b
← Equilibrium state (Vi,b) by Equation (4)

1Vi,b ←
t
T1VFF

i,b
+ (1− t

T )1VES
i,b

Equation (5)

1V
′

i,b
← supervised tuning (Vi,b) by Equation (6)

end for

end for

Passively update weights by Equation (7)

4. EXPERIMENTS

In this section, we verify the effectiveness of CBSNN and analyze
how the proposed method affects the computation efficiency
and learning accuracy of the traditional SNN. And all of our
experimental results are based on MNIST.

4.1. Hyperparameter Configuration on
MNIST
It is hard to get the best values with an exhaustive search
for the limitation of computation cost, especially when given
a large network. Here we firstly get the best hyperparameters
from a smaller network and then apply them to a larger
network. The hyperparameters includes NEth, retrain interval
Ire and Tstart . We set an initial CBSNN which is VPSNN with
200 hidden neurons, novelty threshold NEth = 0.05, retrain
interval Ire = 5, starting time Tstart = 1. And the following
analysis only changes the corresponding parameters on the basis
of this initial CBSNN. The specific computation efficiency is
calculated by the ratio of the computational time cost of CBSNN
and VPSNN.

4.1.1. Starting Time Tstart
Before the starting time Tstart , the network is trained to get

the novelty estimate of all samples based on the teacher’s signal

in few epochs. After that, the network starts to select samples

through the novelty threshold and dynamically updates their
novelty estimation in every iteration. From Figure 4A, we can

see that the starting time has little effect on the accuracy which

is basically stable at about 0.98. While, the computation in

Figure 4B has significant proportional increase when starting

time changes from 5 to 50. That means the starting time is

robust to the accuracy and can greatly improve the computation
efficiency with small value. The result reveals that there is no
use to pour the whole data set into the network during all

iterations. The earlier the sampling based on novelty estimation,
the higher the computation efficiency of the model. And this

is the main motivation that we set a small starting time (one

epoch) as the hyperparameter in step one of the curiosity-based

learning process.

4.1.2. Novelty Threshold NEth
In CBSNN, the novelty threshold NEth determines the volume

of the difficult samples which will be repeatedly learned. The
definition of novelty threshold depends on the difficulty and

scale of tasks. In step 1 and step 3, the NEth is 0 because
we need to learn the features of all samples, and in step 2,

we set the NEth changing from 0.01 to 0.25 for getting the
best threshold which could balance the learning accuracy and

computation cost. As shown in Figure 5, the larger novelty
threshold, the more computation ratio and the lower accuracy we

will get. The reason is that the large novelty threshold causes the

network to repeatedly learn many simple samples, which leads
to overfitting of simple samples and wastes a large amount of

computation. Especially, the performance of CBSNN is better
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FIGURE 4 | The effect of starting time Tstart on (A) accuracy and (B) computation ratio.

FIGURE 5 | The effect of novelty threshold NEth on (A) accuracy and (B) computation ratio.

than VPSNN in all conditions which shows the effectiveness of
the novelty threshold.

4.1.3. Retrain Interval Ire
The retrain interval affects the frequency of retraining of all
samples. As shown in Figure 6, the retrain interval changes
from five epochs to 50 epochs and is inversely proportional
to accuracy and computation ratio. This parameter leads to a
significant decrease in computation (30%), while the accuracy
has a little decrease (1%). Especially, even if the retrain interval
equals to 50 epochs (only retrain all samples 2–3 times during the
whole training), the model can still reach 0.9708 accuracy with
23.75% computation.

To sum up, all parameters have a significant contribution
to improving accuracy and reducing computation ratio. And
the combination of these parameters is a complex nonlinear
relationship. When the CBSNN has comparable accuracy with
the VPSNN, the increase in the starting time and the novelty
threshold results in a rise in the amount of computation,

and the increase in the retrain interval brings about a
computation saving.

4.2. Performance of CBSNN on MNIST
The CBSNN has three main parameters: starting time Tstart ,
novelty threshold NEth and retrain interval Ire. Combining with
the above parameter analysis, we finally obtain a set of parameters
with high accuracy and low computational complexity that is
starting time Tstart = 1 epoch, novelty thresholdNEth = 0.05, and
retrain interval Ire = 5 epochs.

Based on the optimal combination of parameters, we compare
several different strategies to outstand the effectiveness of our
approach further. Table 1 shows the comparisons of accuracy
and corresponding computation ratio based on the different
strategies. The comparisons from the first row to fourth row
is based on the 200 hidden neurons. Our best result is 0.16%
higher than the original VPSNN, and only requires 49.68%
computation. When original VPSNN trained with all data
costs around 49% computation, the accuracy of it decreases to

Frontiers in Computational Neuroscience | www.frontiersin.org 7 February 2020 | Volume 14 | Article 7

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Shi et al. Curiosity-Based Spiking Neural Networks

FIGURE 6 | The effect of retrain interval Ire on (A) accuracy and (B) computation ratio.

TABLE 1 | The comparison of different strategies.

Strategy Hidden

neurons

Accuracy Computation

ratio (%)

VPSNN 200 0.9783 100

VPSNN with 49% computation 200 0.9773 49.74

VPSNN with 49% random data 200 0.9730 49.43

CBSNN (ours) 200 0.9799 49.68

VPSNN (best) (Zhang et al., 2018a) 4500 0.9852 100

CBSNN (our best) 3000 0.9855 54.95

First part is the comparison of classfication accuracy and computation ratio among

different sample selecting strategies under 200 hidden neurons. The computation ratio

baseline is the VPSNN trained with whole MNIST dataset. The second part is the

comparison of the best results of VPSNN and CBSNN. The results of our proposed

method in this paper are highlighted in bold.

0.9773. When VPSNN is trained by 49% random data, there
is a drop of 0.69% in accuracy compared with CBSNN which
means curiosity-based learning method is important to actively
dig difficult samples. The fifth row of Table 1 shows the best
accuracy of VPSNN (0.9852) with 4,500 hidden neurons while
our proposed CBSNN achieves 0.9855 accuracy with only 54.95%
of VPSNN computation.

In order to compare with VPSNN in large-scaled architecture,
we set the hidden neurons from 100 to 5,000 and keep starting
time Tstart = 1 epoch, novelty threshold NEth = 0.05 and retrain
interval Ire = 5 epochs. As shown in Figure 7, CBSNN can
basically reproduce VPSNN accuracy at every level of the number
of hidden neurons, and extremely save the computation (at least
25%). The best accuracy of CBSNN is 0.9855 with 3,000 neurons
which is better than VPSNN.

4.3. Analysis of the Inner State of CBSNN
on MNIST
The hidden layer and output layer represent highly abstract
features which could account for the specific learning situation. t-
SNE (Maaten and Hinton, 2008) can decrease high-dimensional
data into two or three dimensions and maintain the relationship

of original data as much as possible. Here we use it to observe the
change of relationship among all samples when passing these two
layers and analyze why our proposed method works during the
learning process.

As shown in Table 2, every point represents a sample and
different colors represent different classes. We set two different
sets of parameters for CBSNN. In first group, we have 400 hidden
neurons, starting time Tstart = 1 epoch, novelty threshold NEth
= 0.05 and retrain interval Ire = 5 epochs. After the first step
of CBSNN, the computation ratio is 0.92%, the accuracy rate is
0.9540 and we get the initial novelty estimation of all samples.
At this time, we can see that most of the samples have already
formed different clusters but some of them are still very discrete
and could not be well classified. Then the CBSNN begins to
dig out the difficult samples. During this learning process, those
discrete and difficult samples are gradually being better learned.
Finally, all samples can be well classified and our model reaches
0.9836 accuracy while computation is 40.43%. At this time, the
distance among different clusters is larger, and the distance
among samples in each cluster is closer. While the original
VPSNN with 400 hidden neurons only has 0.9826 accuracy. In
second group, we have 400 hidden neurons, starting time Tstart

= 1 epoch, novelty threshold NEth = 0.25 and retrain interval
Ire = 50 epochs. Under this configuration, the CBSNN could
learn faster but have lower accuracy. Compared with the first
group, there aremore points beingmisclassified in every iteration
time, and the distance between different classes is closer. When
the iteration time is 150, the second group only accounts for
20.31% of the computation ratio, but has 0.9753 accuracy which
is lower than that of the first group when it reaches 14.97%
computation ratio. Experiments show that the optimized and
balanced parameter combination can improve the learning rate
and accuracy, and also demonstrate the effectiveness of CBSNN.

4.4. The Validation of CBSNN on Other
Datasets
In this section, we will discuss how CBSNN performs in more
applications. Here we adpoted Iris, NETtalk, Fashion-MNIST
and CIFAR-10 datasets and in each task, CBSNN and VPSNN
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FIGURE 7 | The results of (A) accuracy and (B) computation ratio of VPSNN and CBSNN under different network structures. The solid red triangle line represents

CBSNN, and the dotted white diamond line represents VPSNN. In (B), the baseline of computation ratio under each structure is the time consuming of VPSNN.

TABLE 2 | The t-SNE visualization of CBSNN learning process with two sets of different parameters.

Iteration time 1 50 100 150

Parameter setting one: hidden neurons = 400, Tstart = 1, NEth = 0.05, Ire = 5

Hidden layer

Output layer

Computation ratio 0.92% 14.97% 27.88% 40.34%

Accuracy of CBSNN 0.9540 0.9813 0.9830 0.9836

Parameter setting two: hidden neurons = 400, Tstart = 1, NEth = 0.25, Ire = 50

Hidden layer

Output layer

Computation ratio 1.24% 9.99% 15.12% 20.31%

Accuracy of CBSNN 0.9614 0.9708 0.9730 0.9753

It shows the results of hidden layer, ouput layer, computation ratio (the baseline is VPSNN with 0.9826 accuracy and 100% computation cost) and accuracy of CBSNN after different

iteration times.
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TABLE 3 | The comparison of VPSNN and CBSNN on different tasks.

Dataset Preprocessing
Network architecture

(input-hidden-output)

CBSNN

Accuracy

VPSNN

Accuracy

Computation ratio

(based on VPSNN)

Iris None 4-2-3 1.0000 0.9667 64.59%

NETtalk None 189-80-26 0.8720 0.8680 48.08%

Fashion-MNIST None 784-400-10 0.8574 0.8299 18.35%

CIFAR-10

Gray 1024-500-10 0.3198 0.2947 71.69%

PCA 700-400-10 0.2546 0.2384 15.51%

Conv 300-100-10 0.5285 0.5134 31.11%

In each task, CBSNN and VPSNN have the same network architecture and the accuracy of CBSNN (highlighted in Bold) is higher than that of VPSNN with lower computational cost

(listed in the last column).

share the same network architecture. The corresponding results
are shown in Table 3.

• Iris (Fisher, 1936) is a machine learning dataset for multiple
variable analysis and contains 120 samples of three classes
of Iris flower. We randomly separated it into 90 for training
and 30 for test. Finally, CBSNN performs 100% classification
accuracy with lower computation cost than VPSNN.
• NETtalk (Sejnowski and Rosenberg, 1987) is usually used for

speech generation, consisting 5,033 training and 500 test. The
input is a string of letters with fixed length of 7, which is
encoded into 189 dimensions (each character has a 27 length
one-hot vector). The output is 26 dimensions which represent
72 phonetic principles. For this mapping task with strong
global regularities, VPSNN reaches 0.8680 accuracy. Although
CBSNN is only slightly higher than VPSNN, it saves about half
of the computation cost.
• Fashion-MNIST (Xiao et al., 2017) is more discrete and

includes more semantic information than MNIST. It consists
of 28*28 gray-scale images of 10 categories of objects in
wearing, divided into 60,000 training samples and 10,000
test samples. From Table 3, CBSNN reaches the accuracy
of 85.74% (higher than VPSNN 2.75%) with only 18.35%
computation cost on it.
• CIFAR-10 (Krizhevsky and Hinton, 2009) contains 60,000

samples (50,000 for training and 10,000 for test) and has
image size of 32*32 pixels with three channels, which will
bring the growth of calculation exponentially and exceed
the ability of these two networks. We used some dimension
reduction methods for preprocessing it, i.e., RGBtoGray,
Principal Components Analysis (PCA) and Convolution.
From Table 3, the Convolution which converts the original
data from 32*32*3 into 300 dimensions, works best and helps
CBSNN achieve the best accuracy of 52.85% under only
around a third of computation cost of VPSNN.

5. DISCUSSION

SNN is the third-generation neural network (Maass, 1997). It has
more biological structures and processing mechanisms, such as
discrete sequential spike neurons which make it possible to deal
with spatiotemporal information simultaneously, and non-BP
biological plasticity like STDP. Although both SNN and ANN are
black boxes at present, SNN has biological basis for reference but

ANN does not, so there may be more applications of SNN in the
future. At present, SNN has reached the accuracy comparable to
that of deep network inmany tasks, but it faces a serious problem:
the time-consuming computation on neuron level and complex
optimization limit their real-time application.

In this paper, we propose a CBSNN which is inspired
by the curiosity-based learning mechanism in the brain. The
CBSNN model can improve the accuracy and greatly reduce
the computation of traditional SNN simultaneously. During the
learning process, instead of feeding all data to the network, our
model focuses more on mining difficult samples which is based
on the novelty estimation. And in order to avoid the overfitting
of the novel samples and forgetting of the learned samples, the
CBSNN retrains all samples periodically. Finally, the CBSNN
achieves comparable performance with the previous state-of-
the-art VPSNN using just 54.95% computation of it. Similar
conclusion can also be found out in other datasets, i.e., Iris,
NETtalk, Fashion-MNIST, and CIFAR-10, respectively.

One of the main motivations of the paper is to dramatically
decrease the training time of SNNs and make them better
simulated on traditional computing systems by combining the
biological plausible rules. Besides, with the development of
neuroscience and physiology, more mechanisms in biological
systems will be found out, which would further help SNNs on
the faster processing speed and less computation cost.
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