
Relation-Shape Convolutional Neural Network for Point Cloud Analysis

Yongcheng Liu†‡ Bin Fan∗† Shiming Xiang†‡ Chunhong Pan†
†National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences

‡School of Artificial Intelligence, University of Chinese Academy of Sciences
Email: {yongcheng.liu, bfan, smxiang, chpan}@nlpr.ia.ac.cn

Abstract

Point cloud analysis is very challenging, as the shape
implied in irregular points is difficult to capture. In
this paper, we propose RS-CNN, namely, Relation-Shape
Convolutional Neural Network, which extends regular grid
CNN to irregular configuration for point cloud analysis.
The key to RS-CNN is learning from relation, i.e., the ge-
ometric topology constraint among points. Specifically, the
convolutional weight for local point set is forced to learn
a high-level relation expression from predefined geometric
priors, between a sampled point from this point set and the
others. In this way, an inductive local representation with
explicit reasoning about the spatial layout of points can be
obtained, which leads to much shape awareness and robust-
ness. With this convolution as a basic operator, RS-CNN,
a hierarchical architecture can be developed to achieve
contextual shape-aware learning for point cloud analysis.
Extensive experiments on challenging benchmarks across
three tasks verify RS-CNN achieves the state of the arts.

1. Introduction
Recently, the analysis of 3D point cloud has drawn a lot

of attention, as it has many applications such as autonomous

driving and robot manipulation. However, this task is very

challenging, since it is difficult to infer the underlying shape

formed by these irregular points (see Fig. 1 for detail).

For this issue, much effort is focused on replicating the

remarkable success of convolutional neural network (CNN)

on regular grid data (e.g., image) analysis [17, 32], to irregu-

lar point cloud processing [26, 15, 45, 29, 27, 34, 38]. Some

works transform point cloud to regular voxels [42, 22, 3] or

multi-view images [35, 2, 5] for easy application of clas-

sic grid CNN. These transformations, however, usually lead

to much loss of inherent geometric information in 3D point

cloud, as well as high complexity.

To directly process point cloud, PointNet [24] indepen-

dently learns on each point and gathers the final features

∗Corresponding author: Bin Fan

Figure 1. Left part: Point cloud. Right part: Underlying shape

formed by this point cloud.

for a global representation. Though impressive, this de-

sign ignores local structures that have been proven to be

important for abstracting high-level visual concepts in im-

age CNN [49]. To solve this problem, some works parti-

tion point cloud into several subsets by sampling [26] or

superpoint [18]. Then a hierarchy is built to learn contex-

tual representation from local to global. Nevertheless, this

extremely relies on effective inductive learning of local sub-

sets, which is quite intractable to achieve.

Generally, there are mainly three challenges for learning

from point set P ⊂ R
3: (1) P is unordered, thus requir-

ing the learned representation being permutation invariant;

(2) P distributes in 3D geometric space, thus demanding

the learned representation being robust to rigid transforma-

tion (e.g., rotation and translation); (3) P forms an underly-

ing shape, therefore, the learned representation should be of

discriminative shape awareness. The issue (1) has been well

resolved by symmetric function [24, 27, 48], while (2) and

(3) still demand for a full exploration. The goal of this work

is to extend regular grid CNN to irregular configuration for

handling these issues together.

To this end, we propose a relation-shape convolutional

neural network (aliased as RS-CNN). The key to RS-CNN

is learning from relation, i.e., the geometric topology con-

straint among points, which in our view can encode mean-

ingful shape information in 3D point cloud.

Specifically, each local convolutional neighborhood is

constructed by taking a sampled point x as the centroid and

8887

2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

978-1-7281-3293-8/19/$31.00 ©2019 IEEE
DOI 10.1109/CVPR.2019.00910

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on May 08,2020 at 10:33:08 UTC from IEEE Xplore.  Restrictions apply. 



the surrounding points as its neighbors N (x). Then, the

convolutional weight is forced to learn a high-level relation

expression from predefined geometric priors, i.e., intuitive

low-level relation between x and N (x). By convoluting in

this way, an inductive representation with explicit reason-

ing about the spatial layout of points can be obtained. It

discriminatively reflects the underlying shape that irregular

points form thus is shape-aware. Furthermore, it can bene-

fit from geometric priors, including the invariance to points

permutation and the robustness to rigid transformation (e.g.,
translation and rotation). With this convolution as a ba-

sic operator, a hierarchical CNN-like architecture, i.e., RS-

CNN, can be developed to achieve contextual shape-aware

learning for point cloud analysis.

The key contributions are highlighted as follows:

• A novel learn-from-relation convolution operator

called relation-shape convolution is proposed. It can

explicitly encode geometric relation of points, thus re-

sulting in much shape awareness and robustness;

• A deep hierarchy equipped with the relation-shape

convolution, i.e., RS-CNN, is proposed. It can extend

regular grid CNN to irregular configuration for achiev-

ing contextual shape-aware learning of point cloud;

• Extensive experiments on challenging benchmarks

across three tasks, as well as thorough empirical and

theoretical analysis, demonstrate RS-CNN achieves

the state of the arts.

2. Related Work
View-based and volumetric methods. View-based meth-

ods represent a 3D shape as a group of 2D views from dif-

ferent angles. Recently, many works [35, 2, 5, 43, 6, 25]

have been proposed to recognize these view images with

deep neural networks. They often finetune a pre-trained

image-based architecture for accurate recognition. How-

ever, 2D projections could cause loss of shape information

due to self-occlusions, and it often demands a huge number

of views for decent performance.

Volumetric methods convert the input 3D shape into

a regular 3D grid, over which classic CNN can be em-

ployed [42, 22, 3]. The main limitation is the quantization

loss of the shape due to the low resolution enforced by 3D

grid. Recent space partition methods like K-d trees [16] or

octrees [39, 36, 28] rescue some resolution issues but still

rely on the subdivision of a bounding volume rather than

a local geometric shape. In contrast to these methods, our

work aims to process 3D point cloud directly.

Deep learning on point cloud. PointNet [24] pioneers this

route by independently learning on each point and gathering

the final features with max pooling. Yet this design neglects

local structures, which have been proven important for the

success of CNN. To remedy this, PointNet++ [26] suggests

a hierarchical application of PointNet to multiple subsets of

point cloud. Local structure exploitation with PointNet is

also investigated in [4, 30]. In addition, Superpoint [18] is

proposed to partition point cloud into geometric elements.

Graph convolution network is applied on a local graph cre-

ated by neighboring points [38, 37, 20]. However, these

methods do not explicitly model the local spatial layout of

points, thus acquiring less shape awareness. By contrast,

our work captures the spatial layout of points by learning a

high-level relation expression among points.

Some works map point cloud to a high-dimensional

space to facilitate the application of classic CNN. SPLAT-

Net [34] maps the input points onto a sparse lattice, then

processing with bilateral convolution [14]. PCNN [1] ex-

tends the function over point cloud to a continuous volu-

metric function over ambient space. These methods could

cause loss of geometric information, while our method di-

rectly operates on point cloud without introducing such loss.

Another key issue is the irregularity of points. Some

works focus on analyzing symmetric functions that are

equivariant to point sets learning [24, 27, 48, 19]. Some

other works [24, 21] develop alignment network for the

robustness to rigid transformation in 3D space. However,

the alignment learning is a suboptimal solution for this is-

sue. Some traditional descriptors like Fast Point Feature

Histograms can be invariant to translation and rotation, yet

they are often less effective for high-level shape understand-

ing. Our method that learns on geometric relation among

points is naturally robust to rigid transformation, whilst be-

ing highly effective due to the powerfulness of deep nets.

Relation learning. To learn a data-dependent weight from

relation has been explored in the field of image and video

analysis. Spatial transformer [13] learns a transition matrix

to align 2D images. Non-local network [40] learns long-

term relation across video frames. Relation networks [9]

learn position relation across objects.

There are also some works focusing on the relation learn-

ing in 3D point cloud. DGCNN [41] captures similar lo-

cal shapes by learning point relation in a high-dimensional

feature space, yet this relation could be unreliable in some

cases. Wang et al. propose a parametric continuous convo-

lution that is based on computable relation among points,

but they do not explicitly learn from local to global like

classic CNN. By contrast, our method learns a high-level

relation expression from geometric priors in 3D space, and

performs contextual local-to-global shape learning.

3. Shape-Aware Representation Learning
The core of point cloud analysis is to discriminatively

represent the underlying shape with robustness. Here we

learn contextual shape-aware representation for this goal,

by extending regular grid CNN to irregular configuration

with a novel relation-shape convolution (RS-Conv).
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Figure 2. Overview of relation-shape convolution (RS-Conv). The key is to learn from relation. Specifically, the convolutional weight for

xj is converted to wij , which learns a mapping M (Eq. (2)) on predefined geometric relation vector hij . In this way, the inductive con-

volutional representation σ
(A({wij · fxj , ∀xj})

)
(Eq. (3)) can expressively reason the spatial layout of points, resulting in discriminative

shape awareness. As in image CNN [32], further channel-raising mapping is conducted for a more powerful shape-aware representation.

3.1. Relation-Shape Convolution

Local-to-global learning, which has gained remarkable

success in image CNN [17, 32], is a promising solution for

contextual shape representation. However, it extremely re-

lies on shape-aware inductive learning from irregular point

subsets, which remains a quite intractable problem.

Modeling. To overcome this issue, we model local point

subset Psub ⊂ R
3 to be a spherical neighborhood, with a

sampled point xi as the centroid and surrounding points as

its neighbors xj ∈ N (xi). The left-most part of Fig. 2 illus-

trates this modeling. Then, our goal is to learn an inductive

representation fPsub
of this neighborhood, which should dis-

criminatively encode the underlying shape information. To

this end, we formulate a general convolutional operation as

fPsub
= σ

(
A({T (fxj ), ∀xj})

)
1, dij < r ∀xj ∈ N (xi),

(1)

where x is a 3D point and f is a feature vector. dij is the

Euclidean distance between xi and xj , and r is the sphere

radius. Here fPsub
is obtained by first transforming the fea-

tures of all the points in N (xi) with function T , and then

aggregating them with function A followed by a nonlinear

activator σ. In this formulation, the two functions A and T
are the key to fPsub

. That is, the permutation invariance of

point set can be achieved only when A is symmetric (e.g.,
summation) and T is shared over each point in N (xi).

Limitations of classic CNN. In classic CNN, T is im-

plemented as T (fxj
) = wj · fxj

, where wj is learnable

weight and “·” denotes element-wise multiplication. There

are mainly two limitations of this convolution when ap-

plied on point cloud: 1) wj is not shared over each point

inN (xi), resulting in variance to point permutation and in-

capability to process irregular Psub (e.g., different number);

2) the gradient of wj in backpropagation is only relevant to

the isolated point xj , leading to an implicit learning strat-

egy, which could not bring much shape awareness and ro-

1In this paper, the bias term is omitted for clarity.

bustness to fPsub
. This issue can be partly alleviated by some

techniques like performing various data augmentations or

using lots of convolutional filters, yet they are suboptimal.

Conversion: Learn from relation. We argue that the

above limitations can be mitigated by learning from rela-

tion. In the neighborhood of 3D space, the geometric rela-

tion between xi and all its neighbors N (xi) is an explicit

expression about the spatial layout of points, which further

discriminatively reflects the underlying shape. To capture

this relation, we replace wj in classical CNN with wij ,

which learns a mapping M of a relation vector hij , i.e.,
the predefined geometric priors between xi and xj . We call

hij as low-level relation. This process can be described as

T (fxj
) = wij · fxj

=M(hij) · fxj
. (2)

The goal of mapping M is to abstract high-level relation

expression between two points, which can encode their spa-

tial layout. Here we implementMwith a shared multi-layer

perceptron (MLP) due to its powerful mapping ability. This

process is illustrated in the middle part of Fig. 2. In this

way, wj is neatly converted to wij , whose gradient (deter-

mined by hij) is relevant to both xi and xj . Meanwhile,M
is exactly shared over all the points in N (xi), making it in-

dependent to the irregularity of points. It can also be robust

to rigid transformation that will be clarified in Sec 3.2.

As a consequence, fPsub
in Eq. (1) becomes

fPsub
= σ

(
A({M(hij) · fxj

, ∀xj})
)
. (3)

This convolutional representation, with all the relation be-

tween xi and N (xi) aggregated, can achieve explicit rea-

soning about the spatial layout of points, thus resulting in

discriminative shape awareness. For geometric priors, one

can use 3D Euclidean distance as an intuitive description of

low-level relation hij . Moreover, hij can also be defined

flexibly since M can map it to a high-dimensional relation

vector for channel alignment with fxj
for easy multiplica-

tion. We will discuss hij in detail in the experiment section.
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Channel-raising mapping. In Eq. (3), the channel num-

ber of fPsub
is the same as the input feature fxj

. This is

inconsistent with classic image CNN that increases channel

number while decreasing image resolution for a more ab-

stract representation. For example, the channel number of

64-128-256-512 is set in VGG network [32]. Accordingly,

we add a shared MLP on fPsub
for further channel-raising

mapping. It is illustrated in the middle part of Fig. 2.

3.2. Properties

RS-Conv in Eq. (3) can maintain four decent properties:

Permutation invariance. In the inner mapping function

M(h), both the low-level relation h and the shared MLP

M are invariant to the input order of points. Therefore,

with the outer aggregation functionA being symmetric, the

permutation invariance can be satisfied.

Robustness to rigid transformation. This property is well

held in the high-level relation encoding M(h). It can be

robust to rigid transformation, e.g., translation and rotation,

when a suitable h (e.g., 3D Euclidean distance) is defined.

Points interaction. Points are not isolated and nearby

points form a meaningful shape in geometric space. Thus

their inherent interaction is critical for discriminative shape

awareness. Our solution of relation learning explicitly en-

code the geometric relation among points, naturally captur-

ing the interaction of points.

Weight sharing. This is the key property that allows apply-

ing the same learning function over different irregular point

subsets for robustness, as well as low complexity. In Eq. (3),

the symmetric A, the shared MLP M and the predefined

geometric priors h are all independent to the irregularity of

points. Hence, this property is also satisfied.

3.3. Revisiting 2D Grid Convolution

The proposed RS-Conv is a generic formulation of 2D

grid convolution for relation reasoning. We clarify this with

a neighborhood (convolution kernel) of 3 × 3 on a 2D-grid

feature map, as illustrated in Fig. 3. Specifically, the sum-

mation function
∑

is a specific instance of the aggregation

function A. Moreover, note that wj always implies a fixed

positional relation between xi and its neighbor xj in the reg-

ular grid. For example, w1 always implies the top-left rela-

tion with xi, and w2 implies the right-above relation with

xi. In other words, wj is actually constrained to encode one

kind of regular grid relation in the learning process. There-

fore, our RS-Conv with relation learning is more general

and can be applied to model 2D grid spatial relationship.

3.4. RS-CNN for Point Cloud Analysis

Using RS-Conv (Fig. 2) as a basic operator and adopt-

ing a uniform sampling strategy, a hierarchical shape-aware

Figure 3. Illustration of 2D grid convolution with a kernel of 3×3.

Figure 4. The architectures of RS-CNN applied in the classifica-

tion (a) and segmentation (b) of point cloud. N is the number of

points and C is the channel number.

learning architecture like classic CNN, namely, RS-CNN,

can be developed for point cloud analysis as

F�
PN�

= RS-CONV(F�−1
PN�−1

), (4)

where F�
PN�

, features in layer � of the sampled point set PN�

with number N�, are obtained by applying RS-Conv on the

features in the previous layer �− 1.

Our RS-CNN applied in the classification and segmen-

tation of point cloud is illustrated in Fig. 4. In both tasks,

RS-CNN is used for learning a group of hierarchical shape-

aware representation. The final global representation fol-

lowed by three fully connected (FC) layers is configured

for classification. For segmentation, the learned multi-level

representation is successively upsampled by feature propa-

gation [26] to generate per-point predictions. Both of them

can be trained in an end-to-end manner.

3.5. Implementation Details

RS-Conv in Eq. (3). Symmetric function max pooling is

applied as aggregation function A. ReLU [23] is used as

nonlinear activator σ. For mapping function M, a three-

layer shared MLP is deployed since theoretically it can fit

arbitrary continuous mappings [8]. Low-level relation hij

is defined as a compact vector with 10 channels, i.e., (3D

Euclidean distance, xi − xj , xi, xj). The channel-raising

mapping is achieved by a single-layer shared MLP. Batch

normalization [12] is applied in each MLP.

RS-CNN for points analysis. The farthest points are

picked from point cloud for sampling local subsets to per-

form RS-Conv. In each neighborhood, a fixed number of

neighbors are randomly sampled for batch processing, and
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they are normalized to take the centroid as the origin. To

capture more sufficient geometric relation, we force RS-

CNN to learn over three-scale neighborhoods centered on

a sampled point with a shared weight. This is different

from multi-scale grouping (MSG) [26] that learns multi-

scale features using multiple groups of weight. RS-CNN

with 3 layers and 4 layers is deployed for classification and

segmentation, respectively. Note that only 3D coordinates

xyz are used as the input features to RS-CNN.

Our RS-CNN is implemented using Pytorch2. The Adam

optimization algorithm is employed for training, with a

mini-batch size of 32. The momentum for BN starts with

0.9 and decays with a rate of 0.5 every 20 epochs. The

learning rate begins with 0.001 and decays with a rate of

0.7 every 20 epochs. The weight of RS-CNN is initialized

using the techniques introduced by He et al. [7].

4. Experiment
In this section, we arrange comprehensive experiments

to validate the proposed RS-CNN. First, we evaluate RS-

CNN for point cloud analysis on three tasks (Sec 4.1). We

then provide detailed experiments to carefully study RS-

CNN (Sec 4.2). Finally, we visualize the shape features that

RS-CNN captures and analyze the complexity (Sec 4.3).

4.1. Point Cloud Analysis
Shape classification. We evaluate RS-CNN on Model-

Net40 classification benchmark [42]. It is composed of

9843 train models and 2468 test models in 40 classes. The

point cloud data is sampled from these models by [24]. We

uniformly sample 1024 points and normalize them to a unit

sphere. During training, we augment the input data with

random anisotropic scaling in the range [-0.66, 1.5] and

translation in the range [-0.2, 0.2], as in [16]. Meanwhile,

dropout technique [33] with 50% ratio is applied in FC lay-

ers. During testing, similar to [24, 26], we perform ten vot-

ing tests with random scaling and average the predictions.

The quantitative comparisons with the state-of-the-art

point-based methods are summarized in Table 1, where

RS-CNN outperforms all the xyz-input methods. Specifi-

cally, RS-CNN reduces the error rate of PointNet++ [26] by

31.2%, and surpasses its advanced version that uses addi-

tional normal data as well as very dense points (5k). More-

over, even using only xyz as the input, RS-CNN can also

achieve a superior result (93.6%) compared with the best

additional-input method SO-Net [19] (93.4%). This con-

vincingly verifies the effectiveness of our RS-CNN.

We test the robustness of RS-CNN on sampling den-

sity, by using sparser points of number 1024, 512, 256, 128

and 64 as the input to a model trained with 1024 points.

As in [26], random input dropout technique is applied for

a fair comparison. Fig. 5 shows the test results, where

2https://github.com/Yochengliu/Relation-Shape-CNN

Figure 5. Left part: Point cloud with random point dropout. Right

part: Test results of using sparser points as the input to a model

trained with 1024 points.

Table 1. Shape classification results (%) on ModelNet40 bench-

mark (nor: normal, “-”: unknown).

method input #points acc.

Pointwise-CNN [10] xyz 1k 86.1

Deep Sets [48] xyz 1k 87.1

ECC [31] xyz 1k 87.4

PointNet [24] xyz 1k 89.2

SCN [44] xyz 1k 90.0

Kd-Net(depth=10) [16] xyz 1k 90.6

PointNet++ [26] xyz 1k 90.7

KCNet [30] xyz 1k 91.0

MRTNet [3] xyz 1k 91.2

Spec-GCN [38] xyz 1k 91.5

PointCNN [21] xyz 1k 91.7

DGCNN [41] xyz 1k 92.2

PCNN [1] xyz 1k 92.3

Ours xyz 1k 93.6
SO-Net [19] xyz 2k 90.9

Kd-Net(depth=15) [16] xyz 32k 91.8

O-CNN [39] xyz, nor - 90.6

Spec-GCN [38] xyz, nor 1k 91.8

PointNet++ [26] xyz, nor 5k 91.9

SpiderCNN [45] xyz, nor 5k 92.4

SO-Net [19] xyz, nor 5k 93.4

the compared methods are PointNet [24], PointNet++ [26],

PCNN [1] and DGCNN [41]. As can be seen, it is more dif-

ficult for shape recognition when points get sparser. Even

so, RS-CNN is still considerably robust. It achieves nearly

consistent robustness as PointNet++, whilst showing supe-

rior performance on each density.

Shape part segmentation. Part segmentation is a chal-

lenging task for fine-grained shape analysis. We evaluate

RS-CNN for this task on ShapeNet part benchmark [46] and

follow the data split in [24]. This dataset contains 16881

shapes with 16 categories, and is labeled in 50 parts in total.

As in [24], we randomly pick 2048 points as the input and

concatenate the one-hot encoding of the object label to the

last feature layer. During testing, we also apply ten voting

tests using random scaling. Except for standard IoU (Inter-
over-Union) on each category, we also report two types of

mean IoU (mIoU) that are averaged across all classes and

all instances, respectively.
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Table 2. Shape part segmentation results (%) on ShapeNet part benchmark (nor: normal, “-”: unknown).
method input class

mIoU
instance
mIoU

air
plane

bag cap car chair ear
phone

guitar knife lamp laptop motor
bike

mug pistol rocket skate
board

table

Kd-Net [16] 4k 77.4 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3
PointNet [24] 2k 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
RS-Net [11] - 81.4 84.9 82.7 86.4 84.1 78.2 90.4 69.3 91.4 87.0 83.5 95.4 66.0 92.6 81.8 56.1 75.8 82.2
SCN [44] 1k 81.8 84.6 83.8 80.8 83.5 79.3 90.5 69.8 91.7 86.5 82.9 96.0 69.2 93.8 82.5 62.9 74.4 80.8
PCNN [1] 2k 81.8 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8
SPLATNet [34] - 82.0 84.6 81.9 83.9 88.6 79.5 90.1 73.5 91.3 84.7 84.5 96.3 69.7 95.0 81.7 59.2 70.4 81.3
KCNet [30] 2k 82.2 84.7 82.8 81.5 86.4 77.6 90.3 76.8 91.0 87.2 84.5 95.5 69.2 94.4 81.6 60.1 75.2 81.3
DGCNN [41] 2k 82.3 85.1 84.2 83.7 84.4 77.1 90.9 78.5 91.5 87.3 82.9 96.0 67.8 93.3 82.6 59.7 75.5 82.0
Ours 2k 84.0 86.2 83.5 84.8 88.8 79.6 91.2 81.1 91.6 88.4 86.0 96.0 73.7 94.1 83.4 60.5 77.7 83.6
PointNet++ [26] 2k,nor 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
SyncCNN [47] mesh 82.0 84.7 81.6 81.7 81.9 75.2 90.2 74.9 93.0 86.1 84.7 95.6 66.7 92.7 81.6 60.6 82.9 82.1
SO-Net [19] 1k,nor 80.8 84.6 81.9 83.5 84.8 78.1 90.8 72.2 90.1 83.6 82.3 95.2 69.3 94.2 80.0 51.6 72.1 82.6
SpiderCNN [45] 2k,nor 82.4 85.3 83.5 81.0 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8

Figure 6. Segmentation examples on ShapeNet part benchmark.

Table 2 summarizes the quantitative comparisons with

the state-of-the-art methods, where RS-CNN achieves the

best performance with class mIoU of 84.0% and instance

mIoU of 86.2%. This considerably surpasses the second

best xyz-based methods, i.e., DGCNN [41] with 82.3%

(1.7↑) in class mIoU and PCNN [1] with 85.1% (1.1↑) in

instance mIoU, respectively. Noticeably, RS-CNN sets new

state of the arts in the xyz-based methods over ten cate-

gories. These improvements demonstrate the robustness of

RS-CNN to diverse shape structures. Fig. 6 shows some

segmentation examples. One can see that although the part

shapes implied in irregular points are varied and they may

be very confusing to recognize, RS-CNN can also segment

them out with decent accuracy.

Normal estimation. Normal estimation in point cloud is

a crucial step for numerous applications, such as surface

reconstruction and rendering. This task is very challeng-

ing since it requires a higher level of reasoning, which goes

beyond the underlying shape recognition. We take normal

estimation as a supervised regression task, and achieve it us-

ing the segmentation network. The cosine-loss between the

normalized output and ground truth normal is applied for

regression training. ModelNet40 dataset is used for evalua-

tion, with uniformly sampled 1024 points as the input.

The quantitative results are summarized in Table 3. RS-

CNN outperforms other advanced methods on this task with

Table 3. Normal estimation error on ModelNet40 dataset.
dataset method #points error

ModelNet40 PointNet [1] 1k 0.47

PointNet++ [1] 1k 0.29

PCNN [1] 1k 0.19

Ours 1k 0.15

Figure 7. Normal estimation on ModelNet40 dataset. For clear-

ness, we only show predictions with angle less than 30◦ in blue,

and angle greater than 90◦ in red between ground truth normals.

a lower error of 0.15. This significantly reduces the er-

ror of PointNet++ (0.29) by 48.3%. Fig. 7 shows some

normal estimation examples, where our RS-CNN with geo-

metric relation learning can obtain more decent predictions.

However, RS-CNN could also be less effective for some in-

tractable shapes, such as spiral stairs and intricate plants.
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Table 4. Ablation study of RS-CNN (%). “DP” indicates the

dropout technique in FC layers of the classification network.
model #points relation BN DP scale voting acc.

A 1k 1 87.2
B 1k � 1 89.9
C 1k � � 1 91.9
D 1k � � � 1 92.2
E 1k � � � 2 92.5
F 1k � � � 3 92.9
G 1k � � � 3 � 93.6
H 2k � � � 3 � 93.6
I 1k � � 3 � 90.1

4.2. RS-CNN Design Analysis

In this section, we first perform a detailed ablation study

on RS-CNN. Then, we discuss the choices of aggregation

function A, mapping function M and low-level relation h
in Eq. (3). Finally, we validate the robustness of RS-CNN

on point permutation and rigid transformation. All experi-

ments are conducted on ModelNet40 classification dataset.

Ablation study. The results are summarized in Table 4.

The baseline (model A) is set to learn without geometric re-

lation encoding, but with a shared three-layer MLP as fea-

ture transformation function T in Eq. (1).

The baseline only gets an accuracy of 87.2%. Yet with

geometric relation learning, it is significantly improved to

89.9% (model B). This convincingly verifies the effective-

ness of our RS-CNN. Then, a great improvement of 2%

is gained after using BN (model C), maybe because it can

greatly ease the network training. Moreover, dropout tech-

nique improves the result by 0.3% (model D). As men-

tioned in Sec 3.5, RS-CNN should be able to benefit from

sufficient geometric relation. This is verified by model E

(92.5%) and model F (92.9%) that perform two-scale and

three-scale relation learning, respectively. Eventually, with

ten voting tests, an impressive accuracy of 93.6% (model

G) can be obtained with only xyz features.

To investigate the impact of the number of input points

on RS-CNN, we also train the network with 2048 points but

find no improvement (model H). In addition, to compare

with the baseline (model A) more fairly, we set a new base-

line (model I) that works with all the techniques but rela-

tion learning. It gets an accuracy of 90.1%, which RS-CNN

can also surpass by 3.5%. We speculate that RS-CNN with

geometric relation reasoning can acquire more discrimina-

tive shape awareness, and this awareness can be greatly en-

hanced by multi-scale relation learning.

Aggregation functionA. Three symmetric functions: max

pooling (max), average pooling (avg.) and summation

(sum), are employed to study the effect of A on RS-CNN.

Table 5 summarizes the results. As can be seen, with M
using three layers, max pooling achieves the best perfor-

mance while average pooling and summation get the same

Table 5. The results (%) of different designs on aggregation func-

tion A and mapping function M (Eq. (3)) (M(k): k-layer MLP).

A M(2) M(3) M(4) acc.

max � 92.4

max � 93.6
max � 92.7

avg. � 91.6

sum � 91.6

Table 6. The results (%) of five intuitive low-level relations h (Ed:

Euclidean distance, cosd: cosine distance, xnor: normal of x, x′:
2D projection of x). Model A applies only 3D Euclidean distance

as h; Model B adds the coordinates difference to model A; Model

C adds the coordinates of two points to model B; Model D utilizes

the normals of two points and their cosine distance as h; Model E

projects 3D points onto a 2D plane of XY, XZ and YZ.

model low-level relation h channels acc.

A (3D-Ed) 1 92.5

B (3D-Ed, xi − xj) 4 93.0

C (3D-Ed, xi − xj , xi, xj) 10 93.6
D (3D-cosd, xnor

i , xnor
j ) 7 92.8

E (2D-Ed, x′
i − x′

j , x′
i, x

′
j) 10 ≈ 92.2

accuracy. The reason may be that max pooling can select

the biggest feature response, thus keeping the most expres-

sive representation and removing redundant information.

Mapping function M. The results of M deployed with

different layers are summarized in the first three rows of

Table 5. One can see that the best accuracy of 93.6% is

obtained by a shared three-layer MLP, and it decreases by

0.9% when increasing the number of layers. The reason

might be thatM with four layers brings some difficulty for

network training. Noticeably, RS-CNN can also get a de-

cent accuracy of 92.4% withM using only two layers. This

verifies the powerfulness of relation learning for underlying

shape capturing from point cloud.

Low-level relation h. The key to RS-CNN is learning from

relation, thus how to define h is an issue worth exploring.

Actually, h can be defined flexibly, as long as it could dis-

criminatively reflect the underlying shape. To validate this

claim and facilitate the understanding, we experiment with

five intuitive relation definitions as examples, whose results

are summarized in Table 6.

As can be seen, using only 3D Euclidean distance as

h, the accuracy can also reach 92.5% (model A). This

demonstrates the effectiveness of our RS-CNN for high-

level geometric relation learning. Moreover, the perfor-

mance is gradually improved with additional relation, in-

cluding coordinates difference (model B) and coordinates

themselves (model C). We also utilize the normal vectors of

two points and their cosine distance as h, the result (model

D) is 92.8%. This indicates RS-CNN is also able to abstract

shape information from the relation in normals.
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Table 7. Robustness to point permutation and rigid transformation

(%). During testing, we perform random permutation (perm.) of

points, add a small translation of ±0.2 and counterclockwise rotate

the input point cloud by 90◦ and 180◦ around Y axis.
method acc. perm. +0.2 -0.2 90◦ 180◦
PointNet [24] 88.7 88.7 70.8 70.6 42.5 38.6

PointNet++ [26] 88.2† 88.2 88.2 88.2 47.9 39.7

Ours 90.3† 90.3 90.3 90.3 90.3 90.3
† The accuracy drops a lot mainly because the forcible normalization

of each local point subset could bring difficulty for shape recognition.

Intuitively, the relation among points in the 2D view of

point cloud can also reflect the underlying shape. There-

fore, to validate our RS-CNN for shape abstraction on 2D

relation, we forcibly set the value of one dimension in 3D

coordinates to be zero, i.e., projecting 3D points onto a 2D

plane of XY, XZ and YZ. The results are all around 92.2%

(model E), which is quite impressive. This further verifies

the effectiveness of the proposed relation learning method.

Robustness to point permutation and rigid transforma-
tion. We compare the robustness of our RS-CNN with

PointNet [24] and PointNet++ [26]. Note that all the models

are trained without related data augmentations, e.g., transla-

tion or rotation, to avoid confusion in this test. In addition,

although relation learning in RS-CNN is robust to rotation,

the initial input features of 3D coordinates are affected. We

address this issue by normalizing each sampled point sub-

set to corresponding local coordinate system, which is de-

termined by each sampled point and its normal. For a fair

comparison, we also perform this normalization for Point-

Net++, as it learns over local subsets as well. The 3D Eu-

clidean distance is applied as geometric relation h in RS-

CNN for this test. Table 7 summarizes the test results.

As can be seen, all the methods are invariant to permu-

tation. However, PointNet is vulnerable to both translation

and rotation while PointNet++ is sensitive to rotation. By

contrast, our RS-CNN with geometric relation learning is

invariant to these perturbations, making it powerful for ro-

bust shape recognition.

4.3. Visualization and Complexity Analysis
Visualization. Fig. 8 visualizes the shape features learned

by the first two layers of RS-CNN on ModelNet40 dataset.

As it shows, the features learned by the first layer mostly

respond to edges, corners and arcs, while the ones in the

second layer capture more semantical shape parts like air-

foils and heads. This verifies RS-CNN can learn progressive

shape-aware representation for point cloud analysis.

Complexity Analysis. Table 8 summarizes the space

(number of params) and the time (floating point opera-

tions/sample) complexity of RS-CNN in classification with

1024 points as the input. Compared with PointNet [24],

RS-CNN reduces the params by 59.7% and the FLOPs by

32.9%, which shows its great potential for real-time appli-

cations, e.g., scene parsing in autonomous driving.

Figure 8. Visualization of the shape features learned by the first

two layers of RS-CNN on ModelNet40 dataset. The features

learned by the first layer mostly respond to edges, corners and arcs,

while the ones in the second layer capture more semantical shape

parts like airfoils and heads.

Table 8. Complexity of RS-CNN in point cloud classification.

method #params #FLOPs/sample

PointNet [24] 3.50M 440M

PointNet++ [21] 1.48M 1684M

PCNN [21] 8.20M 294M
Ours 1.41M 295M

5. Conclusion
In this work, RS-CNN, namely, Relation-Shape Convo-

lutional Neural Network, which extends regular grid CNN

to irregular configuration for point cloud analysis, has been

proposed. The core to RS-CNN is a novel convolution op-

erator, which learns from relation, i.e., the geometric topol-

ogy constraint among points. In this way, explicit reasoning

about the spatial layout of points can be made to obtain dis-

criminative shape awareness. Moreover, the decent prop-

erties of geometric relation can also be acquired, such as

robustness to rigid transformation. As a consequence, RS-

CNN equipped with this operator can achieve contextual

shape-aware learning, making it highly effective. Extensive

experiments on challenging benchmarks across three tasks,

as well as thorough empirical and theoretical analysis, have

demonstrated RS-CNN achieves the state of the arts.
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