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Abstract. Unsupervised domain adaptation (DA) aims to utilize the well-annotated
source domain data to recognize the unlabeled target domain data that usual-
ly have a large domain shift. Most existing DA methods are developed to align
the high-level feature-space distribution between the source and target domains,
while neglecting the semantic consistency and low-level pixel-space information.
In this paper, we propose a novel bidirectional adversarial domain adaptation
(BADA) method to simultaneously adapt the pixel-level and feature-level shifts
with semantic consistency. To keep semantic consistency, we propose a soft label-
based semantic consistency constraint, which takes advantage of the well-trained
source classifier during bidirectional adversarial mappings. Furthermore, the se-
mantic consistency has been first analyzed during the domain adaptation with
regard to both qualitative and quantitative evaluation. Systematic experiments on
four benchmark datasets show that the proposed BADA achieves the state-of-the-
art performance.

Keywords: Domain adaptation · GAN · unsupervised learning.

1 Introduction

Deep learning has shown great success in multimedia analysis by learning discriminative rep-
resentations from massive labeled data [9,7]. However, collecting the well-annotated datasets is
exceedingly expensive. A promising alternative is to take full advantage of labeled data from an
easily available source domain. Unfortunately, the inevitable domain shifts between the source
and target domain limit the generalization of models. To alleviate this issue, recent domain adap-
tation methods try to align the feature distribution [4,29], which focus on minimizing the distance
between the source and target feature domain.However, the feature-level alignment methods suf-
fer two limitations: (1) feature-level alignment is hard to sufficiently transfer knowledge from the
source domain to the target domain, due to missing the low-level pixel-space variance, which is
critical to the generalization of the model; (2) the measure of feature-level difference fails to con-
sider the semantic consistency during the alignment, and it is difficult to directly observe whether
the transferred knowledge is reasonable.

Adversarial pixel-level domain adaptation [21] has shown great potential recently, which tries
to align the raw pixel-level distribution between two domains. Specifically, pixel-level domain
adaptation tries to map images from the source domain to appear as if they were sampled from the
target domain, while keeping their original contents. The existing adversarial pixel-level domain
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Fig. 1: (a) Structure of CycleGAN:Cycle consistency only ensures the reconstruction of original
content, where the middle mapping suffers label flipping. For example, the source image Xs is
with label “6”, while the transferred target image inconsistently belongs to label “3”, hence it
cannot be used to train a new target classifier. (b) Structure of the proposed BADA method: a
generator GST that maps source domain images Xs to adapted target image Xt

g , and an another
inverted generator GTS that generates the reconstructed image Xs

r as if from original source
domain, while keeps cycle consistency and semantic consistency. For example, the transferred
target image keeps the label “6”, and can be used for training a new target classifier CT . The
target discriminator DT is to distinguish the generated target images Xt

g from unpaired real
target image Xt, which offers the guidance for generators.

adaptation is achieved by learning a unidirectional pixel-level mapping with unpaired images,
which must maintain similar foregrounds between two domains to provide training stability.

Cycle-consistent adversarial network (CycleGAN) [28] introduces a pair of bidirectional
mappings with cycle consistency to relax the strong assumption that two domains must have
similar contents to capture larger domain shifts. The cycle consistency loss ensures that an image
translated from one domain to another domain can be reconstructed to original domain. It shows
compelling results on unpaired image-to-image translation tasks. However, CycleGAN cannot
guarantee that the semantic contents are preserved during the translating process. As shown in
Fig. 1 (a), CycleGAN suffers from random label flipping, that is, lack of semantic consistency.

To overcome the shortcoming of CycleGAN in the domain adaptation task, we proposed a
novel Bidirectional Adversarial Domain Adaptation (BADA) model. As shown in Fig. 1 (b), BA-
DA contains a pair of bidirectional reversible mappings: one generatorGST maps source domain
images Xs to the adapted target images Xt

g , and another inverted generator GTS that recon-
structs adapted images back to the source domain, while keep cycle consistency and semantic
consistency. The adapted target images Xt

g not only possess the style of the target domain, but
also inherit the labels from the source domain. And thus the adapted target images Xt

g can be
used to learn a supervised target classifier CT . Furthermore, through the coordination between
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the pixel-level adversarial loss and the feature-level similarity loss, the target classifier CT is able
to capture both the low-level and high-level shifts between the source domain and target domain.
What’s more, BADA is under the guidance of a soft label-based semantic consistency constraint,
which takes advantage of semantic information during bidirectional mappings and is superior to
unidirectional semantic consistency in CyCADA [8] and SBADA-GAN [20]. We summarize our
contributions as follows:

– We propose a novel BADA method to jointly consider the pixel-level and feature-level do-
main adaptation with semantic consistency. The pixel-level adaptation preserves more detail
information and is easily visualized, while the feature-level adaptation could capture more
high-level domain-invariant representations.

– We propose a soft label-based semantic consistency constraint considering semantic infor-
mation during bidirectional mappings, which effectively solves the random label flipping
problem that is suffered by CycleGAN, and we analyze the semantic consistency with re-
gard to both qualitative and quantitative evaluation for the first time.

– The proposed BADA significantly outperforms the state-of-the-art domain adaptation meth-
ods on some benchmark datasets, which shows that the proposed semantic consistency con-
straint, as well as the joint consideration of the pixel-level and feature-level domain adapta-
tion can improve the domain adaptation ability.

2 Related Work

Existing methods generally aim to reduce domain shifts by minimizing the distance of fea-
ture distribution [4,29,26] between the source domain and target domain. The measure of dis-
tance can be roughly divided into maximum mean discrepancy (MMD) [14,2], correlation dis-
tances [22,23], deep reconstruction loss [6] or an adversarial loss [5,13,25,26]. While there
are so many feature-level domain adaption methods, we mainly focus on the MMD-based and
adversarial-loss based methods, which are highly related to our work. Maximum Mean Discrep-
ancy (MMD) based methods [14,2] are to learn domain-invariant features by computing the norm
of the difference between two domain means. The Deep Adaptation Network (DAN) [14] applies
MMD to the feature layers of deep neural networks, effectively inducing a high-level feature
alignment. Other methods chose an adversarial loss to measure the domain shifts between the
learned features [25,26,3], which introduce an extra domain discriminator to encourage features
not being distinguished between two domains. Adversarial loss based methods could be fur-
ther divided into discriminative methods and generative methods. The adversarial discriminative
methods [5,25] consider the feature alignment only, while adversarial generative domain adap-
tation methods [13,24] try to utilize a weight sharing constraint to learn a joint multi-domains
distribution with the reconstruction of target domain. However, the performance of feature-level
domain adaptation method is far from purely supervised methods, due to the lack of ability to
capture pixel-level domain shifts. Recently, pixel-level domain adaptation methods have shown
the huge potential [1,17,8]. Unsupervised Pixel-level Domain Adaptation (PixelDA) [1] adapts
the source-domain images to appear as if drawn from the target domain, and achieve surprising
results on some unsupervised domain adaptation task. While pixelDA has a strong assumption
that the source domain and target domain must share many similar foregrounds limiting larger
domain shifts.

In contrast, cycle-consistency loss based network [28,11] shows amazing results on unpaired
image-to-image translation by a pair of dual pixel-level mappings, which do not need similar
foregrounds and instead simply ensure that the translated images could be reconstructed back
to their original domains with identical contents. However, they fails to keep the semantic con-
sistency during the conversion process. Motivated by this, the proposed BADA model considers
the unpaired pixel-level translation with a novel semantic consistency constraint for unsuper-
vised domain adaptation. We note that the motivation of CyCADA [8] and SBADA-GAN [20]
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are similar to ours. However, we solve the label flipping problem from different perspective.
Compared to CyCADA and SBADA-GAN, we propose a more effective semantic consistency
constraint, where we focus on the bidirectional reversible semantic consistency during the un-
paired pixel-level mappings. Furthermore, we combine a simple but effective MMD feature-level
domain adaptation method to boost performance. While CyCADA needs an extra discriminator
neural network and SBADA-GAN needs to combine the source and target classifier for the final
prediction. Moreover, we firstly analyze the semantic consistency, with regard to both qualitative
and quantitative evaluation, during the domain adaptation.

3 The Proposed Model

3.1 Formulations

Suppose that there are Ns annotated source-domain samples Xs = {xsi}N
s

i=0 with labels Ys =

{ysi}N
s

i=0 and N t unlabeled target-domain samples Xt = {xti}N
t

i=0. With the well-annotated
source data, we could learn an optimized source classifier CS parameterized θCS by minimizing
a standard supervised classification loss expressed as:

Lcls(CS ;X
s,Ys) = E(xs,ys)∼(Xs,Ys)

[
−ys> log(σ(CS(xs; θCS )))

]
, (1)

where ys is the one-hot vector of the class label, and σ(·) denotes the softmax function.
However, the trained source classifierCS is hard to perform well on the target domain, due to

the inevitable shifts across the different domains. Our model is to adapt images from the source
domain to appear as if they were drawn from the target domain by learning a discriminative
mapping, and then we could use the generated labeled target domain images to train a new target
classifier CT as if the training and test data were from the same distribution. Unfortunately, lack
of the paired images, the key semantic content is hard to keep consistent by the unidirectional
pixel-to-pixel mapping from the source domain to the target domain. To alleviate this issue, we
introduce two reversible mappings: a generator GST that maps a source domain image xs to an
adapted target image xgt = GST (xs) , and an another inverted generatorGTS that makes a target
domain image back to the source domain, ending up the same semantic content.

To ensure that learnt pixel-level mappings are semantic consistent between the source and
target domain, we introduce four different losses: a pixel-level adversarial loss Lpix for matching
the distributions of two domains in low-level pixel-space; an feature-level similarity loss Lfea
to guide model to capture high-level domain-invariant features; a cycle consistency loss Lcyc to
prevent the learned bidirectional mappings GST and GTS from contradicting each other [28];
and a semantic consistency loss Lsem that encourages the consistency of the key discriminative
semantic contents during the pixel-level mapping across domains.
Pixel-level Adversarial Loss. The two generators are augmented by two adversarial discrimina-
tors respectively. A target discriminatorDT distinguishes between the real target data xt and gen-
erated target data GST (xs). In the same way, a source discriminator DS distinguishes between
the real source data xs and the generated source data GTS(xt). Specifically, for the generator
GST , it tries to map a source domain image to an adapted target domain sample xgt = GST (xs)
that cannot be distinguished by its corresponding discriminatorDT , where the discriminatorDT
is trained to do as well as possible in detecting generated “fake” target domain image xgt . More
formally, the generator GST (xs) is trained with DT by adversarial learning with the loss:

Ladv(GST , DT ,X
s,Xt) =Ext∼Xt [log(DT (xt))] + Exs∼Xs [log(1−DT (GST (xs)))].

(2)
Likewise, for the generator GTS with the discriminator DS , we introduce a similar adversarial
learning process with the adversarial loss Ladv

(
GTS , DS ,X

s,Xt
)
. The pixel-level adversarial
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loss is defined as:

Lpix = Ladv(GST , DT ,X
s,Xt) + Ladv(GTS , DS ,X

s,Xt). (3)

Feature-level Similarity Loss. We also add a feature-level similarity loss to encourage that the
high-level features from the adapted target images and the real target images are as similar as
possible. The feature-level similarity loss Lfea is defined as Eq. 4 based on MMD [2], which is
a kernel-based distance function widely used for the feature-level domain adaptation.

Lfea(CT (GST (xs), CT (xt))) = ||Exs∼Xs [φ(CT (GST (xs)))]− Ext∼Xt [φ(CT (xt))]||2

= E [K(CT (GST (xs)), CT (GST (xs)))]

+ E [K(CT (xt), CT (xt))]

− 2E [K(CT (GST (xs)), CT (xt))] , (4)

where K(·, ·) denotes is a kernel function. In our experiments, we use a linear combination of
multiple RBF kernels expressed as:

K(x,y) =
∑

ηn exp

{
− 1

2σn
‖x− y‖2

}
, (5)

where ηn and σn are the weight and the standard deviation for n-th RBF kernel [2], respectively.
Cycle Consistency Loss. Through the pixel level adversarial learning, ideally, GST could adapt
the images from source domain to the images identically distributed as target domain. However,
the adversarial loss alone still cannot guarantee that the contents of original samples could be
reconstructed [28]. We hope that the image mapping from the source domain to the target domain
should be a reversible process. In other word, the adapted imageGST (xs), which is generated by
mapping a source domain image xs to the target domain, should be able to back to the original
image by the reversal mapping GTS , that is GTS(GST (xs)) ≈ xs. Therefore, we impose a
cycle-consistency constraint with L1 normalization operator ‖ · ‖1 as:

Lcyc(GST , GTS ,X
s,Xt) = Exs∼Xs [‖GTS(GST (xs))− xs‖1]

+ Ext∼Xt [‖GST (GTS(xt))− xt‖1] .
(6)

Semantic Consistency Loss. Although the cycle consistency loss in Eq. 6 can encourage the
image mapping cycle to bring the source domain image back to the original image. There is no
obvious constraint to ensure that the middle mapping could keep the semantic contents consistent.
As shown in Fig. 1 (a), the mapping is free to shift the semantic contents, i.e. the image of class
“3” may be transferred to the image of class “6”.

To alleviate this issue, as illustrated in Fig. 1 (b), we enforce the middle mapping is semantic
consistent. The basis of the semantic consistency is that the mapping from the labeled source
domain to the target domain should keep the same class. To evaluate if the generated image
GST (xs) is at the same class with the source image xs, we introduce the pretrained source
classifier Cs to do a preliminary inspection.

Given that the pretrained source classifier is noisy for the generated images, we use the output
vector CS(xs) of source classier as a soft label vector to encourage that an image to be classified
in the same way after mapping as it was before mapping. Due to our bidirectional pixel-level
mappings are reversible, both the generated image and the reconstructed image should also keep
the same semantics with the original image. Furthermore, we take full advantage of both soft
label and hard label to augment semantic consistency during mapping processes, and the semantic
consistency loss is defined as follows:

Lsem(GST , GTS ,X
s, CS) = Exs∼Xs

[
‖CS(GST (xs))− CS(xs)‖2

]
+ Exs∼Xs

[
‖CS(GTS(GST (xs)))− CS(xs)‖2

]
+ Lcls(CS , GTS(GST (X

s)),Ys). (7)
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3.2 Optimization

As shown in Fig. 1 (b), the combination of objectives above will encourage a model to learn bidi-
rectional pixel-to-pixel mappings between two domains, while keeping the same discriminative
semantic content. By the discriminative pixel-to-pixel mapping from the source domain to the
target domain, the generated target images GST (xs) will preserve the label information from the
source domain. Furthermore, a new target classifier CT could be trained on the generated images
as if trained on samples drawn from the target domain with minimizing the prediction loss:

L′cls(CT ;GST (xs),Y
s) = E(xs,ys)∼(Xs,Ys)

[
−ys> log(σ(CT (GST (xs))))

]
. (8)

So far, GST , GST , DS , DT and CT could be jointly optimized with the total optimization ob-
jective as:

LDA = L′cls + Lpix + Lfea + λcycLcyc + λsLsem (9)

where λcyc and λs are weights that control the interaction of losses to achieve better trade-off
between the adaptation and classification. They are trained by an alternative training way in the
concurrent sub-processes:

(θ̂GST , θ̂GTS ) = argmin
θGST

,θGTS

LDA, (10)

(θ̂DS , θ̂DT ) = argmax
θDS

,θDT

Lpix, (11)

θ̂CT = argmin
θCT

L′cls. (12)

where θGST , θGTS , θDS , θDT and θCT denote the parameters of the GST , GTS , DS , DT and
CT respectively. The parameters can be updated by stochastic gradient descent optimization al-
gorithms, like Adadelta [27].

4 Experiments

4.1 Datasets

We conduct experiments on 4 widely-used domain adaptation datasets: MNIST [12], USPS [10],
MNIST-M [1], SVHN [19], as shown in Fig. 2. The statistics of the datasets are summarized in
Table 1. For a fair comparison, we evaluate our algorithm on the 4 common domain adaptation
tasks: MNIST→ USPS (M→ U), USPS→MNIST (U→M), MNIST→MNIST-M (M→M-
M), SVHN→MNIST (S→M), using the training set only during training process and evaluating
on the standard test sets. The token “→” means the direction from the source domain to the target.
The images are all resized to 28 × 28 pixels, and pixels of images are all normalized to [0, 1].
And we use grayscaled images for all tasks, except M→M-M task, where MNIST dataset were
extended to three channels in order to match the shape of MNIST-M images (RGB images).

4.2 Experimental Setup

Network Architecture. Our network architecture is inspired by the CycleGAN [28]. The GST
and GTS use the same generative network architecture [28]. The generative network consists
of 3 convolutional blocks, 9 residual blocks, and 3 transposed convolutional blocks. Each con-
volutional block consists of a convolutional layer followed by instance normalization layer and
rectified linear unit (Relu) [18]. The architecture used for the discriminators DS and DT is a
fully convolutional network with five convolutional layers. The networks used for the classifiers
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MNIST

USPS

SVHN

MNIST-M

Fig. 2: Dataset samples for our domain adaptation tasks.

Table 1: Datasets, “*/*” in columns of “Instances” denotes the number of train / test image pairs.

Dataset Instances classes Image size Color map

MNIST 60,000/10,000 10 28× 28 Gray
USPS 7,291/2,007 10 28× 28 Gray
MNIST-M 59,001/9,001 10 32× 32 RGB
SVHN 73,257/26,032 10 32× 32 RGB

CS and CT are composed of 4 convolutional layer followed by instance norm layer with leaky
rectified linear unit (Leaky Relu) [15], 2 max-pooling layers, and a fully connected layer.
Training Details. All of our experiments are implemented with Tensorflow, and our implemen-
tation code will be released soon. We use the Adadelta optimizer [27] with a minibatch of size 16.
Considering the regular adversarial loss suffers from the vanishing gradients problem, we replace
the adversarial loss Eq. 3 with the least-squares GANs (LSGANs) loss [16], which can generate
higher quality samples and perform more stable during the learning process.

Table 2: Accuracies (mean ± std) on unsupervised domain adaptation among MNIST, USPS,
SVHN and MNIST-M

Method Reference M→U U→M M→M-M S→M

Source Only ours 0.812 0.751 0.6070 0.6503
Target Only ours 0.9729 0.9956 0.9545 0.9956

MMD ICML 2015 0.8110 - 0.7690 0.7110
Domain Confusion ICCV 2015 0.791±0.005 0.665±0.033 - 0.681±0.003
DSN w/MMD NIPS 2016 - - 0.8050 0.7220
CoGAN NIPS 2016 0.912±0.008 0.891±0.0008 0.620 -
DSN w/DANN NIPS 2016 0.913 - 0.8320 0.827
DANN JMLR 2016 0.771±0.018 0.730±0.020 0.7666 0.7385
DRCN ECCV 2016 0.918±0.0009 0.7367±0.0004 - 0.8197±0.0016
ADDA CVPR 2017 0.894±0.0002 0.901±0.0008 - 0.760±0.0018
pixel-DA CVPR 2017 0.959 - 0.982 -
CyCADA ICML 2018 0.956±0.002 0.965±0.001 0.976±0.002 0.904±0.004
DIFA CVPR 2018 0.923±0.001 0.910±0.004 0.924±0.001 0.897±0.002
Image2Image CVPR 2018 0.925 0.908 0.916 0.847
RAAN CVPR 2018 0.89 0.921 - 0.892
SBADA-GAN CVPR 2018 0.976 0.950 0.994 0.761

BADA Ours 0.9483±0.0008 0.9689±0.0004 0.9872±0.0005 0.9254± 0.0012
BADA without Lfea Ours 0.9531±0.0006 0.9651±0.0019 0.9866±0.0003 0.8498±0.0061
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4.3 Comparison with Existing Methods

In this section, we compare the proposed BADA model with different domain adaptation (DA)
methods among 4 widely adopted tasks. The compared methods are: (1) MMD [14,1], DSN
w/MMD [2], Domain Confusion [24,25], DANN [5], DRCN [6], CoGAN [13], DSN w/DANN [2,1],
ADDA [25], DIFA [26], and RAAN [3], which are feature-level DA methods; (2) pixel-DA [1],
Image2Image [17], CyCADA [8] and SBADA-GAN [20], which are pixel-level DA methods. Ta-
ble 2 presents the unsupervised DA recognition accuracy (mean ± std) over three independent
experiments. From Table 2, we can draw the follow observations:

– Firstly, we compare our BADA model with the “Source Only” and “Target Only” model.
The “Source Only” and “Target Only” mean that the models are trained only on the source
domain or target domain without any domain adaptation, respectively. They can be seen as
a lower bound and an upper bound, respectively. We observe that our model achieves much
better results than the “Source Only”. It’s more exciting that our results are much closer to
the “Target Only”.

– Compared with feature-level methods, our model not only achieves much better performance
than MMD [14,1] and DSN w/MMD [2], which use traditional MMD loss [14,2] to minimize
the feature-level difference between the source and target domain. But also our model is
superior to Domain Confusion, DANN, CoGAN, DSNw/DANN, ADDA, DIFA and RAAN
that are based on the feature-level adversarial method. This mainly owes to the proposed
BADA model being able to capture the semantic contents transferred from the source domain
to the target, by learning a bidirectional discriminative pixel-to-pixel mapping.

– Compared with pixel-level methods, our model outperforms the best competitor, pixel-DA
on the M→M-M task, which is also an unsupervised pixel-level domain adaptation model
with GAN. However, the pixelDA algorithm assumes that there are similar backgrounds be-
tween the source and target domain, which cannot perform well on more difficult S→M task.
While our model outperforms the state-of-the-art CyCADA [8] model with a accuracy gap
greater than 2.5% on the S→M task. This indicates the advantage of using the bidirectional
pixel-level mapping with semantic consistency than the unidirectional pixel-level mapping
with content similarity in pixelDA.

– Furthermore, the comparisons with CyCADA and SBADA-GAN also show the superiority
of our bidirectional semantic consistency constraint. Although the SBADA-GAN method
combines the source and target classifier for final prediction, which achieved the best perfor-
mance on two tasks, our method outperforms it with accuracy gaps greater than 16.4% on
the more difficult S→M task.

4.4 Evaluation on Semantic Consistency

Qualitative Analysis. In order to ensure that the proposed model could learn two semantic
consistent mappings, we first visualize the bidirectional mapping results of the model in different
tasks. As shown in Fig. 3, the proposed BADA learns a semantic consistent forward mapping from
the source domain to the target with an inverted semantic consistent mapping simultaneously.
Quantitative Analysis. Furthermore, we demonstrate the quantitative analysis of the semantic
consistency in Table 3. The first three rows represent the accuracy of original source image xs on
source classifier, generated target image GST (xs) on the adapted target classifier CT , and the
reconstructed source image GTS (GST (xs)) on the source classifier CS , respectively. Accord-
ingly, the last three rows report the accuracy of target image xt on the adapted target classifier,
generated source image GTS (xt) on the well-trained source classifier CS , and the reconstructed
target image GST (GTS (xt)) on the target classifier CT . We can observe that both the trans-
ferred and reconstructed images are recognizable by the corresponding classifiers, which can
prove the semantic consistency during our dual pixel-to-pixel mappings. A comparison between
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(a) U→M (b) M→M-M (c) S→M

Fig. 3: The visualization of pixel-to-pixel mapping: The left triple shows the mapping from the
source domain to the target domain and back to the original source domain. The right triple
shows the inverted mapping. Each triple consists of the original image(left), the generated im-
age(middle), and the reconstructed image(right).

the 4th row and 5th rows in Table 3 shows that the performance of the adapted target images
on the source classifier CS could even nearly equal to the performance of the real target images
on the target classifier. It indicates that the well-trained source classifier CS can be shared with
the target domain, while we only need to transfer the target image to the source image by the
mapping we have learnt.

Table 3: Qualitative analysis of semantic consistency.

Method M→U U→M M→M-M S→M

CS (xs) 0.9956 0.9729 0.9956 0.9308
CT (GST (xs)) 0.9821 0.9640 0.9902 0.8941
CS (GTS (GST (xs))) 0.9868 0.9670 0.9935 0.8721

CT (xt) 0.9483 0.9689 0.9872 0.9254
CS (GTS (xt)) 0.9550 0.9675 0.9907 0.9113
CT (GST (GTS (xt))) 0.9432 0.9663 0.9866 0.9008

4.5 Ablation Study

Effect of Feature-level Similarity Loss. The feature-level similarity loss Lfea is used to en-
courage the robustness of model. In order to investigate the effect of the feature-level similarity
loss in more detail , we develop and evaluate two variations of BADA: BADA without Lfea and
BADA, while keeping the optimization procedure in the same way. Table 2 shows the perfor-
mance of two variations on the four widely adopted tasks. We can observe that BADA without
Lfea has similar performances with BADA in different domain adaptation tasks, but one task on
the S→M, where BADA performs much better. We infer that the pixel-level mapping combined
with Lfea could capture more difficult domain shifts to get higher performance. Furthermore,
we visualize the distribution of the target images in task S→M after training on source only and
BADA using t-SNE tool respectively. A comparison between Fig. 4(a) and Fig. 4(b) reveals that
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our semantic consistent pixel-level BADA without Lfea still has the ability to learn an adapted
classifier for unsupervised target domain. Furthermore, as shown in Fig. 4(b) and Fig. 4(c), the
proposed model combined with feature-level similarity loss further boosts the performance.
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(b) BADA without Lfea

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

. .

.

..

.

..

.

..

.

.

.

.

.

.

.

. .

.

.
.

.

.

.

.

.

.

.

. .

.

.

. .

.

. .

.

.

.

...

. .
.

.

.

.

.

.

.

.

.
.

..

.

. . .

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.

. .

.

..

.

.

.

.

.

.

. ..

.

.

.

.

.

.

.
.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.
.

.

. .

.

.

.
.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.
.

.

.

.

.

.

.

.
.

. ..

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

. .

.
.

.

.
.

. .

. .

..

..

.

.

.

.

. .
.

.

.
.

.

.

.

.
.

.

. .

.. .

.

.

.

.. .
.

.

.
.

..

.

.

..

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ..
.

.
.

.

.

.

.

.
.

.

.

.

..

..

.

.

.

.
.

.

.

. .

.

.

.

.
.

.

.
. .

.

.

.

.
.

.
.

.

.
.

.

.

.

.
.

.

.

.

.

.

..

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

..

.

.

.

..

.

.

..

..

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

..

.

.

.

.
.

.

.

.

.

.
.
.

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.
.

.

.
.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.. .

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

..

.

. .

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

. ..

..

.

.

.

.

.

.
. .

.

.
.

.

.

.

.

.
. .

.

.

.

.

.
.

.

.

. .

.

.
.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

..

.
.

.

.

.

.
.

.

...

.

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.
..

.

.

.

.

.

.

.

.

.

.

..

..

.

..

.

.

.

.

.

..

.

.

.
.

.

.

.

.
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

..

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

..

..

.

.

.

.
.

.

.
.

. .

.

..

..

. .

.

.

.

.

.

. ..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

..
.

.

..

.

.

..

.

.

.

..

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.
.

.

. .

.

.

.

.

.

.

.

.

.

..

.
..

.

..

. .

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.. .

.

.

.

.

.

.

.

.

.

..

.
.

.

.

.

.

..

.

.
.

.

.

. .

.

.

.

.
.

.

.
.. ..

.

.

.

.

.

.
.

.

.

.

.

..

.

.
.
.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

..

.

.
.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.

. .

.

.
.

.

.

..

.

.

.

..

.

.
.

.

..

.

.

.

.

.

.

..
.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

(c) BADA

Fig. 4: The t-SNE visualizations of target domain samples features trained on (a) source only,
(b) BADA without Lfea, (c) BADA with Lfea for the S→M task. We use 1000 test samples to
generate the t-SNE plots.

(a) Without Lsem (b) Without Lcyc

Fig. 5: The domain adaptation results of the proposed BADA without semantic consistency or
without cycle consistency. In subfigures (a) and (b), a triple in each row consists of three images:
i) left is the source SVHN image; ii) middle is the generated target MNIST image; and iii) right
is the reconstructed source SVHN image.

Effect of consistency in BADA. In this scenario, we verify the importance of the cycle consisten-
cy loss Lcyc and semantic consistency loss Lsem for our pixel-to-pixel mapping. We developed
and assessed two variations of our BADA: no semantic consistency or no semantic consistency,
which mean BADA without Lsem or without Lcyc, respectively, while keeping the other loss sat-
isfied and use the similar optimization. Figure 5 shows the results of the mapping from the source
domain to the target domain, and back to the original source domain in pixel-level. When there is
no semantic consistency but with cycle consistency, the mapping from the source domain to the
target domain suffers the shift of semantic contents, despite the good reconstruction of the orig-
inal images. Conversely, when there is no cycle consistency but with semantic consistency, the
middle mapping could preserve the semantic contents, although, the reconstructed source images
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are failed to be consistent with the original images. The two cases indicate that both the cycle
consistency and semantic consistency contribute to the overall performance of model.
Parameter Sensitive Analysis. In this scenario, we evaluate the sensitiveness of the hyper-
parameter λcyc and λsem on the performance of unsupervised domain adaptation. In the objective
function Eq. 9, λcyc and λsem control the contributions of cycle consistency and semantic consis-
tency respectively. Here, we conduct the experiments on the SVHN→MNIST task, where 2000
samples randomly selected from target test set as a validation set. Specifically, we explore the
different λcyc and λsem from 0, 0.5, 1.0, 2.0, 4.0. As aforementioned, λcyc = 0 and λsem = 0
indicate the proposed BADA without cycle consistency or without semantic consistency, respec-
tively. The evaluation is conducted by changing one parameter (e.g. Lcyc) while keeping the
other hyper-parameters fixed. As shown in Figure 6, both λcyc and λsem are important to the
overall performance. Note that, when λsem = 0, the model performs badly. Thus it indicates that
the λsem plays an essential role in the proposed model.
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Fig. 6: Effect of model parameters (a) λcyc and (b) λsem in the proposed BADA.

5 Conclusion

In this paper, we proposed a novel BADA model to adapt the source domain images to appear
as if drawn from the target domain by learning a pair of bidirectional pixel-level mappings that
keep semantic consistency. BADA is capable to transfer the label information from the source
domain to the target domain to learn a good target classifier, meanwhile it is advantaged to adapt
the target images to the source domain to share the well-trained source classifier. Comprehensive
experimental results on some widely used benchmark datasets show that the proposed BADA
method outperforms the state-of-the-art domain adaptation methods with advances on superior
visualization and semantic consistency analysis.
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