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Abstract—Knowledge graphs have proven to be incredibly
useful for many artificial intelligence applications. Although
typical knowledge graphs may contain a huge amount of
facts, they are far from being complete, which motivates an
increasing research interest in learning statistical models for
knowledge graph completion. Learning such models relies on
sampling appropriate number of negative examples, as only the
positive examples are contained in the data set. However, this
would introduce errors or heuristic biases which restrict the
sampler to visit other potentially reliable negative examples
for better prediction models. In this paper, we present a novel
perspective on skillfully selecting the negative examples for
knowledge graph completion. We develop a two-stage logistic
regression filter under the positive-unlabeled learning (PU
learning) framework, which enables an automatic and iterative
refinement of the negative candidate pools. We then contrast
positive examples with the resulting negative ones based on
the improved embedding-based models. In particular, we work
with a cost-sensitive loss function by weighting the semantic
differences between negative examples and particular positive
ones. This weighting scheme reflects the importance of predict-
ing the preferences between them correctly. In experiments,
we validate the effectiveness of negative examples in refining
and weighting schemes, respectively. Besides this, our proposed
prediction model also outperforms the state-of-the-art methods
on two public datasets.

I. Introduction
Knowledge graphs (KGs) have played an essential role

in a variety of applications such as question answering and
text analysis. They provide information about a variety
of relational facts represented in the form of triples (h,
r, t), where h denotes a head entity, and r is a relation
that connects h to a tail entity t. Although typical KGs,
such as Freebase [1], Yago [2], and Knowledge Vault
[3] have reached an impressive size, they are far from
being complete. This has motivated a tremendous research
interest in knowledge graph completion, i.e., automatically
discovering new facts between entities in the KG.

The approaches of knowledge graph completion, which
have been recently developed and validated, can be divided
into two categories: latent feature models and observed
feature models. The methods in the first major category
attempt at embedding entities and relations into a low-
dimensional continuous vector space, with each triple
represented as a score function in the vector space [4]–
[6]. They typically formulate the loss functions that
preserve certain preferences between positive and negative

triples. The second category of methods, however, directly
construct binary features for candidate triples based on a
simplified variant of path ranking algorithm (PRA) [7].
These features together with their weights are used to
define the score of a triple, which is helpful in capturing
correlations among multiple relation types [8].

Learning the models discussed so far relies on sam-
pling appropriate number of negative examples (unknown
triples), as only the positive examples (known triples) are
contained in the data set. For example, early methods
obtain negative candidates by replacing the head entity
or the tail entity randomly (e.g., TransE [6]), which can
easily lead to false negatives. Subsequently, various specific
heuristics are incorporated into the random sampling
process with an improved quality [8]–[10]. However, this
would introduce biases which restrict the sampler to visit
other potentially reliable negative examples for better
prediction models.

In this paper, we propose a two stage logistic regression
filter (TSLRF), i.e. a novel negative example generation
approach based on the positive-unlabeled learning frame-
work. Specifically, it extracts a set of reliable negative
examples from the initial unlabeled data, which together
with the available positive examples, are then used to train
a binary classifier. It performs in an iterative manner and
outputs the set of the low scoring negative candidates
for the downstream training. We further devise a novel
embedding-based model which works with cost-sensitive
losses, by weighting the semantic differences between
negative examples and particular positive ones. This
weighting scheme reflects the importance of predicting
the preferences between them correctly. Experimental
results manifest that reliable negative examples benefit
both the latent and the observed feature models, and lead
to further performance improvement when combined with
the weighting scheme in the latent feature models.

Our main contributions include the followings:
• The proposed TSLRF adopts PU learning instead of

purely random sampling or heuristic search; the out-
put set is iteratively refined to find reliable negative
examples in a data-driven manner.

• The introduced weighting scheme between positive-
negative example pairs is generic for the embedding-
based models, since the negative candidates do not



have the equal semantic distance to any particular
positive one.

• Empirical evidence on benchmark collections confirm
the advantage of our approach for discovering new
facts in comparison with several baseline methods.

II. Related Works

Early rule-based methods for the knowledge graph
completion have been proved to be effective, such as
first-order logic approaches [11] and probabilistic soft
logic approaches [12]. However, these methods perform
poorly at large KGs because of the convergence problem.
Recently, the statistical methods based on the latent and
observed features are proposed, which could effectively
alleviate this issue.

Methods based on the latent features usually embed
each item (an entity or a relation) into a flexible contin-
uous vector space. The Unstructured Model (UM) [13]
only uses the entity item embedding, not considering
relation-related information. The Structured Embedding
(SE) model [4] learns two matrices for head-specific
relations and tail-specific relations, respectively. Semantic
Matching Energy (SME) model [14] further captures the
correlations between entities and relations by matrix
operations. Other models, such as Latent Factor Model
(LFM) [15], RESCAL [16], and the Neural Tensor Network
(NTN) [5] employ tensor-like structures to detect such
correlations. A recent, state-of-the-art model is TransE [6],
which considers the relation as a translation from head en-
tity to tail entity in the embedding space and achieves a re-
markable performance with reduced parameters. However,
TransE has limitations in modeling one-to-many, many-to-
one, and many-to-many relations. To alleviate this issue,
TransH [9], TransR/CTransR [17], TransD [18] were put
forward successively, but lose the simplicity and efficiency
of TransE. As a remedy, HOLE [19] introduces circular
correlation to create compositional representations, which
offers a better representation capacity with the equivalent
amount of parameters of TransE. Note that most current
embedding models work by minimizing a margin-based
pairwise ranking loss function. Yet, the semantic differ-
ences between negative examples and particular positive
ones are typically ignored.

Instead of using latent features, several recent studies
proposed to train the prediction models based on the
observed features (e.g., the graph structure similarity
and direct links between entity pairs), with surprising
results [8], [20], [21]. A common characteristic of the
latent and observed feature models is that they all rely
on sampling appropriate negative examples, as only the
positive examples are contained in the data set. However,
a major limitation is that the involved negative example
generators would introduce the errors or heuristic biases
which restrict the sampler to visit other potentially
reliable negative examples.

III. Preliminaries
A. PU-learning

Learning from Positive and Unlabeled Examples (PU-
learning) is an approach for two-class semi-supervised
classification problem, which utilizes labeled positive ex-
amples and unlabeled examples [22]. The labeled positive
examples are scarce for PU-learning. But unlabeled data
(e.g., raw Internet data) are convenient and cheap to get,
which can be used to reduce the workload of labeling
data and improve the classification performance for many
applications. For example, Xia et al. [23] use PU-learning
framework for instance selection and weighting, improving
the performance of cross-domain sentiment classification.
Liu et al. [24] use PU-learning method to improve and
facilitate the drug discovery process. PU-learning has two
main processes:

• Generating a reliable negative example set according
to labeled positive examples.

• Training a binary classifier with the labeled positive
examples and reliable negative examples.

For the knowledge graph completion task, labeled exam-
ples (known triples) are far less than unlabeled examples
(unknown triples), which particularly fits the setting of
PU-learning.

B. Generating Reliable Negative Examples
Generally speaking, there are four types of negative

example generating strategies:
• Sampling negative examples randomly (e.g., TransE

[6]).
• Replacing the h and t entities with different probabil-

ities, which depend on the types (mapping properties)
of relations [9].

• Choosing the h and t entities according to their entity
types. [8], [10].

• Extracting candidate negative examples that are rela-
tively close to the positive examples in the embedding
vector space [25].

Sampling approaches are nearly inevitable to choose
some false negative examples. The above methods, except
for the random sampling, are proposed to reduce the
chance of generating false negative examples or find
more significant negative examples. However, they highly
depend on the heuristic knowledge (e.g., the predefined
rule [8]–[10]) or the high-quality additional resource (e.g.,
pre-trained embeddings [25]). In this study, we propose
a data-driven approach to improve the quality of the
negative candidate pool iteratively. Our method only
requires the observed information of the given KGs.

C. Latent and observed features of triples
In latent feature models, each triple is represented as

a score function or certain combination operator that
depends only on learned embedding vectors of the entities
and relations, and possibly additional global parameters.



In this work, we use circular correlation as the com-
positional operator introduced by Nickel et al. [19]. It
can capture rich interactions but simultaneously remain
efficient to train. In contrast, observed feature models
directly construct interpretable features for each triple,
which together with their weights, are used to define the
score of a triple. An early observed feature model [7]
exploit Path Ranking Algorithm (PRA) to get appropriate
weights for different paths, which are then used for the
link prediction. In this work, we extract six types of
observed features (Eq. (1)-Eq. (6)) for every candidate
triple (ei, rk, ej). To be specific, we employ four types of
observed features (feature 1-4) introduced by Toutanova
et al. [8] and further define another two types of new
observed features (feature 5 and 6).

1(ei&r&ej) =

{
1 (r ̸= rk)(ei, r, ej) ∈ TrainingSet
0 otherwise

(1)

1(ej&rinv&ei) =

{
1 (ej , rinv, ei) ∈ TrainingSet
0 otherwise

(2)

1(ei&r) =

{
1 (ei, r) ∈ TrainingSet
0 otherwise

(3)

1(r&ej) =

{
1 (r, ej) ∈ TrainingSet
0 otherwise

(4)

1(ei&r&e) =

{
1 (ei, r, e) ∈ TrainingSet
0 otherwise

(5)

1(e&r&ej) =

{
1 (e, r, ej) ∈ TrainingSet
0 otherwise

(6)

We use e, r to denote any entity and relation. Generally
speaking, feature 1, 2 are used to describe the correlation
distribution of two entities in the candidate triple. Given
a pair of head and tail entities, whether they appear
together in a known relation r (or the inverse relation
rinv) triple provides useful information for predicting the
candidate triple. For example, one person (ei) living in (r)
a certain city (ej) might also works (rk) in the same city
(ej). Feature 3, 4 are about the distribution of entities in
the relationship domain. They capture a bias of the entity
occurring in head or tail position for the specific candidate
relation rk. An entity might intuitively occur in several
particular types of relations. For example, UnitedState is
a common nationality entity for the nationality relation
in Freebase [8].

As a natural extension, feature 5 and 6 that we
introduce in this paper characterize the context of en-
tities in the tuple domain. The two features contain the
information of entities occurring at specific head or tail
positions in a triple (given the relation and another entity
of a particular triple). An entity might be closely related
to several particular tuples of relations and entities. For
example, broccoli, soybean, and milk are common food

entities for the tuple (contains, calcium) in the KGs
extracted from the Web.

IV. The Proposed Method
In this study, we proposed a triple prediction framework

that can effectively exploit both the observed features
and the latent features. We propose TSLRF to obtain
sound negative examples iteratively and automatically.
Then an embedding-based prediction model is trained
by minimizing a properly weighted margin-based loss
function.

A. Generating Reliable Negative Examples with TSLRF
As fig. 1 shows, our proposed prediction framework first

generates the initial unlabeled example set IU and positive
example set P depending on known triples in the KGs.
For every positive example (h, r, t), we generate two types
of unlabeled examples (h′, r, t) and (h, r, t′) (unknown
triples in the training set) by random sampling under local
closed world assumption. Every triple will correspondingly
generate 10 examples for both types, which make up the
initial unlabeled example set. The initial example set IU
and P are then fed into TSLRF.

To adjust the imbalance between positive and negative
examples, we design a cost-sensitive logistic regression loss
function for TSLRF. Parameter α > 1 is used to control
the importance ratio of positive and negative examples.
The loss function is:

Ls =−
(N++N−)∑

i=1

{α · yi · ln(σ(wxT + w0))

+ (1− yi) · ln(1− σ(wxT + w0))}+β ·
M∑
j=0

|wj |1,

(7)
where β is the regularization parameter; σ denotes the
logistic function; N+ and N− denote the number of
positive and negative examples respectively; M is the
number of observed features.

We use TSLRF in an iterative manner until the conver-
gence of the unlabeled example set or achieving the max
iteration number. The overall algorithm is schematically
shown in fig. 2, and a pseudo-code is provided in Algorithm
1.

In the first stage, the input unlabeled set of the (k − 1)
th

iteration Uk−1 and the labeled positive set P are used to
learn a logistic regression classifier g1. The model parame-
ters are tuned based on the validation set containing only
labeled positive examples [26] (the evaluation metric is
recall2/P [f(X) = 1], where P [f(X) = 1] is the probability
that a sample is judged to be positive). g1 is then used
to classify Uk−1 and get a better unlabeled example set
U ′
k−1.
In the second stage, the logistic regression model is

trained based on P and U ′
k−1. The model parameters

are tuned according to the MRR (mean reciprocal rank)
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manner to generate the reliable negative example set. Then a semantically weighted embedding-based model learns to generate the prediction
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Fig. 2. Architecture of Two-Stage Logistic Regression Filter
(TSLRF).

metric on the validation set. Afterwards, the model cal-
culates the scores of σ(wxT + w0) for every unobserved
triple and regards the triples that are assigned with the
scores below a certain threshold as the effective negative
examples for downstream training. They will make up
the next iteration’s unlabeled example set Uk. Then Uk

will be used to compare with the temporary unlabeled
example set TU . If the model does not converge, Uk will
be used as the input of the next iteration. After several
numbers of iterations, the reliable negative example set
RN will be generated and used to train the embedding-
based prediction model in our proposed framework.

Note that besides logistic regression, we can also use
other classification modes in our proposed architecture,
such as SVM, decision trees, and Naive Bayes. How-
ever, logistic regression utilizes the logistic transform
to relate the predictor and the approximate conditional
probability it represents, which retains good probabilistic
interpretability for the negative example selection.

B. The Semantically Weighted Prediction Model

Equipped with RN and P, we devise a properly weighted
margin-based loss function for the latent feature models
(see fig. 1). To score possible triples, we take circular
correlation introduced by Nickel et al. [19] as our choice.
Let h, t, and r denote the embedding vectors of the head

Procedure 1 Two-Stage Logistic Regression Filter
Input: Positive example set P , initial unlabeled example

set IU , the maximum number of iterations nm, the
convergence ratio rc.

1: Initialize: k ← 0, U0 ← IU , TU ← U0;
2: repeat
3: k ← k + 1;

// The first stage
4: Learn a logistic regression classifier g1 from P and

Uk−1, using Eq. (7);
5: Classify Uk−1 using g1. Let the set of triples in

Uk−1

that are classified as negative be U ′
k−1;

// The second stage
6: Learn a logistic regression classifier g2 from P and

U ′
k−1, using Eq. (7);

7: Classify U ′
k−1 using g2. Let the set of triples in

U ′
k−1

that are classified as negative be Uk;
8: r ← |Uk|

|TU | ;
9: TU ← Uk;

10: until r > rc or k > nm

11: RN ← Uk;
Output: the reliable negative example set RN .

entity, tail entity and relation, the probability of a triple
can be modeled as:

fr(h, t) = σ(rT (h ⋆ t)) (8)

where σ denotes the logistic function and ⋆ denotes
circular correlation:

[h ⋆ t]k =

d−1∑
i=0

hit(k+i)mod d (9)

The circular correlation operator can capture complex
interactions of entity embeddings without increasing the
representation dimensionality. Besides, it can be effec-
tively computed via:

h ⋆ t = F−1(F(h)⊙F(t)) (10)



where F and F−1 are fast Fourier transform and its inverse
respectively, x̄ denotes the complex conjugate, and ⊙ is
the entrywise Hadamard product.

We use the margin-based loss function [4] that preserves
certain preferences between positive and negative triples.
As the negative candidates do not have the equal semantic
distance to any particular positive one, we introduce the
semantic weights into different example pairs. That is to
say, we reformalize the embedding learning problem as
that of minimizing the following loss function:

L=
∑
s∈P

∑
s′∈RN

ν(s, s′) · [fr(s′) + γ − fr(s)]+, (11)

where P denotes the positive example set, RN repre-
sents the reliable negative example set, γ is the margin
value, [x]+ = max{0, x}, fr is the score function, the
weight function ν(s, s′) quantifies the semantic distance
between any two triples of our concern. Intuitively, the
larger the semantic distance between the positive and the
negative examples, the more important it is to predict the
preference between them correctly.

Formally, we define the weight function according to
the predefined observed features which provide various
views on the semantic differences. For example, the feature
1(ei&r) measures the distance from the entity-type level,
while the feature 1(ei&r&e) does so from the path
level. Apparently, the latter can capture more complex
dependencies. To distinguish their contributions to the
weight function, we have:

ν(s1, s2) = 1−

∑
z∈Z1

cosz(s1,s2)
|Z1| + δ ·

∑
z∈Z2

cosz(s1,s2)
|Z2|

1+δ
(12)

where δ is a weight parameter chosen through cross vali-
dation, cosz(s1, s2) denotes the cosine distance between s1
and s2 in the space of feature z. All six features are divided
into two sets: Z1 denotes the feature set comprising feature
3 and 4, Z2 denotes the feature set comprising feature 1,
2, 5 and 6.

Consider a positive triple s (Barack Obama, place
of birth, Honolulu), and assume that triple s′ (Hillary
Clinton, place of birth, Honolulu) and s′′ (David Beckham,
place of birth, Honolulu) are two negative candidates.
According to Eq. (12), the triple pair (s, s′) should get
smaller weight value in comparison with the triple pair (s,
s′′) due to feature 5. Since the entity pairs (Barack Obama,
UnitedStates) and (Hillary Clinton, UnitedStates) are
already directly connected by the relation nationality in
the KGs.

After the training process, the optimized models cal-
culate the probabilities for any unobserved triples w.r.t.
the existing KGs data by means of the score function
fr(h, t) = σ(rT (h ⋆ t)), and produce a ranked list of the
predicted triples.

V. Experiments

A. Datasets and Evaluation Metrics

We choose two well-known datasets to evaluate our
proposed model. FB15k [6] is a subset of Freebase (a
collaborative knowledge base of general facts). WN18
[6] is a subset of WordNet (a knowledge graph about
words, which provides the information of synonym and
antonym). For each dataset, we measure the performance
of our algorithm averaged over five folds which are divided
randomly.

For every triple (h, r, t) in the testing set (Under the
closed world assumption and Filter setting), we remove
the head entity h and sort all of the candidate entities
including h according to the model’s predicting scores. The
similar operation is taken on the tail entity as well. We
evaluate models based on their output ranking positions of
testing ground truth entities. Specifically, we use MRR and
Hit@10 as evaluation metrics: MRR is the average of the
reciprocal rank results for the triples containing removed
items (h or t); Hit@n is the number of triples containing
removed items in the testing set that appear within the
top n ranks. We compute the metrics for removing head
or tail entities separately, which are then averaged.

B. Experimental Setup

We chose several common baseline methods as compar-
isons to our proposed method. These include latent feature
models TransE [6] and HOLE [19], and observed feature
model Node+LinkFeat [8]. TransE is one of the most
widely used latent feature models that regard relations as
translations from a head entity to a tail entity. HOLE is a
recent latent feature model based on the circular correla-
tion of vectors, which has the loss function most similar to
our proposed method. Node+LinkFeat which can extract
effective features from the local graph structure.

Our frameworks applied to the latent feature models
and the observed feature models are respectively ap-
pended with the subscripts “L” and “O”. TSLRFL benefits
from the negative example refining scheme (NR) and
the semantic weighting scheme (SW). We examine the
individual contribution of NR and SW components in
TSLRFL. For clarity, we express the methods to be com-
pared in explicit combining forms, including TransE+NR,
TransE+SW, HOLE+NR and HOLE+SW. Parameters
for TransE, HOLE, and Node+LinkFeat were respec-
tively set as in the original implementations [6], [8], [19].
For TSLRFL and TSLRFO, we use adaptive gradient
stochastic gradient descent (AdaGrad SGD) [27] as the
optimization algorithm. The dimension of latent features
is set to 150. The margin parameter γ is the best value
chosen through grid search. The max number of training
epochs is set to 1000, and the saved model with the best
MRR performance on the validation set is evaluated on
the testing set.



TABLE I
The triple prediction results of embedding-based models.

FB15 FB15k WN18 WN18
MRR Hit@10 MRR Hit@10

TransE [6] 0.295 0.512 0.394 0.895
TransE+NR 0.297 0.534 0.392 0.904
TransE+SW 0.319 0.562 0.395 0.917
HOLE [19] 0.377 0.575 0.831 0.921
HOLE+NR 0.384 0.617 0.834 0.933
HOLE+SW 0.381 0.609 0.833 0.941
TSLRFL 0.392 0.645 0.840 0.944

TABLE II
The triple prediction results of observed feature models

FB15 FB15k WN18 WN18
MRR Hit@10 MRR Hit@10

Node+LinkFeat [8] 0.806 0.865 0.932 0.941
TSLRFO 0.814 0.887 0.942 0.948

C. Results and Analysis
Table 1 displays triple prediction results of latent

feature models. Benefiting from the semantic distance
weighting and the reliable negative example set, our
proposed TSLRFL achieves the best performance in
the triple prediction experiment. Models with the reli-
able negative example set (TSLRFL, HOLE+NR, and
TransE+NR) perform better than corresponding models
without the reliable negative example set (HOLE+SW,
HOLE, and TransE) on most of the datasets. It indi-
cates that using the generated reliable negative examples
could improve the predicting ability of the latent feature
models. Analogously, models that are with the semantic
weighting scheme (TransE+SW, HOLE+SW, TSLRFL)
achieve better prediction performances compared with
TransE, HOLE, and HOLE+NR. This result shows the
effectiveness of the semantic distance weighting strategy
in our framework. It should be noticed that NR brings
about more improvement to HOLE compared with SW.
The reason might be that HOLE can exploit Similarity
Component [19] through circular correlation.

Except for generating the reliable negative example
set, our proposed TSLRF model can directly generate
the two-class prediction score based on observed features
for unknown triples as well. We define the final saved
logistic regression classifier g2 as TSLRFO. Then we
compare it with a state-of-the-art observed feature model
Node+LinkFeat in MRR and Hit@10 measures. Table
2 shows triple prediction results of the two observed
feature models. TSLRFO achieves better performances
than Node+LinkFeat. It denotes that generating a reliable
negative example set for the observed feature prediction
model is also helpful.

VI. Conclusion
In this paper, we first propose a PU-learning framework

to iteratively improve the negative candidate pools for

training triple prediction models. The experimental results
validate the effectiveness of introduced negative selection
scheme for both the latent feature models and observed
feature models. Then, we devise a semantic distance
weighting scheme to better the pairwise loss function,
which is widely used in many triple prediction models.
This weighting strategy effectively exploits additional
observed features to improve the latent feature model
further. Besides, experimental results also show that the
combination of the two proposed schemes brings about
substantial improvements over state-of-the-art methods.
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