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In this paper, the neural-network-based robust optimal control design for a class of uncer-
tain nonlinear systems via adaptive dynamic programming approach is investigated. First,
the robust controller of the original uncertain system is derived by adding a feedback gain
to the optimal controller of the nominal system. It is also shown that this robust controller
can achieve optimality under a specified cost function, which serves as the basic idea of the
robust optimal control design. Then, a critic network is constructed to solve the Hamilton–
Jacobi–Bellman equation corresponding to the nominal system, where an additional stabi-
lizing term is introduced to verify the stability. The uniform ultimate boundedness of the
closed-loop system is also proved by using the Lyapunov approach. Moreover, the obtained
results are extended to solve decentralized optimal control problem of continuous-time
nonlinear interconnected large-scale systems. Finally, two simulation examples are pre-
sented to illustrate the effectiveness of the established control scheme.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

In practical control systems, model uncertainties arise frequently and can severely degrade the closed-loop system per-
formance. Hence, the problem of designing robust controller for nonlinear systems with uncertainties has drawn consider-
able attention in recent literature [43,15,31]. Lin et al. [15] showed that the robust control problem can be solved by studying
the optimal control problem of the corresponding nominal system, but the detailed procedure was not presented. In [31], the
authors developed an iterative algorithm for online design of robust control for a class of continuous-time nonlinear systems.
However, the optimality of the robust controller with respect to a specified cost function was not discussed. In [43], the
authors addressed the problem of designing robust tracking controls for a class of uncertain nonholonomic systems actuated
by brushed direct current motors, while the research was not related with the optimality.

The starting point of the obtained strategy of this paper is optimal control. The nonlinear optimal control problem always
requires to solve the Hamilton–Jacobi–Bellman (HJB) equation. Though dynamic programming has been a conventional
method in solving optimization and optimal control problems, it often suffers from the curse of dimensionality, which
was primarily due to the backward-in-time approach. To avoid the difficulty, based on function approximators, such as
neural networks, adaptive/approximate dynamic programming (ADP) was proposed by Werbos [35] as a method to solve
086, and
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optimal control problems forward-in-time. Recently, the study on ADP and related fields have gained much attention from
various scholars [1–10,12–14,16–25,28–30,32–34,36–38,40–42,44–46]. Lewis and Vrabie [13] stated that the ADP technique
is closely related to the field of reinforcement learning. As is known to all, policy iteration is one of the basic algorithms of
reinforcement learning. In addition, the initial admissible control is necessary when employing the policy iteration algo-
rithm. However, in many situations, it is difficult to find the initial admissible control.

To the best of our knowledge, there are few results on robust optimal control of uncertain nonlinear systems based on ADP,
not to mention the decentralized optimal control of large-scale systems. This is the motivation of our research. Actually, it is
the first time that the robust optimal control scheme for a class of uncertain nonlinear systems via ADP technique and without
using an initial admissible control is established. To begin with, the optimal controller of the nominal system is designed. It
can be proved that the modification of optimal control law is in fact the robust controller of the original uncertain system,
which also achieves optimality under the definition of a cost function. Then, a critic network is constructed for solving the
HJB equation corresponding to the nominal system. In addition, inspired by the work of [5,24], an additional stabilizing term
is introduced to verify the stability, which relaxes the need for an initial stabilizing control. The uniform ultimate bounded-
ness (UUB) of the closed-loop system is also proved via the Lyapunov approach. Furthermore, the aforementioned results are
extended to deal with the decentralized optimal control for a class of continuous-time nonlinear interconnected systems. At
last, two simulation examples are given to show the effectiveness of the robust optimal control scheme.

2. Problem statement and preliminaries

In this paper, we study the continuous-time uncertain nonlinear systems given by
_xðtÞ ¼ f ðxðtÞÞ þ gðxðtÞÞð�uðtÞ þ �dðxðtÞÞÞ; ð1Þ
where xðtÞ 2 Rn is the state vector and �uðtÞ 2 Rm is the control vector, f ð�Þ and gð�Þ are differentiable in their arguments with
f ð0Þ ¼ 0, and �dðxÞ is the unknown nonlinear perturbation. Let xð0Þ ¼ x0 be the initial state. We assume that �dð0Þ ¼ 0, so that
x ¼ 0 is an equilibrium of system (1). As in many other literature, for the nominal system
_xðtÞ ¼ f ðxðtÞÞ þ gðxðtÞÞuðtÞ; ð2Þ
we also assume that f þ gu is Lipschitz continuous on a set X in Rn containing the origin and that system (2) is controllable.
For system (1), in order to deal with the robust control problem, we should find a feedback control policy �uðxÞ, such that

the closed-loop system is globally asymptotically stable for all uncertainties �dðxÞ. In this paper, we will show that this prob-
lem can be converted into designing an optimal controller for the corresponding nominal system with appropriate cost
function.

Let R 2 Rm�m be a symmetric positive definite matrix. Then, we denote dðxÞ ¼ R1=2�dðxÞ, where dðxÞ 2 Rm is bounded by a
known function dMðxÞ, i.e., kdðxÞk 6 dMðxÞ with dMð0Þ ¼ 0. For system (2), in order to deal with the infinite horizon optimal
control problem, we have to find the control policy uðxÞ, which minimizes the cost function given by
Jðx0Þ ¼
Z 1

0
d2

MðxðsÞÞ þ uTðxðsÞÞRuðxðsÞÞ
n o

ds: ð3Þ
Based on optimal control theory, the designed feedback control must not only stabilize the system on X, but also guarantee
that the cost function (3) is finite. In other words, the control policy must be admissible [1,28]. Let WðXÞ be the set of admis-
sible controls on X. For any admissible control policy u 2 WðXÞ, if the associated cost function (3) is continuously differen-
tiable, then its infinitesimal version is the nonlinear Lyapunov equation given by
0 ¼ d2
MðxÞ þ uTðxÞRuðxÞ þ ðrJðxÞÞTðf ðxÞ þ gðxÞuðxÞÞ; ð4Þ
with Jð0Þ ¼ 0. In Eq. (4), the symbol rð�Þ , @ð�Þ=@x is the notation of gradient operator, for example, rJðxÞ ¼ @JðxÞ=@x.
Define the Hamiltonian function of system (2) as follows:
Hðx;u;rJðxÞÞ ¼ d2
MðxÞ þ uTðxÞRuðxÞ þ ðrJðxÞÞTðf ðxÞ þ gðxÞuðxÞÞ: ð5Þ
The optimal cost function of system (2) can be formulated as
J�ðx0Þ ¼ min
u2WðXÞ

Z 1

0
d2

MðxðsÞÞ þ uTðxðsÞÞRuðxðsÞÞ
n o

ds: ð6Þ
According to optimal control theory, the optimal cost function J�ðxÞ satisfies the HJB equation
0 ¼ min
u2WðXÞ

Hðx;u;rJ�ðxÞÞ: ð7Þ
Assume that the minimum on the right hand side of (7) exists and is unique. Then, the optimal control policy is
u�ðxÞ ¼ �1
2

R�1gTðxÞrJ�ðxÞ: ð8Þ
Based on (5) and (8), the HJB Eq. (7) becomes
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0 ¼ d2
MðxÞ þ ðrJ�ðxÞÞTf ðxÞ � 1

4
ðrJ�ðxÞÞTgðxÞR�1gTðxÞrJ�ðxÞ; ð9Þ
with J�ð0Þ ¼ 0.
Consider system (2) with cost function (3) and the optimal feedback control (8). The following assumption is presented

for the robust optimal control design.

Assumption 1. Let JsðxÞ be a continuously differentiable Lyapunov function candidate satisfying
_JsðxÞ ¼ ðrJsðxÞÞ
T _x ¼ ðrJsðxÞÞ

Tðf ðxÞ þ gðxÞu�Þ < 0: ð10Þ
Assume there exists a positive definite matrix KðxÞ such that the following relation holds:
ðrJsðxÞÞ
Tðf ðxÞ þ gðxÞu�Þ ¼ �ðrJsðxÞÞ

TKðxÞrJsðxÞ: ð11Þ
Remark 1. This is a common assumption that has been used in some literature, for instance [5,24], to facilitate discussing
the stability issue of closed-loop system. According to [5], we assume that the closed-loop dynamics with optimal control
can be bounded by a function of system state. Without loss of generality, we assume that kf ðxÞ þ gðxÞu�k 6 gkrJsðxÞk with

g > 0. Hence, we can further obtain kðrJsðxÞÞ
Tðf ðxÞ þ gðxÞu�Þk 6 gkrJsðxÞk

2. Let km and kM be the minimum and maximum

eigenvalues of matrix KðxÞ. Considering ðrJsðxÞÞ
Tðf ðxÞ þ gðxÞu�Þ < 0 and the fact that kmkrJsðxÞk

2
6 ðrJsðxÞÞ

TKðxÞrJsðxÞ 6
kMkrJsðxÞk

2, we can conclude that Assumption 1 is reasonable. Specifically, in this paper, JsðxÞ can be obtained by properly
selecting a quadratic polynomial.
3. Robust optimal control design of uncertain nonlinear systems

In this section, for establishing the robust stabilizing control strategy of system (1), we modify the optimal control law (8)
of system (2) by proportionally increasing a feedback gain, i.e.,
�uðxÞ ¼ fu�ðxÞ ¼ �1
2

fR�1gTðxÞrJ�ðxÞ: ð12Þ
Now, we present the following lemma to indicate that the optimal control has infinite gain margin.

Lemma 1. For system (2), the feedback control given by (12) ensures that the closed-loop system is asymptotically stable for all
f P 1=2.
Proof. We show that J�ðxÞ is a Lyapunov function. In light of (6), we can easily find that J�ðxÞ is positive definite. Considering
(9) and (12), the derivative of J�ðxÞ along the trajectory of the closed-loop system is
_J�ðxÞ ¼ ðrJ�ðxÞÞTðf ðxÞ þ gðxÞ�uðxÞÞ

¼ �d2
MðxÞ �

1
2

f� 1
2

� �
R�1=2gTðxÞrJ�ðxÞ
��� ���2

: ð13Þ
Hence, _J�ðxÞ < 0 whenever f P 1=2 and x – 0. Then, the conditions for Lyapunov local stability theory are satisfied. �
Theorem 1. For system (1), there exists a positive number f�1 P 1, such that for any f > f�1, the feedback control developed by (12)
ensures that the closed-loop system is asymptotically stable.
Proof. We select LðxÞ ¼ J�ðxÞ as the Lyapunov function candidate. Taking the time derivative of LðxÞ along the trajectory of
the closed-loop system, we obtain
_LðxÞ ¼ ðrJ�ðxÞÞTðf ðxÞ þ gðxÞð�uðxÞ þ �dðxÞÞÞ: ð14Þ
Based on (13), we find that
_LðxÞ 6 � d2
MðxÞ þ

1
2

f� 1
2

� �
ðrJ�ðxÞÞTgðxÞR�1=2
��� ���2

� ðrJ�ðxÞÞTgðxÞR�1=2
��� ���dMðxÞ

� �
: ð15Þ
Let n ¼ dMðxÞ; ðrJ�ðxÞÞTgðxÞR�1=2
��� ���h iT

. Then, we have _LðxÞ 6 �nTHn, where
H ¼
1 � 1

2

� 1
2

1
2 f� 1

2

� �" #
: ð16Þ
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From (16), we observe that there exists a positive number f�1 P 1 such that any f > f�1 can guarantee the positive definiteness
of H. Then, we have _LðxÞ < 0, which implies that the closed-loop system is asymptotically stable. �

According to Theorem 1, �uðxÞ is the robust control strategy of the original system (1). Next, we will show that it also pos-
sesses the property of optimality.

For system (1), we define the following cost function
Jðx0Þ ¼
Z 1

0
QðxðsÞÞ þ 1

f
�uTðxðsÞÞR�uðxðsÞÞ

� �
ds; ð17Þ
where
QðxÞ ¼ d2
MðxÞ � ðrJ�ðxÞÞTgðxÞ�dðxÞ þ 1

4
ðf� 1ÞðrJ�ðxÞÞTgðxÞR�1gTðxÞrJ�ðxÞ: ð18Þ
Lemma 2. There exists a positive number f�2 P 2 such that for all f > f�2, the function QðxÞ is positive definite.
Proof. Adding and subtracting ð1=ðf� 1ÞÞdTðxÞdðxÞ to (18), we find that
QðxÞ ¼ d2
MðxÞ þ

1
4ðf� 1Þ ðf� 1ÞðrJ�ðxÞÞTgðxÞR�1=2 � 2dTðxÞ

	 

ðf� 1ÞðrJ�ðxÞÞTgðxÞR�1=2 � 2dTðxÞ
	 
T

� 1
f� 1

dTðxÞdðxÞ: ð19Þ
Recalling kdðxÞk 6 dMðxÞand f > 2, we can obtain
QðxÞP d2
MðxÞ �

1
f� 1

dTðxÞdðxÞP f� 2
f� 1

d2
MðxÞ: ð20Þ
This proves that QðxÞ is a positive definite function. �
Theorem 2. Consider system (1) with cost function (17). There exists a positive number f� such that for any f > f�, the feedback
control law obtained by (12) is an asymptotically stabilizing solution of the optimal control problem.
Proof. The Hamiltonian function of system (1) with cost function (17) is
HðrJðxÞÞ ¼ QðxÞ þ 1
f

�uTðxÞR�uðxÞ þ ðrJðxÞÞTðf ðxÞ þ gðxÞð�uðxÞ þ �dðxÞÞÞ; ð21Þ
where f > f�2 P 2. Replacing JðxÞ with J�ðxÞ and observing (18), the Eq. (21) becomes
HðrJ�ðxÞÞ ¼ d2
MðxÞ þ ðrJ�ðxÞÞTf ðxÞ þ 1

4
ðf� 1ÞðrJ�ðxÞÞTgðxÞR�1gTðxÞrJ�ðxÞ þ 1

f
�uTðxÞR�uðxÞ þ ðrJ�ðxÞÞTgðxÞ�uðxÞ: ð22Þ
Using (9) and (12), we can further obtain that HðrJ�ðxÞÞ ¼ 0, which shows that J�ðxÞ is a solution of the HJB equation of sys-
tem (1). Then, we say that the control law (12) achieves optimality with cost function (17). Furthermore, there exists a posi-
tive number f� , maxff�1; f

�
2g such that for any f > f�, the control law (12) is an asymptotically stabilizing solution of the

corresponding optimal control problem. �
Remark 2. Based on Theorems 1 and 2, there exists f > f� such that the control law (12) cannot only stabilize system (1), but
also achieve optimality with the defined cost function. That is to say, for a fixed f > f�, the derived control law is the robust
optimal control of the original uncertain nonlinear system.
Remark 3. According to Theorems 1 and 2, in order to complete the robust optimal control design, we should put emphasis
upon solving the optimal control problem of the nominal system. As we see in the introduction, the ADP approach is effective
in nonlinear optimal control design. Hence, in next section, we will present the design method based on neural network and
the corresponding stability proof of the closed-loop system.
4. Optimal control design via ADP approach and the stability proof

According to the universal approximation property of neural networks, J�ðxÞ can be reconstructed by a single-layer neural
network on a compact set X as
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J�ðxÞ ¼ xT
c rcðxÞ þ ecðxÞ; ð23Þ
where xc 2 Rl is the ideal weight, rcðxÞ 2 Rl is the activation function, l is the number of neurons in the hidden layer, and
ecðxÞ is the approximation error. Then, we have
rJ�ðxÞ ¼ ðrrcðxÞÞTxc þrecðxÞ: ð24Þ
Based on (24), the Lyapunov Eq. (4) becomes
0 ¼ d2
MðxÞ þ uTðxÞRuðxÞ þ xT

crrcðxÞ þ ðrecðxÞÞT
	 


ðf ðxÞ þ gðxÞuðxÞÞ: ð25Þ
In light of [28,4,5], in this paper, we also assume that xc;rrcðxÞ, and ecðxÞ and its derivative recðxÞ are all bounded on a
compact set X.

Since the ideal weights are unknown, a critic neural network is built as
bJðxÞ ¼ x̂T
c rcðxÞ; ð26Þ
to approximate the optimal cost function. Similarly, we have
rbJðxÞ ¼ ðrrcðxÞÞTx̂c: ð27Þ
According to (8) and (24), we have
u�ðxÞ ¼ �1
2

R�1gTðxÞ ðrrcðxÞÞTxc þrecðxÞ
	 


: ð28Þ
In light of (8) and (27), the approximate control function can be given as
ûðxÞ ¼ �1
2

R�1gTðxÞðrrcðxÞÞTx̂c: ð29Þ
Applying (29) to system (2), the closed-loop system dynamics is expressed as
_x ¼ f ðxÞ � 1
2

gðxÞR�1gTðxÞðrrcðxÞÞTx̂c: ð30Þ
Using the neural network expression (24), the Hamiltonian function becomes
Hðx;xcÞ ¼ d2
MðxÞ þxT

crrcðxÞf ðxÞ þ ecH �
1
4
xT

crrcðxÞgðxÞR�1gTðxÞðrrcðxÞÞTxc ¼ 0; ð31Þ
where
ecH ¼ ðrecðxÞÞTf ðxÞ � 1
2
ðrecðxÞÞTgðxÞR�1gTðxÞðrrcðxÞÞTxc �

1
4
ðrecðxÞÞTgðxÞR�1gTðxÞrecðxÞ; ð32Þ
denotes the residual error. Using the estimated weight vector, the approximate Hamiltonian function can be derived as
bHðx; x̂cÞ ¼ d2
MðxÞ þ x̂T

crrcðxÞf ðxÞ �
1
4
x̂T

crrcðxÞgðxÞR�1gTðxÞðrrcðxÞÞTx̂c , ec: ð33Þ
Let the weight estimation error of the critic network be ~xc ¼ xc � x̂c . Then, based on (31) and (33), we obtain
ec ¼ � ~xT
crrcðxÞf ðxÞ �

1
4

~xT
crrcðxÞgðxÞR�1gTðxÞðrrcðxÞÞT ~xc þ

1
2

~xT
crrcðxÞgðxÞR�1gTðxÞðrrcðxÞÞTxc � ecH: ð34Þ
In order to train the critic network, we aim at designing x̂c to minimize the objective function
Ec ¼
1
2

eT
c ec: ð35Þ
Here, the weights of the critic network are tuned based on the standard steepest descent algorithm with an additional term
introduced to ensure the boundedness of system state, i.e.,
_̂xc ¼ �ac
@Ec

@x̂c

� �
þ 1

2
asPðx; ûÞrrcðxÞgðxÞR�1gTðxÞrJsðxÞ; ð36Þ
where ac > 0 is the learning rate of the critic network, as > 0 is the learning rate of the additional term, JsðxÞ is the Lyapunov
function candidate given in Assumption 1, and Pðx; ûÞ is the additional stabilizing term defined as
Pðx; ûÞ ¼ 0; if _JsðxÞ ¼ ðrJsðxÞÞ
Tðf ðxÞ þ gðxÞûÞ < 0;

1; else:

(
ð37Þ
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Remark 4. It is important to note that the term Pðx; ûÞ is defined based on the Lyapunov condition for stability. The second
term of (36) is removed when the nonlinear system exhibits stable behavior. However, in case of the controlled system
exhibits signs of instability, the second term of (36) is activated for reinforcing the training process.

Next, we will find the dynamics of the weight estimation error ~xc . According to (33), we have
@ec

@x̂c
¼ rrcðxÞf ðxÞ �

1
2
rrcðxÞgðxÞR�1gTðxÞðrrcðxÞÞTx̂c: ð38Þ
In light of (36), the dynamics of the weight estimation error is
_~xc ¼ acec
@ec

@x̂c

� �
� 1

2
asPðx; ûÞrrcðxÞgðxÞR�1gTðxÞrJsðxÞ: ð39Þ
Then, combining (34) and (38), the error dynamics (39) becomes
_~xc ¼ ac � ~xT
crrcðxÞf ðxÞ �

1
4

~xT
crrcðxÞgðxÞR�1gTðxÞðrrcðxÞÞT ~xc

�
þ1

2
~xT

crrcðxÞgðxÞR�1gTðxÞðrrcðxÞÞTxc � ecH

�
� rrcðxÞf ðxÞ �

1
2
rrcðxÞgðxÞR�1gTðxÞðrrcðxÞÞTxc þ

1
2
rrcðxÞgðxÞR�1gTðxÞðrrcðxÞÞT ~xc

� �
� 1

2
asPðx; ûÞrrcðxÞgðxÞR�1gTðxÞrJsðxÞ: ð40Þ
Theorem 3. For system (2), let the control input be provided by (29) and the weight of the critic network be tuned by (36). Then,
the state x of the closed-loop system and the weight estimation error ~xc of the critic network are UUB.
Proof. Choose the Lyapunov function candidate as
L ¼ 1
2ac

~xT
c

~xc þ
as

2ac
JsðxÞ: ð41Þ
The derivative of (41) with respect to time along the dynamics (30) and (40) is
_L ¼ 1
ac

~xT
c

_~xc þ
as

2ac
ðrJsðxÞÞ

T _x: ð42Þ
Substituting (40) into (42), we have
_L ¼ ~xT
c � ~xT

crrcðxÞf ðxÞ �
1
4

~xT
crrcðxÞgðxÞR�1gTðxÞðrrcðxÞÞT ~xc

�
þ1

2
~xT

crrcðxÞgðxÞR�1gTðxÞðrrcðxÞÞTxc � ecH

�
� rrcðxÞf ðxÞ �

1
2
rrcðxÞgðxÞR�1gTðxÞðrrcðxÞÞTxc þ

1
2
rrcðxÞgðxÞR�1gTðxÞðrrcðxÞÞT ~xc

� �
� as

2ac
Pðx; ûÞ ~xT

crrcðxÞgðxÞR�1gTðxÞrJsðxÞ þ
as

2ac
ðrJsðxÞÞ

T _x: ð43Þ
Denote A ¼ rrcðxÞgðxÞR�1gTðxÞðrrcðxÞÞT. Then, (43) becomes
_L ¼ � ~xT
crrcðxÞf ðxÞ þ

1
4

~xT
c A ~xc �

1
2

~xT
c Axc þ ecH

� �
~xT

crrcðxÞf ðxÞ þ
1
2

~xT
c A ~xc �

1
2

~xT
c Axc

� �
� as

2ac
Pðx; ûÞ ~xT

crrcðxÞgðxÞR�1gTðxÞrJsðxÞ þ
as

2ac
ðrJsðxÞÞ

T _x: ð44Þ
We assume k1m > 0 and k1M > 0 are the lower and upper bounds of the norm of matrix A, respectively. Additionally, assume
that krrcðxÞf ðxÞk 6 k3, kAxck 6 k4, and kecHk 6 k5, where k3; k4, and k5 are positive constants. Hence, the inequality (44)
becomes
_L 6 � 1
8
� 3

8
/2

1 �
3

16
/2

2

� �
k2

1mk ~xck4 þ 1
2

k1Mk5 þ 1þ 3
8/2

1

 !
k2

3 þ
3
4
þ 3

16/2
2

 !
k2

4

( )
k ~xck2 þ 3

4
k2

5

� as

2ac
Pðx; ûÞ ~xT

crrcðxÞgðxÞR�1gTðxÞrJsðxÞ þ
as

2ac
ðrJsðxÞÞ

T _x; ð45Þ
where /1 and /2 are constants chosen for the design purpose.
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Case 1: Pðx; ûÞ ¼ 0. Since ðrJsðxÞÞ
T _x < 0, there exists a positive constant k6 such that 0 < k6krJsðxÞk 6 �ðrJsðxÞÞ

T _x holds.
Then, the inequality (45) becomes
_L 6 �k7k ~xck4 þ k8k ~xck2 þ 3
4

k2
5 �

as

2ac
k6krJsðxÞk; ð46Þ
where
k7 ¼
1
8
� 3

8
/2

1 �
3

16
/2

2

� �
k2

1m; ð47Þ

k8 ¼
1
2

k1Mk5 þ 1þ 3
8/2

1

 !
k2

3 þ
3
4
þ 3

16/2
2

 !
k2

4: ð48Þ
Therefore, whenever the inequality
k ~xckP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k8 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k2

5k7 þ k2
8

q
2k7

vuut
, A1 ð49Þ
or
krJsðxÞkP
acð3k2

5k7 þ k2
8Þ

2ask6k7
, B1 ð50Þ
holds, we have _L < 0.
Case 2: Pðx; ûÞ ¼ 1. According to (28) and (29), we have
u� � û ¼ �1
2

R�1gTðxÞ ðrrðxÞÞT ~xc þrecðxÞ
	 


: ð51Þ
In addition, we assume that kgðxÞR�1gTðxÞk 6 k9; krrcðxÞk 6 k10, and krecðxÞk 6 k11, where k9; k10, and k11 are also positive
constants. Then, considering (11) and (51), the inequality (45) becomes
_L 6 � 1
8
� 3

8
/2

1 �
3

16
/2

2

� �
k2

1mk ~xck4 þ 1
2

k1Mk5 þ 1þ 3
8/2

1

 !
k2

3 þ
3
4
þ 3

16/2
2

 !
k2

4

( )
k ~xck2 þ 3

4
k2

5

þ as

2ac
ðrJsðxÞÞ

Tðf ðxÞ þ gðxÞu�Þ � as

4ac
~xT

crrcðxÞgðxÞR�1gTðxÞrJsðxÞ

þ as

4ac
ðrJsðxÞÞ

TgðxÞR�1gTðxÞrecðxÞ

6 �k7k ~xck4 þ k8 þ
as

8ac

� �
k ~xck2 þ 3

4
k2

5 � k12krJsðxÞk
2 þ as

4ac
k9k11krJsðxÞk; ð52Þ
where
k12 ¼
as

2ac
km �

1
4

k2
9k

2
10

� �
: ð53Þ
Therefore, whenever the inequality
k ~xckP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ack8 þ as

16ack7
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8ack8 þ asÞ2

256a2
c k

2
7

þ 3k2
5

4k7
þ a2

s k
2
9k

2
11

64a2
c k7k12

svuut
, A2 ð54Þ
or
krJsðxÞkP
ask9k11

8ack12
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8ack8 þ asÞ2

256a2
c k7k12

þ 3k2
5

4k12
þ a2

s k
2
9k

2
11

64a2
c k

2
12

s
, B2 ð55Þ
holds, we obtain _L < 0.
According to Cases 1 and 2, if the inequality k ~xck > maxðA1;A2Þ or krJsðxÞk > maxðB1;B2Þ holds, then _L < 0. Thus, by

using the standard Lyapunov extension theorem [11], the state x and the error ~xc are UUB. �
5. Decentralized optimal control design of nonlinear interconnected systems

Large-scale systems are common in engineering area when doing research on complex dynamical systems that can be
partitioned into a set of interconnected subsystems. The decentralized control is one of the effective design approaches
and has attracted a great amount of interest due to its advantages in easier implementation and lower dimensionality
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[17,10,26,27,39]. In this section, we generalize the aforementioned results to decentralized optimal control for a class of con-
tinuous-time nonlinear interconnected large-scale systems. This part is also an extension of the decentralized control strat-
egy developed in [17].

Consider nonlinear large-scale systems composed of N interconnected subsystems which are described by
_xiðtÞ ¼ fiðxiðtÞÞ þ giðxiðtÞÞ �uiðtÞ þ �diðxDðtÞÞ
� �

; i ¼ 1;2; . . . ;N; ð56Þ
where xiðtÞ 2 Rni and �uiðtÞ 2 Rmi are the state vector and the control vector of the ith subsystem, respectively, and

xD ¼ ½xT
1 ; x

T
2 ; . . . ; xT

N�
T 2 RnD is the overall state with nD ¼

PN
i¼1ni. Note that for subsystem i; fiðxiÞ; giðxiÞ, and giðxiÞdiðxDÞ repre-

sent the nonlinear internal dynamics, the input gain matrix, and the interconnected term, respectively. Here, x1; x2; . . . ; xN are
called local states while �u1; �u2; . . . ; �uN are local controls.

Let xið0Þ ¼ xi0 be the initial state of the ith subsystem, i ¼ 1;2; . . . ;N. Let Ri 2 Rmi�mi , i ¼ 1;2; . . . ;N, be a set of symmetric
positive definite matrices. Denote diðxDÞ ¼ R1=2

i diðxDÞ; i ¼ 1;2; . . . ;N, which are bounded as
kdiðxDÞk 6
XN

j¼1

qijhijðxjÞ; i ¼ 1;2; . . . ;N: ð57Þ
In (57), qij are nonnegative constants and hijðxjÞ are positive semi-definite functions with i; j ¼ 1;2; . . . ;N. If we define
hiðxiÞ ¼maxfh1iðxiÞ;h2iðxiÞ; . . . ;hNiðxiÞg, i ¼ 1;2; . . . ;N, then the Eq. (57) becomes
kdiðxDÞk 6
XN

j¼1

sijhjðxjÞ; i ¼ 1;2; . . . ;N; ð58Þ
where sij P qijhijðxjÞ=hjðxjÞ, i; j ¼ 1;2; . . . ;N, are also nonnegative constants.
In the following, we focus on designing the decentralized optimal control law. First, we should find N control policies

�u1ðx1Þ; �u2ðx2Þ; . . ., �uNðxNÞ, such that the constituted control vector ð�u1ðx1Þ; �u2ðx2Þ; . . . ; �uNðxNÞÞ can stabilize system (56). As is
shown in [17], the decentralized control can be obtained by solving the optimal control problem of the N isolated subsystems
given by
_xiðtÞ ¼ fiðxiðtÞÞ þ giðxiðtÞÞuiðtÞ; i ¼ 1;2; . . . ;N: ð59Þ
Let hiðxiÞ 6 diMðxiÞ; i ¼ 1;2; . . . ;N. According to [17], we can find a set of optimal control policies u�i ðxiÞ; i ¼ 1;2; . . . ;N, which
minimize the local cost functions
Jiðxi0Þ ¼
Z 1

0
d2

iMðxiðsÞÞ þ uT
i ðxiðsÞÞRiuiðxiðsÞÞ

n o
ds; i ¼ 1;2; . . . ;N: ð60Þ
Using the notation of optimal cost functions J�i ðxiÞ, i ¼ 1;2; . . . ;N, the HJB equations of the isolated subsystems are
0 ¼ d2
iMðxiÞ þ ðrJ�i ðxiÞÞTfiðxiÞ �

1
4
ðrJ�i ðxiÞÞTgiðxiÞR�1

i gT
i ðxiÞrJ�i ðxiÞ; ð61Þ
with J�i ð0Þ ¼ 0. Then, there exist N positive numbers such that the feedback controls
�uiðxiÞ ¼ fiu
�
i ðxiÞ ¼ �

1
2

fiR
�1
i gT

i ðxiÞrJ�i ðxiÞ; i ¼ 1;2; . . . ;N; ð62Þ
can form a control pair ð�u1ðx1Þ; �u2ðx2Þ; . . . ; �uNðxNÞÞ, which is just the decentralized control strategy of system (56).
Next, we study the optimality of the decentralized control scheme with a specified overall cost function. Denote
fDðxDÞ ¼

f1ðx1Þ
f2ðx2Þ

..

.

fNðxNÞ

266664
377775; �uDðxDÞ ¼

�u1ðx1Þ
�u2ðx2Þ

..

.

�uNðxNÞ

266664
377775; �dDðxDÞ ¼

�d1ðxDÞ
�d2ðxDÞ

..

.

�dNðxDÞ

2666664

3777775;

RD ¼ diag
1
f1

R1;
1
f2

R2; . . . ;
1
fN

RN

� �
; gDðxDÞ ¼ diagfg1ðx1Þ; g2ðx2Þ; . . . ; gNðxNÞg: ð63Þ
For system (56), we define the following cost function
JDðxD0Þ ¼
Z 1

0
Q DðxDðsÞÞ þ �uT

DðxDðsÞÞRD�uDðxDðsÞÞ
� 

ds; ð64Þ
where
QDðxDÞ ¼
XN

i¼1

d2
iMðxiÞ � ðrJ�i ðxiÞÞTgiðxiÞ�diðxDÞ þ

1
4
ðfi � 1ÞðrJ�i ðxiÞÞTgiðxiÞR�1

i gT
i ðxiÞrJ�i ðxiÞ

� �
: ð65Þ
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Then, we have the following theorem.

Theorem 4. Consider system (56) with cost function (64). There exists a set of positive numbers such that the feedback control
laws obtained by (62) constitute the decentralized optimal control of the interconnected large-scale system.
Proof. Similar to Lemma 2 and by considering (58), we have
Q DðxDÞ P
XN

i¼1

d2
iMðxiÞ �

1
fi � 1

dT

i ðxDÞdiðxDÞ
� �

P
XN

i¼1

d2
iMðxiÞ �

1
fi � 1

XN

j¼1

sijdjMðxjÞ
 !2

8<:
9=;: ð66Þ
Then, we find that the positive definiteness of QDðxDÞ can be guaranteed if fi; i ¼ 1;2; . . . ;N, are sufficiently large. Moreover,

based on (61) and (65), we can prove that J�DðxDÞ ¼
PN

i¼1J�i ðxiÞ satisfies the equation
Q DðxDÞ þ �uT
DðxDÞRD�uDðxDÞ þ ðrJ�DðxDÞÞT fDðxDÞ þ gDðxDÞð�uDðxDÞ þ �dDðxDÞÞ

� �
¼ 0: ð67Þ
Therefore, consider system (56) with cost function (64), there exists a set of positive numbers such that the control pair
ð�u1ðx1Þ; �u2ðx2Þ; . . . ; �uNðxNÞÞ obtained by (62) is the decentralized optimal control law. �
Remark 5. It should be pointed out that, in this part, the ADP technique can also be employed to design the optimal controls
of the isolated subsystems, where N critic networks will be constructed to facilitate the implementation procedure. Then, the
decentralized control of the interconnected system can be obtained, which is, simultaneously, the optimal control with
respect to an overall cost function. In this sense, we accomplish the decentralized optimal control design of the nonlinear
interconnected large-scale system based on ADP approach.
6. Simulation studies

Two examples are provided in this section to demonstrate the effectiveness of the robust optimal control strategy.

Example 1. Consider the following continuous-time nonlinear system:
_x ¼
�0:5x1 þ x2ð1þ 0:5x2

2Þ
�0:8ðx1 þ x2Þ þ 0:5x2ð1� 0:3x2

2Þ

" #
þ

0
�0:6

� �
ð�uþ �dðxÞÞ; ð68Þ
where x ¼ ½x1; x2�T 2 R2 and �u 2 R are the state and control variables, respectively. The term �dðxÞ ¼ d1x2 cosðd2x1 þ d3x2Þ
reflects the uncertainty of the controlled plant, where d1, d2, and d3 are unknown parameters with d1 2 ½�1;1�; d2 2 ½�5;5�,
and d3 2 ½�3;3�. We set R ¼ I and choose dMðxÞ ¼ kxk as the bound of dðxÞ.

According to the results in this paper, in order to derive the optimal control of the nominal system
_x ¼ �0:5x1 þ x2ð1þ 0:5x2
2Þ

�0:8ðx1 þ x2Þ þ 0:5x2ð1� 0:3x2
2Þ

" #
þ

0
�0:6

� �
u ð69Þ
with cost function
Jðx0Þ ¼
Z 1

0
kxðsÞk2 þ uTðxðsÞÞRuðxðsÞÞ
n o

ds; ð70Þ
we have to construct a neural network based on the idea of ADP. In this example, the critic network is built as
bJðxÞ ¼ x̂c1x2
1 þ x̂c2x1x2 þ x̂c3x2

2 þ x̂c4x4
1 þ x̂c5x3

1x2 þ x̂c6x2
1x2

2 þ x̂c7x1x3
2 þ x̂c8x4

2: ð71Þ
During the simulation process, the probing noise is introduced to satisfy the persistency of excitation condition. Let the
learning rates of the critic network and the additional term be ac ¼ 0:8 and as ¼ 0:5, respectively. In addition, let the initial
weight of the critic network be zero vector and the initial state of the controlled plant be x0 ¼ ½0:5;�0:5�T. After simulation,
we can observe that the convergence of the weights has occurred after 2500 s. Then, the probing signal is turned off. In fact,
the weights of the critic network converge to ½0:8709;0:1291;1:0617;0:0868;�0:1566;0:2053;�0:0059;0:0651�T, which is
displayed in Fig. 1.

Next, the scalar parameters are chosen as f ¼ 3, d1 ¼ 0:8; d2 ¼ �5, and d3 ¼ 3, respectively, so as to evaluate the robust
control performance. Under the action of the robust control strategy, the state trajectory of system (68) during the first 20 s
is shown in Fig. 2. In light of Theorem 2, it also achieves optimality with cost function defined as in (17). These results
authenticate the validity of the robust optimal control scheme developed in this paper.
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Example 2. Consider the continuous-time nonlinear large-scale system [17]
_x1 ¼
�x11 þ x12

�0:5x11 � 0:5x12 � 0:5x12ðcosð2x11Þ þ 2Þ2
� �

þ
0

cosð2x11Þ þ 2

� �
�u1ðx1Þ þ �d1ðxDÞ
� �

;

_x2 ¼
x22

�x21 � 0:5x22 þ 0:5x2
21x22

� �
þ

0
x21

� �
�u2ðx2Þ þ �d2ðxDÞ
� �

; ð72Þ
where x1 ¼ ½x11; x12�T 2 R2 and �u1ðx1Þ 2 R are the state and control variables of subsystem 1, x2 ¼ ½x21; x22�T 2 R2 and
�u2ðx2Þ 2 R are the state and control variables of subsystem 2, and xD ¼ ½xT

1 ; x
T
2 �

T is the overall state. The interconnected terms
are �d1ðxDÞ ¼ ðx11 þ x22Þ sin x2

12 cosð0:5x21Þ and �d2ðxDÞ ¼ 0:5ðx12 þ x22Þ cos ex2
21

	 

. Let R1 ¼ R2 ¼ I, h1ðx1Þ ¼ kx1k, and

h2ðx2Þ ¼j x22 j.
In order to design the decentralized optimal controller of interconnected system (72), we first aim at solving the optimal

control problem of the two isolated subsystems
_x1 ¼
�x11 þ x12

�0:5x11 � 0:5x12 � 0:5x12ðcosð2x11Þ þ 2Þ2
� �

þ
0

cosð2x11Þ þ 2

� �
u1ðx1Þ;

_x2 ¼
x22

�x21 � 0:5x22 þ 0:5x2
21x22

� �
þ

0
x21

� �
u2ðx2Þ: ð73Þ
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Here, we choose d1Mðx1Þ ¼ kx1k and d2Mðx2Þ ¼j x22 j. Hence, the cost functions of the optimal control problem are
J1ðx10Þ ¼
Z 1

0
kx1ðsÞk2 þ uT

1 ðxðsÞÞR1u1ðxðsÞÞ
n o

ds; ð74Þ
and
J2ðx20Þ ¼
Z 1

0
j x22ðsÞj2 þ uT

2 ðxðsÞÞR2u2ðxðsÞÞ
n o

ds; ð75Þ
respectively.
Here, two critic networks are constructed with activation functions chosen as ½x2

11; x11x12; x2
12�

T and ½x2
21; x21x22; x2

22�
T,

respectively. Besides, let the learning rates be the same as in Example 1, the initial weights of the two critic networks be
½0;0;0�T, and the initial states of the two isolated subsystems be x10 ¼ x20 ¼ ½1;�1�T. During the simulation, we can find that
after 180s, the weights of the critic networks converge to ½0:5000; 0:0001;1:0000�Tand ½0:9949;�0:0034;0:9959�T(see Figs. 3
and 4). Next, we apply the decentralized control scheme to controlled plant (72) for 25s and obtain the evolution processes of
the state trajectories illustrated in Figs. 5 and 6. These simulation results verify the validity of the decentralized optimal con-
trol scheme developed in this paper.

7. Conclusion

A novel robust optimal control scheme for a class of uncertain nonlinear systems via ADP approach is developed in this
paper. It is proved that the robust controller of the original uncertain system achieves optimality under a specified cost func-
tion. During the implementation process, a critic network is constructed to solve the HJB equation of the nominal system and
an additional stabilizing term is introduced to verify the stability. The obtained results are also extended to design the decen-
tralized optimal control for a class of nonlinear interconnected large-scale systems. Simulation studies verify the good con-
trol performance. In the future, we will focus on studying the robust and decentralized optimal control for nonlinear systems
with unknown dynamics. In this sense, the requirement of system dynamics will be further reduced, which reflects the supe-
riority of ADP technique in dealing with the optimal control problem under nonlinear, uncertain, and complex environment.
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