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Abstract

Image processing and pixel-wise dense prediction have
been advanced by harnessing the capabilities of deep learn-
ing. One central issue of deep learning is the limited capac-
ity to handle joint upsampling. We present a deep learning
building block for joint upsampling, namely guided filtering
layer. This layer aims at efficiently generating the high-
resolution output given the corresponding low-resolution
one and a high-resolution guidance map. The proposed
layer is composed of a guided filter, which is reformulated
as a fully differentiable block. To this end, we show that a
guided filter can be expressed as a group of spatial varying
linear transformation matrices. This layer could be inte-
grated with the convolutional neural networks (CNNs) and
jointly optimized through end-to-end training. To further
take advantage of end-to-end training, we plug in a train-
able transformation function that generates task-specific
guidance maps. By integrating the CNNs and the proposed
layer, we form deep guided filtering networks. The proposed
networks are evaluated on five advanced image processing
tasks. Experiments on MIT-Adobe FiveK Dataset demon-
strate that the proposed approach runs 10-100× faster and
achieves the state-of-the-art performance. We also show
that the proposed guided filtering layer helps to improve
the performance of multiple pixel-wise dense prediction
tasks. The code is available at https://github.com/
wuhuikai/DeepGuidedFilter.

1. Introduction
Research in image processing and pixel-wise dense pre-

diction enables a variety of applications. For example, im-

age processing techniques enable smooth an image while

preserving the edges [39, 41, 43], enhance the details of an

image [13, 36], transfer style from a reference image [3, 4],

∗Work conducted while the author at the University of Oxford.

Figure 1: Example results of the deep guided filtering
networks. The top row shows the input images, and the

bottom row includes the results in full-resolution. We show

the results of image retouching, multiscale detail manipu-

lation, non-local dehazing, saliency object detection, and

depth estimation from a single image in each column. Best

viewed in color.

dehaze the photos [5, 20, 14, 15], and even retouch the im-

ages for beautification [6]. In Computer Vision, the pixel-

wise dense prediction techniques not only address the prob-

lem of segmenting an image into semantic parts [22, 35, 11],

but also help to estimate depth from a single image [34], and

detect the most salient object in an image [32, 29]. Some of

the approaches [18, 10, 9] in these applications have been

further advanced by deep learning techniques. One of the

central issues is the limited capacity of deep learning tech-

niques to handle the joint up-sampling.

The computational demand and running time of an al-

gorithm are critically important to the user experience in

these applications. However, existing techniques usually

take large amount of computational cost, especially on high-

resolution images. In image processing tasks, one well-

known approach to accelerating an algorithm follows a

coarse-to-fine fashion, which firstly down-samples the im-
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age, executes the algorithm at low-resolution, and then up-

samples the result back to the original resolution. However,

the main challenge is that how to restore the low-resolution

output into the original resolution with high quality.

Similar challenge also occurs in computer vision tasks,

such as depth estimation, saliency detection and semantic

segmentation. For these tasks, convolutional neural net-

works (CNNs) usually take a high-resolution image as in-

put and generate a low-resolution output, which often have

blurred boundaries [33]. How to combine the edges in high-

resolution input with low-resolution output to get the high-

resolution output remains an active research area.

In image processing literature, such a problem is usu-

ally formulated as joint upsampling and solved with bilat-

eral filter [27], which requires large amount of computation

resources. In computer vision tasks, a fully-connected con-

ditional random field is usually applied [8, 44, 38], which

relies on bilateral filter and runs slowly. Alternatively, we

propose to address this problem by reformulating the guided

filter [21], which has been shown better performance re-

garding the trade-off between speed and accuracy.

However, by directly applying guided filter as post-

processing operation, the network trained with low-

resolution targets cannot cooperate well with guided fil-

ter and the restored high-resolution output usually has low

quality. We attribute this as the lack of direct supervi-

sion from high-resolution targets. Inspired by the prior

work [44], we formulate the guided filter as an fully dif-

ferentiable module, which could be jointly trained with the

entire network and benefit from end-to-end training.

In this paper, we propose a novel deep learning layer

for joint up-sampling, namely guided filtering layer. Con-

cretely, we formulate the guided filter into a fully differ-

entiable module, which is expressed as a computational

graph consisting of spatially varying linear transformation

matrices. A learnable transformation function is also im-

ported into the proposed module, which could generate

task-specific guidance map from high-resolution input im-

ages and facilitate better restoration by taking advantage

of end-to-end training. The proposed layer could be inte-

grated with a predefined network without extra efforts, and

all the parameters could be learned in a data-driven manner

through fully end-to-end training. We note such a network

as Deep Guided Filtering Network (DGF).

The advantages of learning guided filtering layer with

CNNs in a data-driven manner are multifolds. First, the

entire network is supervised by the high-resolution targets,

which forces guided filtering layer to cooperate with the rest

CNNs, generating outputs with higher quality. Second, by

end-to-end training, the guided filtering layer could general-

ize well to different tasks by generating task-orient guidance

map. Fig 1 demonstrates the high quality results obtained

by the proposed layer, ranging from image processing tasks

to computer vision tasks. Experiments further show that

our method could achieve the state-of-the-art performance

in both quality and speed for image processing tasks.

The main contribution is that we develop an end-to-end

trainable guided filtering layer and extend it with a learnable

guidance map. When combining with CNNs, the proposed

layer could significantly improve the state-of-the-art results

in multiple image processing tasks, and runs 10-100× faster

than the alternatives. Extra experiments show that our ap-

proach could generalize well to dense prediction tasks in

computer vision and achieve significant improvements.

2. Related Work
The most prominent contemporary works are along the

direction of joint upsampling. Prior works along this line

aim to generate the high-resolution output given the low-

resolution one and a high-resolution guidance map. Many

algorithms have been developed to tackle such problem,

among which the closest works to ours are Joint Bilat-

eral Upsampling [27], Bilateral Guided Upsampling [7] and

Deep Bilateral Learning [18].

Joint bilateral upsampling [27] applies a bilateral fil-

ter [37] to the high-resolution guidance map and obtain a

piecewise-smoothing high-resolution output. Such an op-

eration requires large amount of computation resources,

though many methods are presented to accelerate bilateral

filter [2, 1, 16].

Bilateral Guided Upsampling [7] fits an image operator

with a grid of local affine models on the low-resolution in-

put/output pair firstly. The high-resolution output is then

generated by applying the local affine model to the high-

resolution input image. Compared to our method, this

method serves as post-processing operation, while ours

could be jointly trained with the entire network.

Deep Bilateral Learning [18] integrates bilateral filter

with convolution neural networks, which could be learned

through end-to-end training. However, the method re-

quires producing affine coefficients before obtaining out-

puts, which lacks direct supervision from the targets. For

computer vision tasks, the number of affine coefficients is

usually very large, which becomes the performance and

speed bottlenecks.

Alternatively, Xu et al. [40], Liu et al. [31] and Yan et
al. [42] deploy neural networks to generate high-resolution

output directly, accelerating the operation by dedicated de-

signed network architectures. Xu et al. [40] used deep net-

works to approximate a variety of edge-preserving filters

with a gradient domain training procedure, while Liu et
al. [31] combined a convolutional network and a set of

recurrent networks to approximate various image filters.

Yan et al. [42] use a fully-connected network that operates

on each pixel separately with hand-crafted features as input.

Chen et al. [10] propose context aggregation networks
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to accelerate a wide variety of image processing operators,

which performed superior to the prior works [40, 31, 7, 26,

24], achieving the best results regarding speed and accu-

racy. Our approach is complementary to this method and

other similar approaches, which could deliver comparable

or better results and runs 10-100× faster.

Compared to the related works, the proposed guided

filtering layer could be end-to-end trained with the entire

network and generalize well across different tasks ranging

from image processing to computer vision, while achieving

the state-of-the-art performance on both quality and speed.

3. Guided Filtering Layer

3.1. Problem Formulation

Given an image Ih and the corresponding low-resolution

output Ol, we seek a full-resolution output Oh, which is vi-

sually similar to Ol while preserving the edges and details

from Ih. To obtain Oh, we formulate the problem as joint

upsampling, which is introduced by Johannes et al. [27] and

solved with bilateral filters, requiring large amount of com-

putation resources. Alternatively, we adopt the guided filter

proposed by He et al. [21] as a fast joint upsampling solver

and formulate it into an end-to-end trainable module.

Algorithm 1: Gradients for Guided Filtering Layer

Input : Low-resolution image Il
High-resolution image Ih
Low-resolution output Ol

Derivative for high-resolution output ∂Oh

Output: Gradients for all the inputs

1 ∂bl = ∂Oh · ∇blf↑, ∂Al = ∂Oh ∗Gh · ∇Alf↑ − ∂bl ∗ Ḡl

2 ∂ΣGlOl = ∂Al/(ΣGl + ε)

∂ΣGl = −∂Al ∗ ΣGlOl/(ΣGl + ε)2

3 ∂Ōl = ∂bl − ∂ΣGlOl ∗ Ḡl

∂Ol = ∂ΣGlOl · ∇Gl∗Olfμ ∗Gl + ∂Ōl · ∇Olfμ
4 ∂Ḡl = −∂bl ∗Al − ∂ΣGlOl ∗ Ōl − 2∂ΣGl ∗ Ḡl

∂Gl = ∂ΣGlOl · ∇Gl∗Olfμ ∗Ol

+ 2∂ΣGl · ∇Gl∗Glfμ ∗Gl + ∂Ḡl · ∇Glfμ
5 ∂Il = ∂Gl · ∇IlF, ∂Ih = ∂Oh ∗Ah · ∇IhF

3.2. Guided Filter Revisited

For joint upsampling, the guided filter takes a low-

resolution image Il, the corresponding high-resolution im-

age Ih, and a low-resolution output Ol as inputs, producing

the high-resolution output Oh. Concretely, Al and bl are

first computed by minimizing the reconstruction error be-

tween Il and Ol, which subjects to a local linear model [21]

such that

Oi
l = akl I

i
l + bkl , ∀i ∈ ωk, (1)

Figure 2: Computation Graph of Guided Filtering
Layer. Guided filtering layer takes low-resolution image

Il, high-resolution image Ih and low-resolution output Ol

as inputs, generating the high-resolution output Oh. Com-

pared to guided filter [21], the proposed layer is fully differ-

entiable as shown by dotted lines. Besides, we also plug in

F (I) for learning task-specific guidance map.

where i is the index of a pixel, and k is the index of a local

square window ω with radius r. Ah and bh are then pro-

duced by upsampling Al and bl. The high-resolution out-

put Oh is finally generated by a linear transformation [21],

which is defined as

Oh = Ah ∗ Ih + bh, (2)

where ∗ is element-wise multiplication.

3.3. Guided Filter as a Trainable Layer

The low-resolution output Ol is usually generated by a

transformation function f(x), which could be modeled with

CNNs and learned with strong supervision signals. How-

ever, when we apply the guided filter as post-processing op-

eration directly, the obtained results are not always pleas-

ing, especially for tasks that are not scale-invariant. We

attribute this to the lack of jointly training and direct su-

pervision from high-resolution targets.

To take the benefits of end-to-end learning, we formulate

guided filter as a fully differentiable layer, which could be

trained with f(x) jointly from scratch. The computation

graph of guided filtering layer is shown in Figure 2. Al and

bl are computed with mean filter fμ and local linear model

given Il and Ol. Ah and bh are then generated by applying

bilinear upsampling operator f↑. Oh is finally generated

with a linear layer taking Ah, bh and Ih as inputs. r is the

radius of fμ and ε is the regularization term, which we set

to 1 and 1e-8 by default.

The equations for propagating the gradients through

guided filtering layer are shown in Algorithm 1, while the

corresponding forward algorithm is presented in the supple-

mentary material. By modeling each operator into a differ-

entiable function, the gradient of Oh could back-propagate

to Ol, Il as well as Ih through the computation graph, which
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facilitates training f(x) with direct guidance from the high-

resolution targets. With the direct supervision signal, f(x)
learns to generate more suitable Ol for guided filtering layer

to restore.

3.4. Learn to Generate Guidance Map

In Section 3.2 and 3.3, input images and outputs are as-

sumed to have single channel. However, Ih, Il, Ol and Oh

often have more than one channel in real cases, noted nI

and nO respectively. When nI �= nO, we usually apply a

transformation function F (I) to Ih and Il, generating guid-

ance maps Gh and Gl with channel size equal to nO. Even

when nI = nO, a better guidance map than Ih and Il is

required. Traditionally, the transformation function is usu-

ally manually defined for different tasks, which takes lots

efforts to design. By formulating the guided filter as a train-

able layer, we could learn F (I) by end-to-end training, and

generate more suitable, task-specific guidance maps.

Concretely, we develop a fully-convolutional neural net-

work serving as F (I), which is composed of two convo-

lution layers, between which are an adaptive normalization

layer [10] and a leaky ReLU layer. We set the kernel size of

both convolution layers to 1× 1, and the channel size of the

first convolution layer to 64 by default.

The complete computation graph is shown in Figure 2,

which is both fully differentiable and could be adapted to

specific tasks by jointly optimizing its parameters with the

base neural network.

4. Deep Guided Filtering Network

We now integrate the proposed layer into CNNs fol-

lowing the coarse-to-fine manner, we name the whole net-

work Deep Guided Filtering Network (DGF). The pro-

posed framework aims for generating full-resolution, edge-

preserving outputs with low computational cost, which

would be widely applied to various dense prediction tasks,

ranging from image processing to computer vision.

As shown in Figure 3, we first downsample the origi-

nal input image Ih, obtaining the low-resolution image Il.
Then, a convolutional neural network Cl(Il) is applied, gen-

erating the corresponding low-resolution output Ol. The

full-resolution output Oh is finally generated by the pro-

posed guided filtering layer, taking Il, Ih and Ol as inputs.

The entire framework is end-to-end trainable, which could

be learned from scratch.

To verify the effectiveness of the proposed guided filter-

ing layer together with the framework DGF, we take a se-

ries of experiments on several dense prediction tasks, which

could be divided into image processing tasks and computer

vision tasks respectively. For image processing tasks, we

take our experiments on L0 smoothing [39], multiscale de-

tail manipulation [13], photographic style transfer from a

Figure 3: Framework overview of deep guided filtering
network. Given an image Ih, we first produce Il with

downsampling operator. Then, we generate the correspond-

ing low-resolution output Ol with a convolutional neural

network Cl(Il). Il, Ih and Ol are fed into the proposed

guided filtering layer GF (Il, Ih, Ol) to generate the full-

resolution output Oh finally. Best viewed in color.

reference image [3], non-local dehazing [5] and image re-

touching learning from human annotations [6]. For com-

puter vision tasks, we select three tasks ranging from low-

level vision to high level-vision, namely depth estimation

from a single image [34], saliency object detection [32] and

semantic segmentation [22]. The detail configurations for

the two groups of tasks will be described in the following

parts.

4.1. Low-resolution Networks

In our framework, Cl(Il) serves as the main component

for learning to transform the input images Il to outputs Ol.

Most of the fully convolutional networks could be plugged

into our framework to obtain huge acceleration while re-

maining similar quality performance. However, for a fair

comparison, we use the networks from baseline methods as

Cl(Il).
The architecture of Cl(Il) varies according to the char-

acteristics of different tasks. Concretely, for image process-

ing tasks, we deploy a unified network as Cl(Il) across dif-

ferent tasks. Because all the tasks share similar instincts

despite the produced results are visually different. Partic-

ularly, we adopt the architecture of Context Aggregation

Network (CAN) proposed by Chen et al. [10] as our de-

fault architecture. The main difference is that the resolution

of input images Il and outputs Ol is much smaller, which

saves lots of computation resources.

For computer vision tasks, we use MonoDepth [19] for

depth estimation, while using DSS [23] for saliency detec-

tion and Deeplab [9] for segmentation.

4.2. Integrate Guided Filtering Layer

We first present a preliminary framework, named DGFs.

In DGFs, Cl(Il) is first trained to generate the low-
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resolution output Ol, and then the full-resolution output Oh

is produced with the guided filter as post-processing opera-

tion without any training. To benefit from end-to-end train-

ing, we plug the proposed guided filtering layer into Cl(Il),
namely DGFb. DGFb learns to generate the high-resolution

output Ol directly with the strong supervision signal from

the high-resolution targets.

In both DGFs and DGFb, F (I) is an identity function

when the input images and outputs have the same number

of channels. When they have different channel size, F (I)
serves as a transformer, turning I into a single channel grey

image. To learn to generate task-orient guidance maps with-

out manually designing F (I), we further integrate the pro-

posed F (I) in Section 3.4, which composes into the final

version of deep guided filtering network, i.e. DGF. DGF is

not only end-to-end trainable but also fit different tasks bet-

ter with the learnable F (I).

4.3. Objective Function

Our model is trained end-to-end by the objective func-

tion defined at the full-resolution level. Given the full-

resolution output Oh and the corresponding target Th, the

objective function is noted as L(Oh, Th). The concrete for-

mulation varies with different tasks. For tasks in image pro-

cessing, we use l2 loss, following the convention of previ-

ous works [10, 18]. As for tasks in computer vision, the loss

proposed by the baseline model is deployed.

5. Applications and Experiments
5.1. Image Processing Tasks

Experimental Setup We test the proposed guided filter-

ing layer with our framework DGF on five different image

processing operators: L0 smoothing, non-local dehazing,

multiscale detail manipulation, photographic style transfer

and image retouching learning from human annotations.

The details of each operator are described in the supple-

mentary material.

Our experiments are taken on MIT-Adobe FiveK

Dataset [6], which contains 5,000 high-resolution pho-

tographs covering a broad range of scenes, subjects, and

lighting conditions. We use the default 2.5K/2.5K train-

ing/test split. To obtain the target images Th for each task,

we apply the corresponding operator on the entire dataset

with the official implementation. For image retouching, we

use the annotations from expert A as targets.

To learn a specific operator, we first train the network

on the training set for 150 epochs, with the training data

resized to 512s1. To improve the generalization ability of

images across resolutions, we further train the network for

30 epochs, with training data randomly resized to a specific

1512s means the short side of an image is resized to 512 without chang-

ing the aspect ratio.

Figure 4: Comparison on Speed and Memory Usage. The

performance on GPU devices is shown by solid lines, while

dotted lines represent CPU devices.

resolution between 512s and 1672s. Despite the different

resolution of Ih, we downsample it to 64s as Il by default.

We use Adam as our optimizer, with learning rate set to

0.0001 and batch size set to 1.

Our primary baseline is Deep Bilateral Learning

(DBL) [18], which shares similar architecture to ours and

achieves a good balance between quality and speed. An-

other strong baseline is CAN, which achieved the state-of-

the-art performance while runs reasonably fast. CAN also

serve as Cl(Il) in our framework. To ensure a fair compari-

son, we train the models using the official implementations

and training procedures for both methods.

Running Time and Memory Usage For image process-

ing operators, it’s crucial to run in real-time with limited

memory usage. The running time and memory usage of

our method together with the baseline methods are shown

in Figure 4, which are measured on a workstation with Intel

E5-2650 2.20GHz CPU and Nvidia Titan X (Pascal) GPU.

On GPU devices (shown by solid lines), DGFb takes

less than 10ms to process images with resolution ranging

from 5122 to 30722. The improved version DGF is slightly

slower, but it still runs in real-time on images with reso-

lution 30722. Compared to our method, CAN and DBL

runs much slower across different resolutions. For images

in 20482, DGFb and DGF take 4ms and 17ms respectively,

while CAN takes 160ms which are more than 40× and 9×
slower than our methods. DBL takes 51ms to run, which

is slightly faster than CAN but more than 10× slower than

DGFb. The advantage of our method in speed is even more

significant as the resolution grows. On CPU devices (shown

by dotted lines), both DGFb and DGF run more than 10×
faster than CAN.

The analysis running time is also reported. For Ih with

h × w × nI and Oh with h × w × nO. The running time

complexity of DGFb, DGF and DBL are O(nO × h × w),
O((nI+nO)×h×w) and O(nI×nO×h×w) respectively.

Besides speed, our method also takes less memory space

than both baseline methods on GPU devices. CAN is mem-

ory inefficient, which takes nearly 10G GPU memory space

to process an image with resolution 20482. DGF takes a
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Method
L0 smoothing [39] Detail Manipulation [13] Style Transfer [3] Non-local Dehazing [5] Image Retouching [6]

MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM

Input 73 29.61 0.796 443 22.12 0.789 3534 13.28 0.521 2081 16.95 0.684 1507 18.44 0.727

CAN 27 35.05 0.970 9 38.97 0.986 519 21.31 0.870 355 24.47 0.862 964 20.43 0.744

DBL 39 32.35 0.896 75 29.84 0.924 354 23.32 0.834 502 23.27 0.852 1056 20.21 0.748

DJF 90 29.40 0.937 100 28.99 0.927 383 22.73 0.856 649 21.04 0.724 1216 18.89 0.702

DGFs 36 32.90 0.914 94 29.03 0.903 340 23.12 0.733 355 24.17 0.862 961 20.54 0.753

DGFb 34 33.05 0.911 79 29.86 0.905 375 22.65 0.737 337 25.32 0.883 931 20.70 0.757
DGF 34 33.13 0.917 71 30.78 0.931 224 25.15 0.867 338 25.09 0.885 949 20.46 0.744

Table 1: Quantitative Comparison. We evaluate our methods DGFs, DGFb and DGF as well as three baseline methods

CAN, DBL and DJF on the test set of MIT-Adobe FiveK dataset. Five different operators are tested with three metrics,

namely MSE, PSNR and SSIM. Our methods achieves the state-of-the-art performance on three tasks and obtain comparable

results on the other two tasks.

similar amount of memory space to DBL but grows slower

as the resolution increases. DGFb is the most memory ef-

ficient method, which takes less than 1G memory even on

images with resolution 30722.

Quantitative and Qualitative Comparison Our method

achieves comparable or even better performance than the

baselines, as shown in Table 1. To evaluate the perfor-

mance, we run each method on the test set of MIT-Adobe

FiveK dataset, with images re-scaled to 1024s. Mean

Square Error (MSE, the lower, the better) serves as the eval-

uation metric. We also use PSNR and SSIM as our metrics

(the higher, the better) because the alternative metric MSE

is known to have limited correlation with perceptual image

fidelity [10].

Our method achieves the state-of-the-art performance on

style transfer, non-local dehazing and image retouching,

while obtaining comparable results on L0 smoothing and

multi-scale detail manipulation. Our method improves over

DBL across all the five tasks under all three metrics. For the

style transfer task, DGF achieves 25.15 dB in PSNR, which

improves over CAN by 3.84 dB and DBL by 1.83 dB.

However, our method and DBL are not performing as

well as CAN on the tasks of L0 smoothing and multi-

scale detail manipulation. We attribute this to the nature of

the methods following coarse-to-fine fashion, which could

not perform well when the action of the operator at high-

resolution cannot be recovered from the low-resolution out-

put. This is one limitation of our method, and we would like

to improve it in the future work.

The qualitative results are shown in Figure 6 as well as

in the supplementary material.

The Role of Guided Filtering Layer To verify the effec-

tiveness of the proposed guided filtering layer, we replace it

with DJF [30], which is a complex CNN designed for joint

image upsampling and achieves the state-of-the-art perfor-

mance among many filters. The results in Table 1 show that

our method outperforms DJF in all tasks. Our method also

(a) Guided Filter (b) Cl(Il) and F (I)

Figure 5: Ablation study results. a) reports the perfor-

mance in PSNR with different r and ε. b) demonstrates the

change of performance and running time with different in-

put resolution for Cl(Il), different kernel size and channel

size for the first layer of F (I).

runs much faster, which takes 9× less time than DJF on im-

ages with resolution 10242 (5ms v.s. 46ms).

The role of end-to-end learning is demonstrated by the

performance of DGFs and DGFb in Table 1. By jointly

training, DGFb achieves better performance on most tasks.

For non-local dehazing, DGFb improves 1.15 dB in PSNR,

while it improves 0.83 dB for detail manipulation.

By adding learnable F (I), we could gain significant im-

provements in several tasks, especially in tasks that are

resolution-dependent. Table 1 shows that DGF increases

PSNR by 2.5 dB compared to DGFb for style transfer. It

also obtains 0.92 dB improvement on detail manipulation.

Ablation Study We take a series of experiments on detail

manipulation to validate the function of hyper-parameters

in the proposed guided filtering layer.

We first evaluate the role of radius r and regularization

term ε. As shown in Figure 5a, the performance drops

quickly as r grows, and our default setting (r = 1) obtains

the best PSNR score. ε has limited effect on DGF. By in-

creasing it from 1e-8 (default setting) to 1e-2, we could only

improve PSNR by 0.49 dB.

The role of Cl(Il) are then explored by setting Il to dif-

ferent resolution, ranging from 32s to 512s. As shown in
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Non-local Dehazing [5] Style Transfer [3]

Multi-scale Detail Manipulation [13] L0 Smoothing [39]

Saliency Object Detection [32] Semantic Segmentation [22]

Figure 6: Qualitative results of four tasks in image processing and two tasks in computer vision. Best viewed in color.

Figure 5b, by changing the resolution of Il from 64s to 256s,

DGF improves PSNR by 3.93 dB with 2.7 ms more running

time.

We also validate the function of F (I) by varying the

kernel size and channel size of its first convolution layer.

Figure 5b shows that channel size has the huge impact on

running time, but no significant improvement could be ob-

tained. However, by changing the kernel size from 1 (de-

fault setting) to 5, we could achieve better performance by

1.98 dB, with another 2.22 ms time cost, which also vali-
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Resolution 768s 1024s 1280s 1536s 1792s 2048s
PSNR 29.11 30.78 30.25 30.51 30.65 30.55

Table 2: Cross resolution generalization of DGF on de-
tail manipulation.

Method
Depth Prediction Saliency Segmentation

rms log10 Fβ Mean IOU

Baseline 6.081 0.216 90.61% 71.79%

DenseCRF - - 91.87% 72.69%

DGFs 5.904 0.211 91.29% 71.72%

DGF 5.887 0.209 91.75% 73.58%

Table 3: Quantitative Comparison. Our method DGF
achieves significant improvement compared to both base-

line method and DGFs across all there tasks, while it’s

comparable to DenseCRF.

dates the importance of F (I).

Cross Resolution Generalization In the main experi-

ment, we evaluate our method with 1024s images. We now

test how DGF generalizes across different resolutions. We

first resize the test images into different resolution, rang-

ing from 768s to 2048s, and then generate the correspond-

ing ground truth as described in the main experiment. The

PSNR scores across resolutions tell the stability of our

method, as shown in Table 2. Our method could perform

equally well on 2048s images as the 1024s ones, despite the

max resolution used in training is 1672s.

5.2. Computer Vision Tasks

Experiment Setup To demonstrate the generalization of

our method, we apply DGF to three dense prediction tasks,

ranging from low-level vision to high-level vision, namely

depth estimation, saliency detection and segmentation.

For computer vision tasks, Cl(Il) takes Ih as inputs to

generate Ol. The guided filtering layer is also adapted ac-

cordingly to work well.

KITTI [17], MSRA-B [25] and PASCAL VOC 2012 [12]

are used for training and testing respectively. The details of

the three tasks as well as the training and testing procedure

will be discussed in the supplementary material.

Main Results We compare the performance between

DGFs, DGF and Cl(Il) (noted as Baseline), as shown in

Table 3. For depth estimation, DGFs obtain 0.177 improve-

ments in rms (the lower, the better) over the baseline. By

end-to-end training and adding the learnable guidance map,

we achieve 5.887 in rms, which improves 0.194 points.

Similar results are also observed in saliency detection and

semantic segmentation. Fβ (higher is better) increases from

90.61% to 91.29% for saliency detection by applying the

guided filter layer. By changing DGFs to DGF, Fβ fur-

ther improves to 91.75%. For segmentation, DGF obtains

73.58% in mean IOU (the higher, the better), which in-

creases 1.79 points compared to the baseline method.

We also compare with DenseCRF [28], which is a com-

monly used filter for saliency detection and semantic seg-

mentation. Experiments show that our method is compara-

ble to DenseCRF in saliency detection, while obtains better

performance in semantic segmentation. Besides, the pro-

posed layer performs at least 10× faster than DenseCRF.

Averagely, our approach takes 34ms to process a 5122 im-

age, while Dense-CRF takes 432 ms on CPU.

Figure 6 visualizes the comparison results. The results

obtained by our approach are better in preserving edges and

details 2.

6. Conclusion
We present a novel deep learning building block, namely

guided filtering layer. This new building block aims

at efficiently generating high-resolution output with low-

resolution one and a high-resolution guidance map. By for-

mulating the guided filter into a fully differentiable mod-

ule, deep-learning-based image processing and dense pre-

diction approaches would benefit from end-to-end training

and generate high-quality results. We further extend the

proposed layer with a learnable transformation function,

which makes it generalize well to different tasks by produc-

ing task-specific guidance maps. We integrate the guided

filtering layer with CNNs and evaluate it on five image pro-

cessing tasks and three computer vision tasks. Experiments

show that the proposed layer could achieve the state-of-the-

art performance while taking 10-100× less computationally

time cost. We also conduct a comprehensive ablation study,

which demonstrates the contribution of each component as

well as each hyper-parameters. Although we observe the

proposed approach obtains the significant improvements, it

is noticeable that guided filter layer is not in an optimal ar-

chitecture. We believe this is because the guided filter is

a resolution-dependent operator. In the future, we plan to

develop a better architecture to tackle this issue.
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