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This paper develops a new control approach for trajectory tracking of mobile robots. For
the purpose of tracking trajectory, the error dynamics of a mobile robot are divided into
a first-order subsystem and a second-order subsystem by using a cascaded control design.
Firstly, a global finite-time control law of the angular velocity is designed for the first-order
system in order to stabilize the angle error of mobile robots. Subsequently, a finite-time
sliding mode control law of forward velocity is synthesized, which guarantees the global
stability of the second-order subsystem. Furthermore, the global uniform stability of the
whole closed-loop system is analyzed by employing cascaded control theory, and some
sufficient conditions are derived. Finally, the proposed control algorithm is applied to
mobile robots, where simulation results demonstrate good convergence and performance.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Over the past two decades, the mobile robots have been widely used in various industrial processes. One of the key chal-
lenges in mobile robots is the control system, which is known as a class of typical nonholonomic system [10,21,40]. One
important topic in control system design of mobile robots is trajectory tracking. However, the tracking error system of
mobile robots is a coupled nonlinear system, which fails to meet Brockett’s necessary condition [1] and complicates the
problem significantly.

In recent years, the tracking control problem for nonholonomic mobile robots has attracted more attentions. Kanayama
et al. [11] proposed a tracking control law by using the Taylor linearization of the corresponding error model. To extend the
trajectory tracking problem in Cartesian space, Samson and Ait-Abderrahim [25] developed a global tracking control law in
1991. A smooth controller presented in [31] achieved exponential stability for any initial condition, thus improved the con-
vergence rate of the algorithm. A time-varying feedback control method was developed by using the chain form [26].

To further investigate the tracking problem, some important research efforts have been deployed. Sliding mode control
methods were proposed for mobile robots [2,22], similar problem with bounded disturbances was considered in [34]. The
smooth time-varying feedback control law was introduced in [28,29], which guarantees the global exponential convergence.
By combining cascaded design and backstepping approach, a tracking controller was designed in [6]. In [7], under the con-
sideration of input torque saturation and external disturbances, the authors derived a new adaptive control scheme. On the
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other hand, intelligent control theory was introduced to solve the tracking control problem of mobile robots
[14,16,17,27,35,36,38]. The wide applications of these control methods promote the development of tracking control. Note
that most of the aforementioned results only consider the asymptotic stability, which means that they achieve convergence
in infinite settling time. In addition, the asymptotical stability [2,22,34] may not yield fast convergence for high-precision
control. In fact, it is much more desirable to reach the target in finite time for practical mobile robots.

Finite-time tracking control method [19,32,33,37] is a fast control technique, which achieves the desired trajectory in
finite time. A global finite-time tracking controller was given for the nonholonomic systems in [33]. For the uncertain
nonlinear systems, Huang et al. [8] proved the global finite-time stabilization based on the finite-time Lyapunov stability
theorem. The finite-time control techniques were employed for attitude control in [4,12]. However, the finite-time track-
ing control problem of mobile robots has rarely been studied till present, and only a few results have been reported
[13,19,20]. Moreover, the low efficiency is still a problem of these methods, and the strong constraints on the desired
velocities should be satisfied. To overcome these difficulties, in this paper, we propose a class of novel control laws based
on cascaded control design. By using cascaded control design, we obtain two subsystems. One subsystem is stabilized by
an improved global finite-time control law. To relax the strict constraints on the desired velocities, the other subsystem is
stabilized by a finite-time sliding mode control law. By combining the finite time control technique and the sliding mode
control approach, we improve the effectiveness of the converge rate of sliding mode control approach compared with
[5,18,39,41].

The rest of the paper is organized as follows. The dynamical model of mobile robots and the tracking control problem are
described in Section 2. In Section 3, the tracking control law is designed based on cascaded approach. Furthermore, the
stability of the closed-loop system is analyzed. In Section 4, the simulation results by using the control laws are given.
The conclusion is drawn in Section 5.

2. Problem description

In this section, we give the kinematic model of a mobile robot and the definition of tracking control problem.

2.1. Kinematic model

A mobile robot considered in this paper is made up of three wheels. Two driving wheels at the front of the mobile robot
are parallel, driven by two independent motors. Another wheel is a driven wheel at the back of the mobile robot (see Fig. 1).
Let D and r denote the length of the wheel axis and the radius of the driving wheels, respectively. The velocities vL and vR

represent the velocities of the left wheel and the right wheel, respectively. The control variables v and w denote the forward
velocity and the angular velocity of the mobile robot respectively, which can be described as [15]
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Fig. 1. Posture errors of the coordinate for a mobile robot.



Y. Zhang et al. / Information Sciences 284 (2014) 31–43 33
The kinematic model of the mobile robot in the X–Y plane is given as follows:
_q ¼
_x
_y
_h

2
64
3
75 ¼

cos h 0
sin h 0

0 1

2
64

3
75u ð2Þ
where q = [x,y,h]T denotes the posture coordinate in the center of the mobile robot mass. (x,y) is defined as the Cartesian
coordinates, and h is the orientation angle between the heading direction and the x-axis. The control input u is
u ¼ ½v w �T ð3Þ
Assume that there is no slipping effect, and the kinematic model of the mobile robot satisfies the nonholonomic con-
straint. For the mobile robots under above assumptions, the nonholonomic constraint equation can be expressed as
_x sin h ¼ _y cos h ð4Þ
2.2. Tracking control problem

The aim of tracking control problem is to design the laws of the forward velocity v and the angular velocity w, such that
the reference trajectory is tracked by the mobile robot. In Fig. 1, the state vector qd = (xd,yd,hd)T denotes the reference posture
and the state vector q = (x,y,h)T represents the actual posture. The state vector qe = (xe,ye,he)T is defined as the posture error.

Accord to the geometric relationship, an efficient global coordinate transformation is described as follows [11]:
qe ¼
xe

ye

he

2
64

3
75 ¼

cos h sin h 0
� sin h cos h 0

0 0 1

2
64

3
75

xd � x

yd � y

hd � h

2
64

3
75 ð5Þ
By taking the derivative of Eq. (5), the error dynamics of the system can be obtained as
_xe ¼ yew� v þ vd cos he ð6Þ
_ye ¼ �xewþ vd sin he ð7Þ
_he ¼ wd �w ð8Þ
Consider � p
2 < h < p

2 ; jvdj 6 vmax
d and wd – 0, where vmax

d is appropriate constants, and j�j denotes the absolute value sign.
In this paper, the trajectory tracking problem for mobile robots is to design a time-varying state-feedback laws of the form
w ¼ wðt; xe; ye; heÞ; v ¼ vðt; xe; ye; heÞ ð9Þ
such that three state errors xe, ye and he converge to zero in a finite time.

3. Tracking control strategy

In this section, a control scheme combining three different strategies is proposed. Firstly, the complicated system is
decomposed into two subsystems by cascaded control design. For the two subsystems, a finite-time control method and
a finite-time sliding mode control are developed respectively.

3.1. Cascaded control design

Consider the cascaded system _z ¼ f ðt; zÞ that can be expressed as
_z1 ¼ f1ðt; z1Þ þ gðt; z1; z2Þ ð10Þ
_z2 ¼ f2ðt; z2Þ ð11Þ
where z1 = (xe,ye) 2 R2, z2 = he 2 R. The function f1(t,z1) is continuously differentiable with respect to (t,z1), f2(t,z2) and
g(t,z1,z2) are continuous in their arguments.

Assuming z2 = 0, it follows from Eq. (10) that
_z1 ¼ f1ðt; z1Þ
Therefore, Eq. (10) can be viewed a subsystem
R1 : _z1 ¼ f1ðt; z1Þ ð12Þ
which is perturbed by the following subsystem
R2 : _z2 ¼ f2ðt; z2Þ ð13Þ
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Definition 1 [9]. A continuous function a: [0,1) ? [0,1) is said to be a class K function only if it is strictly increasing and
a(0) = 0.
Lemma 1 ([13,30]). Consider the cascaded system (10) and (11). If the following assumptions A1–A3 hold, then the system (10)
and (11) is globally uniformly stable (GUS):

� A1. Assume that the subsystem R1 : _z1 ¼ f1ðt; z1Þ is GUS and that there exists an auxiliary positive definite Lyapunov function
candidate V(t,z1): RP0 � Rn ? RP0 such that
@V
@z1

����
���� z1k k 6 cVðt; z1Þ 8 z1k kP g
where c > 0 and g > 0 are constant. Furthermore, @V
@z1
ðt; z1Þ is bounded uniformly in t for all kz1k 6 g. In other words, there exists a

constant c1 > 0 and t P t0 P 0 such that
@V
@z1

����
���� 6 c1 8kz1k 6 g
� A2. The subsystem R2 : _z2 ¼ f2ðt; z2Þ is globally uniformly asymptotically stable.
� A3. For the system (10), there exists a bounded function W(t,z1): RP0 � R2 ? RP0 positive definite, proper and radially

unbounded, which satisfies
_Wðt; z1Þjð10Þ 6 c1ðWðt; z1ÞÞ; 8t P t0 P 0
where _Wðt; z1Þjð#Þ denotes the time derivative of W(t,z1) along the solutions of the differential equation (#). c1: RP0 ? RP0 is a
non-decreasing function satisfying the following condition for some constant a > 0
c1ðaÞP 0;

Z 1

a

dg
c1ðgÞ

¼ 1
Proof. To prove that the cascaded system (10) and (11) is GUS, we must show that all the solutions of (10) and (11) are uni-
formly bounded and uniformly attractive to the origin. The similar results were given by Vidyasagar (1980, Theorem 3)
except the assumption A3. From Li and Tian (2007, Theorem 1), it can be seen that assumption A3 is also obtained from Vid-
yasagar (1980, Theorem 3). h
Remark 1. One important idea of the cascaded control design is simplifying the design of laws [23,24], which is often sig-
nificant in some cases [30]. In this paper, cascaded ideas are used to simplify the kinematic dynamics of mobile robots so as
to derive a class of novel control laws.
3.2. Design of angular control law based on finite-time control technique

According to the ideas of the cascaded system, we can view (8) as a first-order subsystem R2:
_he ¼ wd �w ð14Þ
Theorem 1. Consider a first-order linear system
_x ¼ u ð15Þ
which can be stabilized by the following control law in a finite time
u ¼ �x� ax� bxq0=p0 ð16Þ
where x 2 R denotes state variables, a > 0, b > 0, p0 > 0 and q0 > 0 are odd integers, q0/p0 < 1.
Proof. Substituting (16) into (15), we obtain
_x ¼ �x� ax� bxq0=p0 ð17Þ
From (17), we have
x�q0=p0
dx
dt
þ ð1þ aÞx1�q0=p0 ¼ �b ð18Þ



Y. Zhang et al. / Information Sciences 284 (2014) 31–43 35
Let y ¼ x1�q0=p0 . We have dy
dt ¼

p0�q0
p0

x�q0=p0 dx
dt, such that
dy
dt
þ p0 � q0

p0
ð1þ aÞy ¼ �p0 � q0

p0
b ð19Þ
Note that the solution of dy
dxþ PðxÞy ¼ QðxÞ is given by
y ¼ e�
R

PðxÞdx
Z

QðxÞe
R

PðxÞ dxdxþ C0

� �
ð20Þ
Applying (20), the solution of (19) can be written as
y ¼ e�
R t

0

p0�q0
p0
ð1þaÞdt

Z t

0
� p0 � q0

p0
be
R t

0

p0�q0
p0
ð1þaÞdt dt þ C0

� �
ð21Þ
Let C0 = y(0), we have
y ¼ e�
p0�q0

p0
ð1þaÞt

Z t

0
� p0 � q0

p0
be

p0�q0
p0
ð1þaÞt dt þ yð0Þ

� �
¼ � b

1þ a
þ b

1þ a
e�

p0�q0
p0
ð1þaÞt þ yð0Þe�

p0�q0
p0
ð1þaÞt ð22Þ
Assume that t = ts, then x = 0. Note that y = 0 when x = 0. From (22), we obtain
e
p0�q0

p0
ð1þaÞts ¼ bþ ð1þ aÞyð0Þ

b
ð23Þ
From an initial state x(0) – 0 to x = 0, the convergence time can be expressed by
ts ¼
p0

ð1þ aÞðp0 � q0Þ
ln
ð1þ aÞxð0Þðp0�q0Þ=p0 þ b

b
ð24Þ
The proof is complete. h

Consider the first-order subsystem (14), we design a finite-time control law by using Theorem 1. The control law can be
designed as
w ¼ wd þ he þ a1he þ b1h
q1=p1
e ð25Þ
where he 2 R denotes state variables, a1 > 0, b1 > 0, p1 > 0 and q1 > 0 are odd integers, q1/p1 < 1. From (16), the control law of
angular velocity is designed in the following form:
_he ¼ �he � a1he � b1h
q1=p1
e ð26Þ
Therefore, the system (14) will reach he = 0 at time t1, which is given by
t1 ¼
p1

ð1þ a1Þðp1 � q1Þ
ln
ð1þ a1Þheð0Þðp1�q1Þ=p1 þ b1

b1
Remark 2. If he is far away from zero, the control law (26) can be approximated by its linear term _he ¼ �he � a1he whose fast
convergence when it is far away from zero is well understood. If he is close to zero, the control law (26) can be approximated
by the nonlinear term _he ¼ �b1hq1=p1

e .
Theorem 2. Consider the system (14), there exists the control law (25) such that the system (14) is finite-time stable.
Proof. According to he þ a1he þ b1h
q1=p1
e ¼ 0, we only obtain the solution he = 0. On the other hand, to analyze the stability of

the control system given by (14) and (25), we choose Lyapunov function described by
V ¼ 1
2

h2
e ð27Þ
Using (26), we can have
_V ¼ _hehe ¼ ð�he � a1he � b1h
q1=p1
e Þhe ¼ �h2

e � a1h
2
e � b1h

1þq1=p1
e ¼ �h2

e � a1h
2
e � b1h

ðp1þq1Þ=p1
e

Noting that p1 > 0 and q1 > 0 are odd integers, a1 > 0 and b1 > 0, we obtain
_V 6 0ð _V ¼ 0 if and only if he ¼ 0Þ
According to Lemma 2, the closed-loop system is finite-time stable.
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From the stability analysis of the control system (14) and (25), the Lyapunov function V is positive definite (i.e. V(t,0) = 0
and V(t,he) > 0 for all he–0), its derivative _V is negative definite (i.e. V(t,0) = 0 and V(t,he) < 0 for all he–0). Therefore, the
closed-loop system (14) and (25) is global finite-time stable. h
Remark 3. The control law of the angular velocity is designed for mobile robots based on finite-time control method. The
corresponding first-order system is stabilized by this finite-time control law of the angular velocity such that the angle error
tends to zero in a finite time. With this, the error dynamics (6)–(8) are converted into a second-order system based on the
cascaded approach. Different from the finite-time control laws in [13,19,20], we introduce two linear terms into the design of
the finite-time control laws in order to obtain faster convergence rate.
3.3. Design of the forward velocity control law based on finite-time sliding mode control

Note that the control law (25) guarantees that the angular error converges to zero. Thus the nonlinear tracking error mode
(6)–(8) can be reduced to the following linear time-varying system when he = 0.
_xe

_ye

� �
¼

0 wdðtÞ
�wdðtÞ 0

� �
xe

ye

� �
þ

1
0

� �
½vdðtÞ � v � ð28Þ
Define x1 ¼
xe

ye

� �
;A1 ¼

0 wdðtÞ
�wdðtÞ 0

� �
; B1 ¼

1
0

� �
and u1 = vd(t) � v, then
_x1ðtÞ ¼ A1ðtÞx1ðtÞ þ B1u1ðtÞ ð29Þ
We are now in the position of proving the controllability of the system (29). According to the controllability criterion, we can
obtain
M0ðtÞ ¼ B1 ¼
1
0

� �

M1ðtÞ ¼ �A1ðtÞM0ðtÞ þ
d
dt

M0ðtÞ ¼
0

wdðtÞ

� �
� �
Furthermore, Rank½M0ðtÞ..
.
M1ðtÞ� ¼ Rank 1 0

0 wdðtÞ
¼ 2, where wd(t) – 0. Therefore, the system (29) is controllable.

Based on the theory of cascaded control design, if wd(t) – 0, we consider (28) as the subsystem R1, and (28) can be trans-
formed into
_xe ¼ wdye � v þ vd ð30Þ
_ye ¼ �wdxe ð31Þ
We further consider the subsystem given by (31) and design a state feedback of xe so as to robustly stabilize the state
ye = 0.

Theorem 3. Consider system (31), where sgn(�) is the sign function. Note that wd – 0, k0 is a constant and k0 > 0. There exists
xe = k0yesgn(wd) such that the system (31) is global uniform stable.
Proof. To solve (31) for the equilibrium point, we get �wdxe = 0, and xe = 0. Therefore, the subsystem (31) only has one
equilibrium point. To analyze the stability of system (31), we consider the Lyapunov function candidate VðyeÞ ¼ 1

2 y2
e . The

Lyapunov derivative _VðyeÞ is given by
_VðyeÞ ¼ ye _ye ¼ yeð�wdxeÞ ¼ �k0y2
e wdsgnðwdÞ
Note that sgn(wd) > 0 when wd > 0 and sgn(wd) < 0 when wd < 0, so wdsgn(wd) > 0. _VðyeÞ 6 0 ( _VðyeÞ ¼ 0 if and only if ye = 0),
which implies that the zero solution xe = 0 to (31) is globally asymptotically stable. h
Remark 4. In Theorem 3, we can use a class of continuous functions such as wd
jwd jþd ; 1� e�k1wd and �1þ ek2wd to substitute the

term sgn(wd), where d, k1, k2 are constant and d > 0, k1 > 0, k2 > 0, Theorem 3 still holds.
The sliding manifold is defined by
s ¼ xe � k0yesgnðwdÞ ð32Þ
Using xe = k0yesgn(wd), we obtain
s ¼ xe � k0yesgnðwdÞ ¼ 0 ð33Þ
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To guarantee the existence of the sliding manifold s, namely _ss < 0; _s is specified by
_s ¼ �s� a2s� b2sq2=p2 ð34Þ
where a2 > 0, b2 > 0, p2 > 0 and q2 > 0 are odd integers, q2/p2 < 1.
From Theorem 1, the system (34) will reach s = 0 at t2 which is written by
t2 ¼
p2

ð1þ a2Þðp2 � q2Þ
ln
ð1þ a2Þsð0Þðp2�q2Þ=p2 þ b2

b2
The sliding mode control law is designed using (30)–(32), (34). We can obtain
_s ¼ �s� a2s� b2sq2=p2 ¼ _xe � k0 _yesgnðwdÞ ¼ wdye � v þ vd � k0ð�wdxeÞsgnðwdÞ ð35Þ
Then, it follows from (35) that
v ¼ vd þwdye þ k0wdxesgnðwdÞ þ sþ a2sþ b2sq2=p2 ð36Þ
Consider the subsystem (30) and (31), we obtain the control law of the forward velocity which guarantees global uniform
stability of this closed-loop subsystem by exploiting the finite-time sliding mode control.

Remark 5. By choosing the sliding manifold shown in (32), the state xe will converge to k0yesgn(wd) in finite time by the
design of the reaching law (34). Obviously, if the state xe = 0, then the state ye = 0. From Theorem 3, we know that ye will
converge to zero eventually with the change of convergence time. It follows that xe will converge to zero as long as ye

converges to zero.
Remark 6. In [13,19,20], the desired angular velocity wd for mobile robots needs to satisfy 0 < wmin
d 6 jwdj 6 wmax

d , where
wmin

d and wmax
d are appropriate constants. In contrast, the desired angular velocity wd only needs to satisfy wd – 0 in this

paper. Hence, the design of the control laws in this paper relaxes strict constraints on the desired velocities reported in
the existing literatures.
Remark 7. From (34), it is remarkable that the design of the control law introduces a nonlinear term for the second-order
system (30) and (31). In [2,3,5,18,22,39,41], the states arrive at the sliding manifold in infinite settling time. In this paper, we
construct the control law of the forward velocity by using finite-time sliding mode control in order to improve the transient
performance substantially. Furthermore the finite-time sliding mode control law makes the states of the error dynamics
arrive at the sliding manifold in the finite time. Accordingly, it is favorable to improve the convergence rate of the closed-
loop system (30), (31) and (36). In addition, the sign function sgn(s) is employed to construct the reaching law _s in
[2,5,39,41]. However, the chattering phenomenon is caused by this form of the reaching law. It is well-known that the main
disadvantage of sliding mode control method is the chattering problem. In this paper, we use the continuous function shown
in (34) instead of the piecewise function form such as [2,5,39,41]. This is effective to eliminate the chattering phenomenon.
3.4. Stability analysis

In this section, we analyze the stability of the closed-loop system (6)–(8), (25) and (36) by using Lemma 1.

Theorem 4. Consider the system (6)–(8), there exist the control laws (25) and (36) such that the system (6)–(8) is global uniform
stable.
Proof. Note that the sliding manifold s converges to zero in a finite time, we can obtain xe = k0yesgn(wd), and (36) will be
replaced by
v ¼ vd þwdye þ k0wdxesgnðwdÞ ð37Þ
Substituting (25) and (37) into (6)–(8), we have
_xe

_ye

� �
¼
�k0wdxesgnðwdÞ

�xewd

� �
þ

yerðheÞ þ vdðcos he � 1Þ
vd sin he � xerðheÞ

� �
ð38Þ

_he ¼ �rðheÞ ð39Þ
where rðheÞ ¼ he þ a1he þ b1h
q1=p1
e , obviously, the function r(�) 2 K. Using Lemma 1, we obtain
f1ðt; z1Þ ¼
�k0wdxesgnðwdÞ

�xewd

� �
; gðt; z1; z2Þ ¼

yerðheÞ þ vdðcos he � 1Þ
vd sin he � xerðheÞ

� �
;

f2ðt; z2Þ ¼ �rðheÞ:
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Consider a state transformation defined by
z1 ¼
xe

ye

� �
; z2 ¼ he
The derivatives of z1 and z2 are
_z1 ¼ f1ðt; z1Þ þ gðt; z1; z2Þ ð40Þ
_z2 ¼ �rðheÞ ð41Þ
� Verification of A1: Consider the system _z1 = f1(t,z1), we choose Lyapunov function described by
V ¼ 1
2

x2
e þ

1
2

y2
e ð42Þ
Then we compute the time derivative of (42) along the subsystem (30) and (31), we have
_V ¼ _xexe þ _yeye ¼ ðwdye � v þ vdÞxe þ ð�wdxeÞye ¼ ð�k0wdxesgnðwdÞÞxe þ ð�wdxeÞye

¼ �k0wdx2
e sgnðwdÞ � k0wdy2

e sgnðwdÞ
Note that wdsgn(wd) > 0 and k0 > 0, we obtain
_V 6 0ð _V ¼ 0 if and only if xe ¼ 0 and ye ¼ 0Þ
Therefore, _z1 ¼ f1ðt; z1Þ is GUS and satisfies the rest of A1.
� Verification of A2: Consider the system _z2 = �r(he), from the proof of Theorem 2, we can draw a conclusion that this

system satisfies A2.
� Verification of A3: Consider the system (40), we choose Lyapunov function described by
W ¼ 1
2

x2
e þ

1
2

y2
e ð43Þ
which is obviously a decreasing function. Taking the derivative of (43) along the system (40), we obtain
_W ¼ _xexe þ _yeye ¼ �k0wdx2
e sgnðwdÞ � k0wdy2

e sgnðwdÞ þ vd½xeðcos he � 1Þ þ ye sin he� 6 vd½xeðcos he � 1Þ þ ye sin he�
6 2vmax

d kz1k
Taking c1(g) = g, we can verify that the system (40) satisfies A3. Therefore, using Lemma 1, we know that Theorem 4
holds. h

4. Simulation results

To demonstrate the effectiveness of the proposed control laws, we simulate the kinematic differential error model of
mobile robots with (6)–(8). The following section is discussed in two different situations.

(1) Tracking of a curve line with the desired velocities given by vd(t) = 1, wd(t) = 1.

The desired posture qd = (xd,yd,hd)T is specified as
xdðtÞ ¼ 1:5 cosðpt=15Þ
ydðtÞ ¼ 1:5 sinð2pt=15Þ
hdðtÞ ¼ wdt ¼ t

8><
>: ð44Þ
We employ the control laws (25) and (36), where all the parameters are given by a1 = 4, b1 = 8, p1 = 7, q1 = 5, p2 = 5, q2 = 3,
k0 = 1, a2 = 0.5, b2 = 2. In the simulation, we take the initial posture errors as [xe(0), ye(0), he(0)]T = [�1.8,0.3,�p/5]T. The sim-
ulation results are showed in Figs. 2–4.

Furthermore, to verify that the convergence rate in this paper is faster than in [13,19], the control law of angular velocity
is chosen as w ¼ wd þ b1h

q1=p1
e which was reported in the two references above. We then also simulate the closed loop sys-

tem, where the comparative simulation results are showed in Fig. 5.

(2) Tracking of a curve line with the desired velocities given by vd(t) = 2t, wd(t) = t (jvd(t)j 6 1, jwd(t)j 6 1).
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Fig. 3. Trajectory tracking errors. (a) X axis error; (b) Y axis error; (c) Angle error.
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Fig. 7. Trajectory tracking errors. (a) X axis error; (b) Y axis error; (c) Angle error.
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The desired posture qd = (xd,yd,hd)T is given by
1 For
xdðtÞ ¼ cosðptÞ
ydðtÞ ¼ sinðptÞ
hdðtÞ ¼ wdt ¼ t

8><
>: ð45Þ
We also use the time-varying state feedback control law (25) and (36), where all the parameters and the initial posture
errors remain unchanged except a2 = 0.3, b2 = 1. The simulation results are depicted in Figs. 6–8.

Similarly, the control law of angular velocity is chosen as w ¼ wd þ b1h
q1=p1
e which was reported in [13,19]. Then we also

simulate the closed loop system in the condition of two different virtual angular velocities, the comparative simulation
results are showed in Fig. 9.

As shown in Figs. 2 and 6, the red1 solid line represents the desired trajectory; the blue dotted line represents the practical
trajectory. Figs. 3 and 7 give the error of X-axis, the error of Y-axis and the error of angle for mobile robots respectively. Figs. 4
and 8 illustrate the control inputs v and w of mobile robots. In Figs. 5 and 9, the red solid line denotes the angle error with the
control law designed in the present paper, and the blue dotted line denotes the angle error with the control law presented in
[13,19]. Obviously, we can find that the convergence rate with respect to the error of angle is faster than the results reported in
the two reported papers. According to above two different situations, as far as the desired velocities are concerned, no matter
they are constant or time-varying, the mobile robot can always track the desired trajectory nicely. In the meanwhile, three state
errors can be stabilized by using the proposed control laws in this paper.
5. Conclusions

In this study, a novel control method is proposed to achieve the trajectory tracking control of nonholonomic mobile
robots. The error model of mobile robots is divided into two subsystems by using the cascaded design. For the first-order
subsystem, this paper develops a finite-time control law in order to stabilize the angular error. To relax the strict constraints
on the desired angular velocity for mobile robots, the finite-time sliding mode control is used to design the control law of the
forward velocity for the second-order subsystem, which improves the convergence rate and overcomes the chattering of the
sliding mode control systems. The stability of the developed control method is analyzed, and some sufficient conditions are
given. Finally, the simulation results verify the feasibility of this proposed control approach. Compared to the general finite-
time control methods, the proposed control method can achieve faster convergence rate.
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