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Abstract. The Magnetic Resonance Images (MRI) which can be used
to segment brain tumors are 3D images. To make use of 3D information,
a method that integrates the segmentation results of 3 2D Fully Convo-
lutional Neural Networks (FCNNs), each of which is trained to segment
brain tumor images from axial, coronal, and sagittal views respectively,
is applied in this paper. Integrating multiple FCNN models by fusing
their segmentation results rather than by fusing into one deep network
makes sure that each FCNN model can still be tested by 2D slices, guar-
anteeing the testing efficiency. An averaging strategy is applied to do
the fusing job. This method can be easily extended to integrate more
FCNN models which are trained to segment brain tumor images from
more views, without retraining the FCNN models that we already have.
In addition, 3D Conditional Random Fields (CRFs) are applied to opti-
mize our fused segmentation results. Experimental results show that,
integrating the segmentation results of multiple 2D FCNNs obviously
improves the segmentation accuracy, and 3D CRF greatly reduces false
positives and improves the accuracy of tumor boundaries.
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1 Introduction

Brain tumor segmentation results provide the volume, shape, and localization
of brain tumors, which are crucial for brain tumor diagnosis and monitoring.
c© Springer International Publishing AG, part of Springer Nature 2018
A. Crimi et al. (Eds.): BrainLes 2017, LNCS 10670, pp. 191–203, 2018.
https://doi.org/10.1007/978-3-319-75238-9_17



192 X. Zhao et al.

Automatic brain tumor segmentation methods can emancipate doctors from
the manual segmentation work, which is tedious and time-consuming [1]. Brain
tumor segmentation technologies develop fast in recent years [2], especially those
methods based on deep learning.

Up to now, many types of deep learning models have been successfully used
in medical image analysis areas. According to statistics, segmentation is the most
common subject among the literatures that apply deep learning to analyze med-
ical images, and Convolutional Neural Networks (CNNs) are the most successful
type of deep learning models for image analysis [3]. CNNs based methods have
won many medical image segmentation challenges, such as Multimodal Brain
Tumor Segmentation Challenge (BRATS) [4] and International Symposium on
Biomedical Imaging (ISBI) cell tracking challenge [5].

Many kinds of medical images, such as the Magnetic Resonance Images
(MRI), which can be used to segment brain tumors, are 3D images. To take
full use of 3D information for medical image analysis, it is better to use 3D
CNNs. However, 3D CNNs have large memory and training time requirements
[6]. Therefore, many researchers have tried to integrate multi-view 2D CNNs for
3D medical images analysis, such as [6,7]. These methods integrated their multi-
view 2D CNNs into one deep network, and sent the 2D patches in multi-views
centered at the same voxel into their deep networks at the same time, predicting
the label of these 2D patches’ common center voxel. Under this situation, 3D
images could only be segmented patch by patch, which is a very slow testing
strategy, even if we change their CNNs into FCNNs. To improve the segmenta-
tion efficiency, multiple FCNN models, each of which is trained to segment slices
in different views, can be combined by fusing their segmentation results, such
as [8,9], rather than by fusing into one deep network. In this way, each FCNN
model can still be tested by 2D slices, guaranteeing the testing efficiency. In
this paper, we integrate multiple 2D FCNNs by integrating their segmentation
results.

This paper is developed from our previous work [10]. In [10], 3 integrated
networks of FCNNs and CRF-RNN [11] were used to segment brain images
slice by slice from axial, coronal, and sagittal views respectively, and then their
segmentation results were fused by voting. While in this paper, the segmentation
results of multiple FCNNs are fused by averaging and then 3D CRF [12] is used
to optimize the fused results. 3D CRF costs much more time than CRF-RNN,
but it has a much better performance. The details of our method are given in
the following sections.

2 Materials and Methods

2.1 Materials

We use the dataset provided by Multimodal Brain Tumor Segmentation Chal-
lenge (BraTS) 2017 [13–15] to train and test our segmentation method. The
multimodal Magnetic Resonance Imaging (MRI) scans for each patient include
native (T1), post-contrast T1-weighted (T1Gd), T2-weighted, and T2-weighted
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fluid attenuated inversion recovery (Flair) volumes. Different from the datasets
provided during BraTS 2014-2016, which include both pre- and post-operative
scans, the dataset provided in this year only includes pre-operative MRI scans.
BraTS 2017 has separated its dataset into 3 subsets: training subset, validation
subset and testing subset. The training subset contains 210 High Grade Gliomas
(HGG) cases and 75 Low Grade Gliomas (LGG) cases. The validation and the
testing subsets contain 46 and 146 cases respectively, with unknown grades.
All the ground truths of these subsets are produced by manual segmentation.
Annotations include: enhancing tumor (label = 4), edema (label = 2), necrosis
and non-enhancing tumor (label = 1), and others (label = 0). There is no tissue
labeled as 3.

2.2 Methods

The proposed segmentation method consists of 5 main steps: pre-processing,
segmenting brain images slice by slice from 3 different views using 3 2D FCNN
models respectively, fusing segmentation results obtained in 3 different views,
optimizing the fused segmentation results by 3D CRF, and post-processing. In
the following we will introduce each of our segmentation steps in detail.

Fig. 1. Flowchart of our brain tumor segmentation method

Pre-process. To make similar intensities in MRI scans of the same modal-
ity have similar tissue meanings, pre-processing steps are utilized. Our pre-
processing steps include N4ITK [16] and intensity normalization. The applied
intensity normalization method normalize each image’ intensity by normaliz-
ing its gray value of the highest histogram bin Î and robust deviation σ̃ =√∑N

k=1(Ik − Î)2/N [10], where N denotes the total number of voxels in an
image, Ik denotes the intensity value of the kth voxel in the image. We also
change intensity range of each image to 0-255 linearly. For more details of our
pre-processing steps, please refer to [10].

Segment Brain Images by FCNNs. Our FCNNs brain tumor segmenta-
tion method is a patch-based segmentation method. A patch is a local region
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extracted from an image. It can be 2D or 3D. In this paper, we use 2D square
patches. A patch-based segmentation method transforms a segmentation task
to a classification task. Patches are the objects to be classified. The label of
a patch is same as the label of its center pixel. During testing, the traditional
patch-based CNNs segmentation methods segment images by classifying patches
one by one [17]. To accelerate the testing speed, Fully Convolutional Neural Net-
works (FCNNs), whose stride of each layer is set to 1, can be used. These FCNN
networks can be trained by patches and tested by slices, improving the testing
efficiency greatly [10,18].

In this paper, we use the same FCNN structure proposed in [19] as shown
in Fig. 2, which has two different sizes of inputs. The large inputs pass through
several convolutional and pooling layers and turn into small feature maps. These
feature maps together with small inputs are used to predict their center pixel’s
label. Different from [19], we train 3 FCNN models in this paper, using 2D
patches extracted from axial, coronal, and sagittal slices respectively. During
testing, we use these 3 segmentation models to segment brain images slice by
slice from 3 different views and obtain 3 segmentation probability maps.

Fig. 2. The structure of the FCNN model used in this paper [19]

Fuse Segmentation Results Obtained in 3 Different Views. As described
in the last subsection, 3 FCNN models are trained to segment brain images from
3 different views. During testing, their segmentation probability maps are fused
by averaging to make better use of the 3D information provided by the 3D MRI
scans.

Let Pa, Pc, and Ps denote the outputs of 3 the FCNN segmentation models
respectively, Pa = {Pu

a |u = 0, 1, 2, 4}, Pc = {Pu
c |u = 0, 1, 2, 4}, Ps = {Pu

s |u =
0, 1, 2, 4}, where u denotes one of the four labels (enhancing tumor: label = 4;
edema: label = 2; necrosis and non-enhancing tumor: label = 1; others: label = 0).
Pu

a , Pu
c , and Pu

s are 3D probability images which have the same size as the 3D
MRI scans to be segmented. The intensity value of each voxel in Pu

a , Pu
c , and Pu

s

denotes the predicted probability of assigning label u to this voxel. We fuse these
3 segmentation results by averaging, that is P = (Pa +Pc +Ps)/3. P consists of
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4 components {Pu|u = 0, 1, 2, 4}. Each Pu = {pu
i }, where i is the index of voxel

vi in the 3D MRI scans and pu
i is the fused predicted probability of assigning

label u to voxel vi.
We fuse the segmentation results as a post-processing step rather than fuse

the 3 FCNN networks into one deep network, aiming to make sure that each
FCNN model still has the ability to segment brain images slice by slice for
efficiency. In this way, this method improves the efficiency of integrating multi-
view 2D CNNs while achieves better accuracy than using a single 2D CNN
network.

Optimize the Fused Segmentation Results by 3D CRF. To make sure
the appearance and spatial consistency of segmentation results, we use fully
connected 3D CRF [12] to optimize our segmentation results. CRF optimize the
segmentation results by minimizing an energy function, which contains a unary
term and a pairwise term. The energy function is shown as following:

E(a) =
∑

i

Φ(au
i ) +

∑
∀i,j,i<j

Ψ(au
i , ao

j) (1)

where, i and j are indexes of two voxels vi and vj ; au
i denotes assigning label u

to voxel vi, so does ao
j ; Φ(au

i ) is the unary term, denoting the cost of assigning
label u to voxel vi; Ψ(au

i , ao
j) is the pairwise term, denoting the cost of assigning

label u and o to voxels vi and vj respectively.
The unary term is calculated by Φ(au

i ) = − log pu
i , where, pu

i denotes the
fused probability of assigning label u to voxel vi, which has been described in
the last subsection. The pairwise term is formulated as a linear combination of
Gaussian kernels [12]:

Ψ(au
i , ao

j) = μ(u, o)[ω(1)k(1)(fi, fj) + ω(2)k(2)(fi, fj)] (2)

k(1)(fi, fj) = exp(−
∑

d

|si,d − sj,d|2
2σ2

α,d

) (3)

k(2)(fi, fj) = exp(−
∑

d

|si,d − sj,d|2
2σ2

β,d

−
∑

c

|Ii,c − Ij,c|2
2σ2

γ,c

) (4)

μ(u, o) indicates the compatibility of labels u and o, μ(u, o) = [u �= o]; fi and
fj denote feature vectors of vi and vj respectively, including their intensity Ii,c,
Ij,c, and coordinates si,d, sj,d; c = flair,t1Gd,or t2 indicates different MRI
modalities; d = x, y, or z denotes different axles; (si,x, si,y, si,z) indicates the
coordinate of voxel vi, so does (sj,x, sj,y, sj,z). Other parameters, such as ω(1),
ω(2), σα,d, σβ,d, and σγ,c, are optimized by grid searching. The values of these
parameters used in our experiments will be shown in Table 2 in Subsect. 3.1.

Post-process. We remove small isolated areas and correct some voxels’ labels
to post-process our segmentation results automatically by a simple thresholding
method [10]. The thresholding parameters used in this paper have the same
values as the parameters used in our previous paper [10].
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3 Experiment

Our FCNN models are built upon caffe [20], and we use a computing server with
multiple Tesla K80 GPUs and Intel E5-2620 CPUs. The dataset provided by
BraTS 2017 are used to train and test our segmentation method. The details of
this dataset have been described in Subsect. 2.1.

We use 80% of BraTS 2017 HGG training cases, including 168 HGG cases
(hereinafter called 168 HGGs), to train our segmentation models, and use the rest
of HGG training cases, including 42 HGG cases (hereinafter called 42 HGGs),
as a validation dataset. Our FCNN networks are trained by patches and tested
by slices. During training, we train 3 FCNN models, using 2D patches extracted
from axial, coronal, and sagittal slices respectively. The numbers of extracted
patches for different classes are equal. In our experiments, for the training of
each view network, we extract 1000 * 4 patches from each training case. Our
FCNN networks need two different sizes of input patches, as shown in Fig. 2.
The size of the larger patch is 65 * 65 * 3, and the size of the smaller patch is
33 * 33 * 3. Images in these 3 channels are extracted from pre-processed Flair,
T1Gd, and T2 respectively. T1 scans are not used, because experiments in [10]
showed that T1 scans couldn’t improve segmentation performance. In our exper-
iments, the training batch size is set to 300, and the initial learning rate is set
to 10−4. The learning rate is divided by 10 after each 20 epochs. During testing,
slices are padded with 0 intensities before segmentation to make sure that the
outputs of FCNN models have the same size as the original slices. For example,
if the size of an original slice is 240 * 240, we pad it with 0 intensities before
segmentation to make two larger slices with sizes of (240 + 64) * (240 + 64) and
(240 + 32) * (240 + 32) respectively. These two larger slices are used as the inputs
of FCNN network, and then FCNN network outputs its prediction result with
the size of 240 * 240. The stride of each layer in our FCNN networks has been
set to 1. That is why the outputs of our FCNN networks can have the same res-
olution as the original slices just by padding the original slices with 0 intensities
before segmentation.

In our primary experiments that are tested on the 42 HGGs, we use Dice,
Positive Predictive Value (PPV), and Sensitivity to measure the performance of
our segmentation models. These 3 metrics are commonly used in BraTS evalua-
tion websites: BraTS 20121, BraTS 20132, and BraTS 20153. These metrics are
calculated as following: Dice(P∗, T∗) = |P∗∩T∗|

(|P∗|+|T∗|)/2 , PPV (P∗, T∗) = |P∗∩T∗|
|P∗| ,

Sensitivity(P∗, T∗) = |P∗∩T∗|
|T∗| , where ∗ indicates complete, core, or enhancing

regions. T∗ denotes the true region of ∗. P∗ denotes the segmented ∗ region.
|P∗ ∩ T∗| denotes the overlap area between P∗ and T∗. |P∗| and |T∗| denotes
the areas of P∗ and T∗ respectively. Particularly, the complete region includes
enhancing core, edema, no-enhancing core and necrosis; the core region includes
enhancing core, non-enhancing core and necrosis; the enhancing region only
1 https://www.virtualskeleton.ch/BRATS/Start2012.
2 https://www.virtualskeleton.ch/BRATS/Start2013.
3 https://www.virtualskeleton.ch/BRATS/Start2015.

https://www.virtualskeleton.ch/BRATS/Start2012
https://www.virtualskeleton.ch/BRATS/Start2013
https://www.virtualskeleton.ch/BRATS/Start2015
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includes enhancing core. The 42 HGGs come from BraTS 2017 training dataset,
and their ground truths are available. Therefore, we calculate the evaluation
scores of the 42 HGGs by ourselves.

We also report our models’ Dice scores on BraTS 2017 Validation dataset
and Testing dataset. BraTS 2017 doesn’t provide the ground truths of these two
datasets. In this paper, the evaluation scores of Validation dataset are calcu-
lated on its evaluation website4, and the evaluation scores of Testing dataset are
provided by BraTS 2017 organizer. Even though there exist a number of LGG
cases in BraTS 2017 Validation and Testing datasets, we still use our segmenta-
tion models trained only by the 168 HGGs to segment all the cases in these two
datasets. Segmentation results of validation and testing datasets show that our
models also work well for segmenting LGG cases. Therefor we only use HGG
cases to train our segmentation models.

3.1 Primary Experiments Tested on the 42 HGGs

The evaluation scores of our models on the 42 HGGs are shown in Table 1, where
the method called Fusing(FCNNs)+3D CRF fuses the segmentation results of
3 FCNN models by averaging, and then uses 3D CRF to optimize the fused
results, as shown in Fig. 1; the method called Fusing(FCNNs+3D CRF) uses 3D
CRF to optimize the segmentation results of each FCNN model, and then fuses
the optimized results by voting.

Table 1. The average evaluation scores of 42 HGG cases

Methods Dice PPV Sensitivity

Comp. Core Enh. Comp. Core Enh. Comp. Core Enh.

FCNNs(axial) 0.623 0.701 0.633 0.480 0.602 0.530 0.971 0.916 0.877

FCNNs(coronal) 0.666 0.738 0.675 0.578 0.664 0.594 0.963 0.896 0.865

FCNNs(sagittal) 0.662 0.703 0.653 0.526 0.607 0.574 0.957 0.912 0.846

Fusing(FCNNs) 0.713 0.805 0.733 0.585 0.753 0.663 0.972 0.912 0.887

Fusing(FCNNs)+3D CRF 0.865 0.867 0.821 0.912 0.906 0.800 0.841 0.856 0.884

Fusing(FCNNs)+3D CRF

+post-process

0.873 0.868 0.830 0.925 0.904 0.819 0.843 0.860 0.877

FCNNs(axial)+3D CRF 0.857 0.843 0.787 0.873 0.840 0.731 0.857 0.875 0.895

FCNNs(coronal)+3D CRF 0.862 0.843 0.800 0.898 0.869 0.765 0.845 0.850 0.880

FCNNs(sagittal)+3D CRF 0.845 0.848 0.797 0.887 0.853 0.762 0.827 0.869 0.874

Fusing(FCNNs+3D CRF) 0.865 0.864 0.816 0.906 0.894 0.784 0.845 0.861 0.887

Fusing(FCNNs+3D CRF)

+post-process

0.873 0.868 0.828 0.920 0.895 0.813 0.846 0.865 0.879

The scores in Table 1 indicate that fusing the segmentation results obtained
from different views obviously improves the segmentation accuracy, no mat-
ter the fusing operation is performed before or after 3D CRF. But from the
4 https://ipp.cbica.upenn.edu/.

https://ipp.cbica.upenn.edu/
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view of Dice scores, Fusing(FCNNs)+3D CRF performs slightly better than
Fusing(FCNNs+3D CRF). Note that, the performance of Fusing(FCNNs)+3D
CRF reported in this paper is slightly different from the performance that we
have reported in our pre-conference short paper of BraTS 2017 [21]. It is because
that, at the beginning of our experiments, the same values of parameters in 3D
CRF, which were optimized based on the experiments of Fusing(FCNNs+3D
CRF), were applied in all of our experiments. But now, the parameters of 3D
CRF are optimized separately in our experiments of Fusing(FCNNs)+3D CRF
and Fusing(FCNNs+3D CRF). The values of parameters in 3D CRF used in
our experiments are shown in Table 2. In addition, in [21], Fusing(FCNNs) fused
segmentation results of FCNNs by voting, while in this paper, Fusing(FCNNs)
fuses segmentation results of FCNNs by averaging.

Table 2. The values of parameters in 3D CRF used in our experiments (in this table,
d = x, y,or z, and c = flair, t1Gd,or t2)

Experiments ω(1) ω(2) σα,d σβ,x σβ,y σβ,z σγ,c

Fusing(FCNNs)+3D CRF 2.5 4.0 24 17 12 10 8

Fusing(FCNNs+3D CRF) 3.0 4.0 24 17 12 10 8

To show the effectiveness of integrating multiple FCNNs and multiple
FCNNs+3D CRF, we show some segmentation examples in Fig. 3. Images in
the first and second columns are used to show the effectiveness of fusing mul-
tiple FCNNs. Images in the third and fourth columns are used to show the
effectiveness of fusing multiple FCNNs+3D CRF. Figure 3 shows that, fusing
the 3 segmentation results of multi-view models can remove some obvious false
positives, which just appear in one of the three results and do not appear in the
other two results.

To show the effectiveness of 3D CRF and post-processing steps, we show some
segmentation results in Fig. 4. Images in the first and second rows show that 3D
CRF makes the segmentation labels have appearance and spatial consistency,
and post-processing steps can remove false positives by removing small isolated
areas. Images in the third and fourth rows show that 3D CRF also has the ability
to remove many false positives caused by bias field. In this case, even though
the segmentation result which has been optimized by 3D CRF still has much
difference from the ground truth, it is already much better than the segmentation
result without 3D CRF.

3.2 Segmentation Performance on BraTS 2017 Validation Dataset

We test our segmentation results of BRATS 2017 Validation dataset on its evalu-
ation website. The Dice scores are shown in Table 3. Table 3 shows that, on BraTS
2017 Validation dataset, Fusing(FCNNs)+3D CRF+post-process has a better
performance on enhancing region and core region, while Fusing(FCNNs+3D
CRF)+post-process has a slightly better performance on complete tumor region.
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Fig. 3. Some segmentation examples to show the effectiveness of integrating multi-
ple FCNNs and FCNNs+3D CRF. The type of each image has been labeled on the
image. Images in the first and second columns are used to show the effectiveness of
fusing multiple FCNNs. Images in the third and fourth columns are used to show
the effectiveness of fusing multiple FCNNs+3D CRF. From left to right, the subjects
ID are: Brats17 CBICA ABE 1, Brats17 CBICA AOZ 1, Brats17 CBICA AME 1,
Brats17 CBICA AQD 1. In the segmentation results, each gray level represents a tumor
class, from high to low: enhancing core, edema, necrosis and non-enhancing core.
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Fig. 4. Some segmentation examples to show the effectiveness 3D CRF and post-
processing step. The type of each image has been labeled on the image. Images in
the first and second rows come from the subject of Brats17 2013 20 1, and the images
in the third and fourth rows come from the subject of Brats17 CBICA ARZ 1. In
the segmentation results, each gray level represents a tumor class, from high to low:
enhancing core, edema, necrosis and non-enhancing core.

3.3 Segmentation Performance on BraTS 2017 Testing Dataset

The ground truths of BraTS 2017 Testing dataset are not available. The evalu-
ation scores of our method on BraTS 2017 Testing dataset are provided by its
organizer. We show the Dice scores of our method in Table 4.

During BraTS 2017, we used the segmentation model of Fusing(FCNNs)+3D
CRF, not only because Fusing(FCNNs)+3D CRF has a slightly better per-
formance, but also because Fusing(FCNNs)+3D CRF has a higher segmenta-
tion efficiency than Fusing(FCNNs+3D CRF). Fusing(FCNNs)+3D CRF only
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Table 3. The average Dice scores of BRATS 2017 validation dataset (46 cases)

Methods Dice

Comp. Core Enh.

FCNNs(axial) 0.648 0.601 0.543

FCNNs(coronal) 0.669 0.605 0.544

FCNNs(sagittal) 0.650 0.606 0.553

Fusing(FCNNs) 0.717 0.665 0.613

Fusing(FCNNs)+3D CRF 0.882 0.694 0.702

Fusing(FCNNs)+3D CRF+post-process 0.887 0.794 0.754

FCNNs(axial)+3D CRF 0.878 0.683 0.657

FCNNs(coronal)+3D CRF 0.871 0.677 0.647

FCNNs(sagittal) +3D CRF 0.870 0.694 0.668

Fusing(FCNNs+3D CRF) 0.881 0.694 0.696

Fusing(FCNNs+3D CRF)+post-process 0.888 0.792 0.749

Table 4. The average Dice scores of BRATS 2017 testing dataset (146 cases)

Methods Dice

Comp. Core Enh.

Fusing(FCNNs)+3D CRF+post-process 0.876 0.752 0.764

performs 3D CRF once, while Fusing(FCNNs+3D CRF) performs 3D CRF three
times. The 3D CRF is performed on CPU. Performing 3D CRF once costs about
3 min per case.

4 Conclusion

In this paper, 3D brain images are segmented by integrating the segmentation
results of multiple 2D FCNNs, which are trained to segment brain images from
axial, coronal, and sagittal views respectively. Each of the 2D FCNN networks
is tested slice by slice, guaranteeing the segmentation efficiency. In addition, 3D
CRF is used to optimize our fused segmentation results. Experimental results
show that 3D CRF and the integrating strategy help a lot to improve segmen-
tation accuracy. Moreover, this integrating method is not limited to fuse the 3
segmentation results from 3 different views. It can be extended to fuse the more
from more views.
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