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Abstract. Deep learning techniques have been widely adopted for learn-
ing task-adaptive features in image segmentation applications, such as
brain tumor segmentation. However, most of existing brain tumor seg-
mentation methods based on deep learning are not able to ensure appear-
ance and spatial consistency of segmentation results. In this study we
propose a novel brain tumor segmentation method by integrating a
Fully Convolutional Neural Network (FCNN) and Conditional Random
Fields (CRF), rather than adopting CRF as a post-processing step of
the FCNN. We trained our network in three stages based on image
patches and slices respectively. We evaluated our method on BRATS
2013 dataset, obtaining the second position on its Challenge dataset and
first position on its Leaderboard dataset. Compared with other top rank-
ing methods, our method could achieve competitive performance with
only three imaging modalities (Flair, T1c, T2), rather than four (Flair,
T1, T1c, T2), which could reduce the cost of data acquisition and stor-
age. Besides, our method could segment brain images slice-by-slice, much
faster than the methods patch-by-patch. We also took part in BRATS
2016 and got satisfactory results. As the testing cases in BRATS 2016
are more challenging, we added a manual intervention post-processing
system during our participation.
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1 Introduction

Accurate automatic or semi-automatic brain tumor segmentation is very helpful
in clinical, however, it remains a challenging task up to now [1]. Gliomas are the
most frequency primary brain tumors in adults [2]. Therefore, the majority of
brain tumor segmentation methods focus on gliomas. So do we in this paper.
Accurate segmentation of gliomas is very difficult for the following reasons: (1)
in MR images, gliomas may have the same appearance with gliosis, stroke and
so on [3]; (2) gliomas have a variety of shape, appearance, and size, and may
appear in any position in the brain; (3) gliomas invade the surrounding tissue
rather than displacing it, causing fuzzy boundaries [3]; (4) there exists intensity
inhomogeneity in MR images.

The existing brain tumor segmentation methods can be roughly divided into
two groups: generative models and discriminative models. Generative models
usually acquire prior information through probabilistic atlas image registration
[4,5]. However, the image registration is unreliable when the brain is deformed
due to large tumors. Discriminative models typically segment brain tumors by
classifying voxels based on image features [6,7]. Their segmentation performance
is hinged on the image features and classification models. Since deep learning
techniques are capable of learning high level and task-adaptive features from
training data, they have been adopted in brain tumor segmentation studies [8–
14]. However, most of the existing brain tumor segmentation methods based on
deep learning do not yield segmentation results with appearance and spatial con-
sistency [15]. To overcome such a limitation, we propose a novel deep network by
integrating a fully convolutional neural network (FCNN) and a CRF to segment
brain tumors. Our model is trained in three steps and is able to segment brain
images slice-by-slice, which is much faster than the segmentation method patch-
by-patch [14]. Moreover, our method requires only three MR imaging modalities
(Flair, T1c, T2), rather than four modalities (Flair, T1, T1c, T2) [1,6–14], which
could help reduce the cost of data acquisition and storage.

2 The Proposed Method

The proposed brain tumor segmentation method consists of three main steps:
pre-processing, segmentation using the proposed deep network model, and post-
processing. In the following, we will introduce each step in detail respectively.

2.1 Pre-processing

As magnetic resonance imaging devices are not perfect and each imaging object is
specific, the intensity ranges and bias fields of different MR images are different.
Therefore, the absolute intensity values in different MR images or even in the
same MR image do not have fixed tissue meanings. It is necessary to pre-process
MR images in an appropriate way.
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In this paper, we firstly use N4ITK [16] to correct the bias field of each MR
image. Then, we normalize the intensity by subtracting the gray-value of the
highest frequency and dividing the revised deviation. We denote the revised
deviation by σ̃ and the MR image ready to be normalized by V , which is
composed by a set of voxels {v1, v2, v3, . . . , vN}. The intensity value of each
voxel vk is denoted as Ik. Then, the revised deviation σ̃ can be calculated by

σ̃ =
√∑N

k=1(Ik − Î)2/N , where Î denotes the gray-value of the highest fre-
quency. Besides, in order to process the MR images as common images, we also
change their intensity range to 0–255 linearly.

We take T2 for an example to show the effect of our normalization method.
Figure 1 shows 30 T2 MR images’ intensity histograms before and after normal-
ization. The 30 T2 MR images come from BRATS 2013 training dataset. It can
be seen from Fig. 1 that our normalization method can try to make different
MR images have similar intensity distributions, while guarantee their histogram
shapes unchanged. In most cases, the gray value of the highest frequency is close
to the intensity of white matter. Therefore, transforming the gray value of the
highest frequency to the same level is equivalent to transforming the intensity of
white matter to the same level. Then, after normalizing the revised deviation,
the similar intensities in different MR images can roughly have the similar tissue
meaning.

(a) (b)

Fig. 1. Comparison of 30 T2 intensity histograms before and after intensity normal-
ization. (a). Before normalization (after N4ITK); (b). After normalization

2.2 Brain Tumor Segmentation Model

Our brain tumor segmentation model consists of two parts, a Fully Convolutional
Neural Network (FCNN) and Conditional Random Field (CRF), as shown in
Fig. 2. The proposed model was trained by three steps, using image patches and
slices respectively. In the testing phase, it can segment brain images slice by
slice. Next, we will introduce each part of the proposed segmentation model in
detail.

FCNN. FCNN contains the majority of parameters in our whole segmentation
model. It was trained based on image patches, which were extracted from slices
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Fig. 2. The structure of our brain tumor segmentation model

of the axial view. Training FCNN by patches can avoid the problem of lacking
training samples, as thousands of patches can be extracted from one image.
It can also help to avoid the training sample imbalance problem, because the
number and position of training samples for each class can be easily controlled by
using different patch sampling schemes. In our experiment, we sampled training
patches randomly from each training subject and kept the number of training
samples for each class equal (5 classes in total, including normal tissue, necrosis,
edema, non-enhancing core, and enhancing core). As we didn’t reject patches
sampled in the same place, there existed duplicated training samples. Figure 3
shows the structure of the proposed FCNN. Similar to the cascaded architecture
proposed in [12], the inputs of our FCNN network also have two different sizes.
Passing through a series of convolutional and pooling layers, the large inputs turn
into feature maps with the same size of small inputs. These feature maps and
small inputs are sent into the following network together. In this way, when we
predict the center pixel’s label, the local information and the context information
in larger scale can be taken into consideration at the same time. Compared
with the cascaded architecture proposed in [12], the two branches in our FCNN
was trained simultaneously, while the two branches in the cascaded architecture
in [12] was trained in different steps. Besides, our FCNN network has more
convolutional layers.

FCNN is a fully convolutional neural network and the stride of each layer is
set to 1. Therefore, even though it was trained by patches, it can segment brain
images slice by slice.

CRF. Let’s briefly review conditional random field first. Consider an image I
composed by a set of pixels {I1, I2, . . . , IM}, where M denotes the number of
pixels in this image. Each pixel Ii has a label xi, xi ∈ L = {l1, l2, . . . , lk}. L is a
set of labels, showing the range of value for xi. The energy function of CRF is
written as:

E(x) =
∑

i

Φ(xi) +
∑

i,j∈Ni

Ψ(xi, xj), i ∈ {1, 2, 3, . . . ,M}, j ∈ Ni (1)
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Fig. 3. The structure of our FCNN network

Φ(xi) is the unary term, representing the cost of assigning label xi to the pixel
Ii. Ψ(xi, xj) is the pairwise term, representing the cost of assigning label xi and
xj to Ii and Ij respectively. Ni represents the neighborhood of pixel Ii. Using
CRF to segment an image is to find a set of xi to make the energy function have
minimum value. In order to improve segmentation accuracy and get a global
optimized result, fully connected CRF can be used, which is computing pairwise
potentials on all pairs of pixels in the image [17]. The energy function of fully
connected CRF is as follows:

E(x) =
∑

i

Φ(xi) +
∑
i<j

Ψ(xi, xj), i, j ∈ {1, 2, 3, . . . ,M} (2)

Mean field approximation can be used to solve the optimize problem of mini-
mizing the energy function (2) [17]. Shuai Zheng et al. [15] proposed a neural
network formulated fully connected CRF, called CRF-RNN. CRF-RNN per-
forms a mean field iteration by a stack of CNN layers, then the whole iteration
steps in the mean field approximation can be formulated as Recurrent Neural
Network, making it possible to integrate a CNN and CRF network as one deep
network and train it with the usual back-propagation algorithm. CRF-RNN can
be implemented on a GPU and has very high computational efficiency. Our CRF
model refers to CRF-RNN [15], where the negative of the unary term −Φ(xi) is
directly provided by the previous segmentation network and the pairwise term
Ψ(xi, xj) is calculated by the following function:

Ψ(xi, xj) = μ(xi, xj)[ω(1)exp(−|pi − pj |2
2θ2α

− |ci − cj |2
2θ2β

) + ω(2)exp(−|pi − pj |2
2θ2γ

)]

(3)
In (3), μ is a label compatibility function, representing the penalty for different
pixels that are assigned different labels; ci and cj denote the color vectors of
pixels Ii and Ij ; pi and pj denote the positions of pixels Ii and Ij ; ω(k), k = 1, 2
is the weight of each Gaussian kernel; θα, θβ , and θγ are parameters that control
the effect of different features (position and color). For further details about
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CRF-RNN and fully connected CRF, please refer to Shuai Zheng et al. [15] and
Philipp Krähenbühl et al. [17]. From (3) we can see that, when two adjacent
pixels have similar color, the penalty of assigning different labels to them is
large. Therefore after CRF, pixels having similar colors and positions are very
likely to be assigned same label, ensuring the appearance and spatial consistency
of segmentation results.

The Combination of FCNN and CRF-RNN. The proposed brain tumor
segmentation network consists of FCNN and CRF-RNN. FCNN provides the
preliminary probability of assigning each label to each voxel. These preliminary
prediction results are considered as the negative of the unary term of CRF-
RNN. CRF-RNN can globally optimize the segmentation results according to
each voxel’s intensity and position information shown in the pre-processed MR
images. Then, the segmentation results’ appearance and spatial consistency can
be ensured.

In the training phase, we trained the proposed integrated network of FCNN
and CRF-RNN in three steps. Firstly we used image patches to train FCNN.
Then, we used image slices of the axial view to train the following CRF-RNN
with parameters of the FCNN fixed. Finally, we used the image slices to fine-tune
the whole network. In the testing phase, we segment brain images slice by slice.
All the slices are extracted from the axial view.

2.3 Post-processing

We post-process the segmentation results by removing small 3D-connected
regions and correcting some pixels’ labels by a simple thresholding method. We
validated the values of these thresholds by a small subset of training dataset.

3 Experiment

BRATS is a brain tumor image segmentation challenge. It is organized in con-
junction with the International Conference on Medical Image Computing and
Computer Assisted Intervention (MICCAI). Most of the start of art brain tumor
segmentation methods have been evaluated on this benchmark. Since BRATS
2014 dataset is not available and the ranking results of BRATS 2015 testing
dataset are not shown on BRATS website, we mainly evaluated our segmenta-
tion method on BRATS 2013 dataset. Also, we took part in BRATS 2016 and got
satisfactory results. In BRATS 2013, the training dataset contains 20 HGG and
10 LGG. The testing dataset contains two parts. One is Challenge, containing 10
HGG. The other one is Leaderboard, containing 21 HGG and 4 LGG. In BRATS
2016, the training dataset contains 220 HGG and 54 LGG. The testing dataset
contains 191 cases, including both grades. Our experiments were performed on
our laboratory’s server. The GPU of the server is Tesla K80, and the CPU is
Intel E5-2620. As the server is public for everyone in our laboratory, we shared
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one GPU with other colleagues most time. We used Caffe [18] to implement our
neural network.

BRATS provides four MR imaging modalities for each subject, including
Flair, T1, T1c, and T2. However, we just used three of them (Flair, T1c, T2),
and still achieved competitive performance. We also trained a segmentation
model using all the four modalities and tested its segmentation performance.
However, there is no obvious performance difference between the segmentation
model trained by four modalities (Flair, T1, T1c, T2) and the segmentation
model trained by three modalities (Flair, T1c, T2). We speculate that most of
effective information shown in T1 is contained in T1c.

3.1 Evaluation on BRATS 2013 Dataset

On BRATS 2013 evaluation website, three metrics of Dice, Positive Predictive
Value (PPV), and Sensitivity are used to evaluate a method. Each of the metrics
is calculated on three kinds of tumor regions. They are complete, core, and
enhancing. The complete tumor region includes necrosis, edema, non-enhancing
core, and enhancing core. The core region includes necrosis, non-enhancing core,
and enhancing core. The enhancing region only includes the enhancing core.
Equations for calculating the three metrics are as follows:

Dice(P∗, T∗) =
|P∗ ∩ T∗|

(|P∗| + |T∗|)/2
(4)

PPV (P∗, T∗) =
|P∗ ∩ T∗|

|P∗| (5)

Sensitivity(P∗, T∗) =
|P∗ ∩ T∗|

|T∗| (6)

where ∗ indicates complete, core, or enhancing region. T∗ denotes the true region
of ∗. P∗ denotes the segmented ∗ region. |P∗ ∩ T∗| denotes the overlap area
between P∗ and T∗. |P∗| and |T∗| denote the areas of P∗ and T∗ respectively.
BRATS doesn’t provide the ground truth for testing subjects. Therefore, all the
metrics of testing dataset can only be calculated by BRATS evaluation website1.

Table 1 shows the Dice scores of FCNN, FCNN+CRF and FCNN+CRF+
post-processing on BRATS 2013 Challenge dataset and Leaderboard dataset.
It can be seen from Table 1 that CRF can obviously improve the segmentation
accuracy, and post-processing can improve the segmentation accuracy further.
FCNN+CRF+post-processing performs best on all three regions of both dataset.

Figure 4 shows some segmentation results on BRATS 2013 Challenge dataset.
Figures in each row, from top to bottom, represent: Flair, T1c, T2, segmentation
results of FCNN, segmentation results of FCNN+CRF, and segmentation results
of FCNN+CRF+post-processing. Compared with segmentation results in Row
4 (FCNN), segmentation results in Row 5 (FCNN+CRF) are smoother and have

1 https://www.virtualskeleton.ch/BRATS/Start2013.

https://www.virtualskeleton.ch/BRATS/Start2013
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Table 1. The Dice scores of FCNN, FCNN+CRF, and FCNN+CRF+post-processing
on BRATS 2013 Challenge and Leaderboard dataset

Methods Dice

Challenge Leaderboard

Comp. Core Enh. Comp. Core Enh.

FCNN 0.74 0.72 0.67 0.70 0.61 0.54

FCNN+CRF 0.85 0.80 0.70 0.83 0.66 0.57

FCNN+CRF+post-processing 0.87 0.83 0.76 0.86 0.73 0.62

more accurate boundaries, representing the effectiveness of CRF. Compared the
segmentation results in Row 5 (FCNN+CRF) and Row 6 (FCNN+CRF+post-
processing), we can see that, after post-processing, the number of false positives
reduces further.

Comparison results with other methods are summarized in Tables 2 and 3.
Nick Tustison, Raphael Meier, Syed Reza, and Liang Zhao methods’ evalua-
tion results are acquired from BRATS 2013 website2. Nick Tustison, Raphael
Meier, Syed Reza methods obtained the top 3 positions respectively on Challenge
dataset in 2013. Nick Tustison, Liang Zhao, Raphael Meier methods obtained
the top 3 positions respectively on Leaderboard dataset in 2013. Sérgio Pereira
method [14] ranks first on Challenge dataset and second on Leaderboard dataset
right now, while our method ranks second on Challenge dataset and first on
Leaderboard dataset right now. In general, the proposed method takes 2–4
min to segment one subject’s imaging data, much faster than Sérgio Pereira
method (average running time of 8 min). From Tables 2 and 3, we can see that
our segmentation method is still competitive with Sérgio Pereira method and
much better than the other methods shown in these two tables.

Table 2. Comparison with other methods on BRATS 2013 Challenge dataset

Methods Dice PPV Sensitivity

Comp. Core Enh. Comp. Core Enh. Comp. Core Enh.

Nick Tustison et al. 0.87 0.78 0.74 0.85 0.74 0.69 0.89 0.88 0.83

Raphael Meier et al. 0.82 0.73 0.69 0.76 0.78 0.71 0.92 0.72 0.73

Syed Reza et al. 0.83 0.72 0.72 0.82 0.81 0.70 0.86 0.69 0.76

Mohammad Havaei et al. [12] 0.88 0.79 0.73 0.89 0.79 0.68 0.87 0.79 0.80

Sérgio Pereira et al. [14] 0.88 0.83 0.77 0.88 0.87 0.74 0.89 0.83 0.81

Our method 0.87 0.83 0.76 0.92 0.87 0.77 0.83 0.81 0.77

2 http://martinos.org/qtim/miccai2013/results.html.

http://martinos.org/qtim/miccai2013/results.html


Brain Tumor Segmentation Using a FCNN with CRF 83

Table 3. Comparison with other methods on BRATS 2013 Leaderboard dataset

Methods Dice PPV Sensitivity

Comp. Core Enh. Comp. Core Enh. Comp. Core Enh.

Nick Tustison et al. 0.79 0.65 0.53 0.83 0.70 0.51 0.81 0.73 0.66

Liang Zhao et al. 0.79 0.59 0.47 0.77 0.55 0.50 0.85 0.77 0.53

Raphael Meier et al. 0.72 0.60 0.53 0.65 0.62 0.48 0.88 0.69 0.64

Mohammad Havaei et al. [12] 0.84 0.71 0.57 0.88 0.79 0.54 0.84 0.72 0.68

Sérgio Pereira et al. [14] 0.84 0.72 0.62 0.85 0.82 0.60 0.86 0.76 0.68

Our method 0.86 0.73 0.62 0.89 0.76 0.64 0.84 0.78 0.68

3.2 Participation on BRATS 2016 Challenge

The testing cases in BRATS 2016 are much more challenging. Therefore, we
added a manual intervention post-processing system during our participation in
BRATS 2016. The manual intervention post-processing system is designed to
remove some segmented tumor regions which are obvious false positives. There
are two kinds of regions to remove:

1© Manually determined rectangular regions.
2© Regions which intensities in Flair, T1c, T2 are below three specific thresh-

olds respectively at the same time. The threshold of Flair equals to 0.8×the mean
intensity of the segmented tumor region in Flair. The threshold of T1c is a con-
stant. The threshold of T2 equals to 0.9×the mean intensity of the segmented
tumor region in T2.

In the manual intervention post-processing system, users just need to decide
whether to remove those regions described in 1© 2© and determine the rectangu-
lar regions’ sizes and locations described in 1©. The manual intervention post-
processing system only takes a few minutes on each subject. The regions to
remove are 3D. We show an example in Fig. 5 in 2D.

There are 191 cases in BRATS 2016 testing dataset with unknown grades.
During our participation on BRATS 2016, we firstly segmented the 191 cases by
our proposed integrated network of FCNN and CRF-RNN on our laboratory’s
sever. We just used one Tesla K80 GPU and one E5-2620 CPU on the sever. It
took 2–4 min to segment one case. All 191 cases were segmented in about 11.5 h.
We then used the manual intervention post-processing system to post-process
segmentation results with one personal computer, in which there is one Q9550
CPU and no GPU. Not every case needed to be manually post-processed. On
average, the manual intervention post-processing system only took a few minutes
on each case. We successfully segmented the 191 cases in BRATS 2016 testing
dataset in 48 h.

There are 19 groups that took part in BRATS 2016. Our method ranked first
on the multi-temporal evaluation and ranked in the top 5 on most of items in
tumor segmentation. The ranking details of our method are shown in Table 4.
The formulation used to calculate Dice is (3), as shown in Sect. 3.1. And the
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Fig. 4. Some segmentation results on BRATS 2013 Challenge dataset. The first and
second columns show the segmentation results of the 50th and 80th slice of the axial
view of Subject 0301. The third and fourth columns show the segmentation results of
the 40th and 70th slice of the axial view of Subject 0308. Figures in each row, from
top to bottom, represent: Flair, T1c, T2, segmentation results of FCNN, segmentation
results of FCNN+CRF, and segmentation results of FCNN+CRF+post-processing.
Each gray level in segmentation results represents a tumor class, from low to high:
necrosis, edema, non-enhancing core, and enhancing core.
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Fig. 5. A manual intervention post-processing example

Table 4. The ranking details of our method on different items on BRATS 2016 (includ-
ing tie)

Items Tumor segmentation Multi-temporal evaluation

Dice Hausdorff

Comp. Core Enh. Comp. Core Enh.

Ranking 4 3 1 7 6 2 1

formulation used to calculate Hausdorff distance is as follow:

Haus(P∗, T∗) = max{ sup
p∈∂P∗

inf
t∈∂T∗

d(p, t), sup
t∈∂T∗

inf
p∈∂P∗

d(t, p)} (7)

The meanings of P∗ and T∗ have been shown in Sect. 3.1. ∂P∗ denotes the sur-
face of P∗, and ∂T∗ denotes the surface of T∗. p and t denote points on ∂P∗ and
∂T∗ respectively. d(p, t) calculates the least-square distance between points p
and t. inf denotes the operation of returning the minimum value. sup and max
denote the operation of returning the maximum value. Multi-temporal evalu-
ation is designed to evaluate whether the volumetric segmentations provided
by the participants are accurate enough to detect the changes indicated by the
neuroradiologists3.

4 Conclusion

Accurate automatic or semi-automatic brain tumor segmentation methods have
broad application prospect. In this paper, we propose a novel brain tumor seg-
mentation method by using an integrated model of Fully Convolutional Neural
Network (FCNN) and Conditional Random Fields (CRF). This integrated model

3 http://braintumorsegmentation.org/.

http://braintumorsegmentation.org/
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is designed to solve the problem in most existing deep learning brain tumor seg-
mentation methods, by which the appearance and spatial consistency are hard
to be ensured. In the CRF part, we use CRF-RNN, which formulates CRF as
Recurrent Neural Network, making it possible to integrate FCNN and CRF as
one deep network, rather than using CRF as a post-processing step of FCNN.
Our integrated network was trained in three steps, using image patches and
slices respectively. In the first step, image patches were used to train FCNN.
These patches were randomly sampled from training dataset, but we controlled
the number of patches for each class equal, in order to avoid the data imbalance
problem. Patch-based training strategy could also avoid the problem of lacking
training samples, because thousands of patches could be extracted from one sub-
ject’s MR images. In the second step, slices from the axial view were used to
train the following CRF-RNN, with parameters of the FCNN fixed. In the third
step, slices from the axial view were used to fine-tune the whole network.

We applied a simple pre-processing strategy and a simple post-processing
strategy. We pre-processed each MR image by N4ITK and intensity normaliza-
tion, which normalized each MR image’s intensity mainly by subtracting the
gray-value of the highest frequency and dividing the revised deviation. We post-
processed the segmentation results by removing small 3D-connected regions and
correcting some pixels’ labels by a simple thresholding method. The experimen-
tal results show that these strategies are effective.

We evaluated our method on BRATS 2013 dataset, obtaining the second posi-
tion on its Challenge dataset and the first position on its Leaderboard dataset.
Compared with other top ranking methods, our method could achieve competi-
tive performance with only 3 imaging modalities (Flair, T1c, T2), rather than 4
(Flair, T1, T1c, T2). We also took part in BRATS 2016 and our method ranked
first on the multi-temporal evaluation and ranked in the top 5 on most of items
in tumor segmentation.
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