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ABSTRACT   

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. The high probability of 
metastasis makes its prognosis very poor even after potentially curative treatment. Detecting high metastatic HCC will 
allow for the development of effective approaches to reduce HCC mortality. The mechanism of HCC metastasis has been 
studied using gene profiling analysis, which indicated that HCC with different metastatic capability was differentiable. 
However, it is time consuming and complex to analyze gene expression level with conventional method. To distinguish 
HCC with different metastatic capabilities, we proposed a deep learning based method with microscopic images in 
animal models. In this study, we adopted convolutional neural networks (CNN) to learn the deep features of microscopic 
images for classifying each image into low metastatic HCC or high metastatic HCC. We evaluated our proposed 
classification method on the dataset containing 1920 white-light microscopic images of frozen sections from three 
tumor-bearing mice injected with HCC-LM3 (high metastasis) tumor cells and another three tumor-bearing mice injected 
with SMMC-7721(low metastasis) tumor cells. Experimental results show that our method achieved an average accuracy 
of 0.85. The preliminary study demonstrated that our deep learning method has the potential to be applied to microscopic 
images for metastasis of HCC classification in animal models. 

Keywords: Hepatocellular carcinoma classification, metastasis, microscopic imaging, machine learning, convolutional 
neural networks (CNN) 
 

1. INTRODUCTION  
Hepatocellular carcinoma (HCC) is the sixth most prevalent cancer and the second most frequent cause of cancer-related  
death.1 Hepatocarcinogenesis involves multiple steps with accumulation of genetic and epigenetic alternations of the 
hepatocyte genomes, eventually leading to malignancy development and metastasis.2 The evaluation of metastatic 
capability of HCC is an important component of the diagnosis and treatment procedure. Patients with positive metastatic 
HCC will receive more complex treatment compared with patients negative for metastasis, frequently resulting in more 
aggressive clinical management. 

HCC metastasis is regulated by multiple gene and biomarkers2-4, which is achieved by liver biopsy. However, it is 
invasive and limited by sample errors, interobserver variability and various potential complications. Biomarkers, such as 
enhancer of zeste homolog 2 (EZH2)2 and N-myc downstream regulated gene 2 (NDRG2)4, are used to assess HCC 
metastasis, but their diagnostic performance remains controversial in clinical applications. 

Computer-assisted image analysis has been developed to aid in the detection and segmentation of microscopic images. 
Can et al. achieved accurate classification of colon tissue images based on a deep belief network of restricted Boltzmann 
machines (RBMs).5 Authors tested the method on two datasets that contain microscopic images of colon tissues stained 
with the routinely used hematoxylin-and-eosin technique and obtained accurate classification results. Furthermore, 
Teramoto et al. developed an automated classification scheme for lung cancers presented in microscopic  
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images using a deep convolutional neural network (DCNN). The developed scheme obtained accurate classification of 
lung cancers. Recently, Neeru et al. applied a pre-trained Inception-v3 CNN with reverse active learning for the 
classification of healthy and malignancy breast tissue using optical coherence tomography (OCT) images.6 The trained 
network attained accurate classification. However, despite these development, data mining of microscopic images is still 
under exploration.  

Here, we successfully collected two kinds of white-light microscopic images from six tumor tissues, with 1960 
microscopic images, which we believe were suitable for the application of the deep learning method. To the best of our 
knowledge, this is the first prospective study that applied the deep learning on white-light microscopic images for 
classification of HCC with different metastatic capability. Furthermore, the experimental results demonstrated that our 
approach can achieve accurate metastasis of HCC classification which can be applied for other applications of cancer 
research. 

2. METHODS 
2.1 In vivo experiment 

Male BALB/c nude mice were purchased from the Beijing Vital River Laboratory Animal Technology Co. Ltd. All 
animal experiments were performed under the guideline approved by the Institutional Animal Care and Use Committee 
at Peking University. All animal experiments were performed under isoflurane gas anaesthesia (500 mL/min, Matrx 
VMR Small Animal Anesthesia Machine, Matrx, USA), and all efforts were made to reduce the pain of the mice. To 
build the subcutaneous tumor models, 2×106 HCC-LM3 (high metastasis) or SMMC-7721 (low metastasis) cells were 
implanted in the back of mice (n=6). The subcutaneous models were ready for experimentation when tumor volume 
reached 60 mm3. After anesthetized with 2% isoflurane, the skin (covering the tumor) was removed and exposed tumor 
was resected. Following the surgical procedures, the resected tumors were embedded in tissue freezing medium for 
frozen section. 

2.2 Image data acquisition 

The frozen sections (10 µm) were taken every 100 µm from each tumor tissue block and imaging with inverted 
microscope (Leica DMI3000, Germany) equipped with an electron multiplying charge coupled device (EMCCD) 
camera. Data of microscopic images from each kind of tumor tissue were acquired randomly. 

2.3 Image preprocessing  

A series of microscopic images (2048 × 2048 × 960) were selected from each kind of tumor. Each image was firstly cut 
into 512 × 512. Then, the mean stretching was used for enhancement and computation reduction.7 The mean intensity 
was computed over an entire image and was used to adjust the intensity of each pixel. The mean intensity is defined as 
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where (i, j) denotes the coordinates of pixel in a given image, f presents the intensity of pixel. N is the dimension of 
images, which is 512 in our experiment. Mean stretching is implemented based on the following expression. 
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for i=1,2,3,…,N and j=1,2,3,…,N.  

2.4 Image classification based on CNNs 

In this study, we adopted the CNN method, one of the deep learning techniques, for the automatic analysis of 
microscopic images. For image classification, microscopic images with the size of 512 × 512 pixels was selected as the 
input layer, and then the CNN model (Fig. 1) was triggered. Five hidden layers (convolutional layers) were designed in 
CNN, and each followed with a max pooling layer. Each of the first three hidden layer contained 16 feature maps, and 
each of the rest two contained 8 feature maps, which were obtained by applying 16 or 8 convolution filters (3 × 3 pixels) 
to the prior layer. The pooling size was 2 ×2 pixels. At the end, a fully connected layer was applied to connect every 
neuron in the fifth pooling layer, so that the binary classification can be calculated in the output layer in the form of 
probabilities.  
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CNN model was trained based on five-fold cross validation. Four-fifths of the enrolled images were randomly selected as 
the training cohort, and the rest were used as the validation cohort. Images were sent to the input layer of the CNN model 
directly, so that the low-level to high-level features included in neural nets’ hidden layers were automatically extracted. 
The model training contains forward computation and back propagation.8 For forward computation, the input of the CNN 
model is the microscopic image with a size of 512 × 512. A total of five times of convolution, activation and pooling 
operations were executed to complete the computation in turn. In our experiments, we adopted the “ReLU” function as 
activation function, which is defined by 
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When the input is negative, the output of the activation function will be zero, and when the input is positive, the result 
will be equal to the input. This property helps speed up training process. When it comes to the last fully connected layer 
and the output layer, the result will be the possibility. For back propagation, we assume the loss function of the whole 
network is J, and it is defined as following. 
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where j represents  the order of neuron, q is the number of neuron. The most important parameters in the network are the 
weights w  between two neurons and the bias b between two layers. And x is the input of a neuron, p(x) means the actual 
output of the neuron, while y is the expected output of the neuron. Therefore, J represents the sum of squared error 
between the actual output and the expected output. In the end, our task is to make J as small as possible, and to achieve 
this goal, we need to acquire suitable parameters w  and b through learning process from data, here we will use gradient 
descent strategy,9 which can be defined as follows. 
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where l means the order of the layer,  α means the learning rate. The parameters w  and b will continue to improve at the 
end of each iteration of the whole training process. When the loss function tends to decrease and be stable, the CNN 
model is considered as having completed the training process, which means the CNN model is ready to predict new data. 

To quantitative evaluate the performance of classification, sensitivity, specificity and accuracy were used as the 
quantitative index. Analysis of receiver operating characteristic (ROC) curves was performed to calculate the optimal 
area under the ROC curve (AUC). The visualization of image classification was further performed using t-SNE (t-
distributed Stochastic Neighbour Embedding)10 and saliency map11.   

 

Table 1: Quantitative results for tumor classification in five-fold cross validation  

Evaluation Index Validation_1 Validation_2 Validation_3 Validation_4 Validation_5 
Specificity 0.80 0.80 0.83 0.88 0.91 
Sensitivity 0.83 0.73 0.94 0.83 0.96 
Accuracy 0.82 0.77 0.89 0.86 0.93 
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Figure 1: Illustration of the proposed deep learning method for metastasis of HCC classification with microscopic images. An input 
layer (microscopic image) is analyzed by using five convolution-pooling procedures (C1-P1 to C5-P5), and then last pooled maps are 
fully connected with 2048 neural nodes to calculate its probability for classification. The neural nodes and other parameters of the 
convolutional neural network (CNN) model were automatically optimized by using all microscopic images in the training cohorts. 

 

3. RESULTS 
AUCs of validation cohorts in five-fold cross validation were 0.89, 0.8, 0.95, 0.92, and 0.96 respectively (Fig. 2(a-e)). 
Our CNN model obtained an average specificity of 0.84, sensitivity of 0.86, and accuracy of 0.85 (Table 1). From 
visualization results showed in Fig. 2(f-j), we see clusters of points of the same tumor classes. Furthermore, Fig. 3 
presents image-specific class saliency map, highlighting the areas of the given image, discriminative with respect to the 
given class. Over all, the results demonstrated that deep learning had potential to be used for metastasis of HCC 
classification based on microscopic images in tumor heterogeneity research. 

 
Figure 2: Comparison of ROC curves in five-fold cross validation and t-SNE visualization of the last hidden layer representations in 
the CNN for hepatocellular carcinoma classification. (a) - (e) show ROC curves of five validation cohorts in five-fold cross validation. 
(f) - (j) present the CNN’s internal representation of two carcinoma classes by applying t-SNE, a method for visualizing high-
dimension data, to the last hidden layer representation in the CNN of the five validation cohorts. Purple point clouds and yellow point 
clouds represent the HCCLM3 and SMMC-7721 tumor, respectively. 
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Figure 3: Image-specific class saliency maps for the predicted class in validation cohorts. (a) shows the white-light image (left), 
saliency map (middle) and the overlay (right) of SMMC-7721 tumor section. (b) presents the white-light image (left), saliency map 
(middle) and the overlay (right) of HCCLM3 tumor section. The saliency maps were extracted by computing the gradient of the output 
category with respect to the input to the input image. The high values in the saliency maps indicated that the corresponding pixels 
present the main features, which are distinguished from the other tumor class. 

 

4. CONCLUSION 
In this study, we proposed a deep learning method for metastasis of HCC classification in animal models. The method 
used CNN to learn the deep features from white-light microscopic images. The proposed method was able to distinguish 
high metastatic tumor from low metastatic tumor with satisfactory results in this initial experiment. The experimental 
results demonstrated that our deep learning method is effective for high metastatic HCC detection in animal models. To 
the best of our knowledge, this is the first prospective study that aimed to achieve metastasis of HCC classification by 
means of deep learning. It is noteworthy that the classification approach can be extended to other applications of cancer 
research. The classification results of microscopic images can be combined with biomolecular index, thus the 
personalized medicine can be developed. Another promising direction is to extend our approach to tumor classification 
based on microscopic fluorescence images, which can be acquired noninvasively and in real time.  All of these suggested 
a good potential of deep learning for tumor classification. Further studies with more samples are still needed.   
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