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Discriminative Object Tracking via Sparse
Representation and Online Dictionary Learning
Yuan Xie, Wensheng Zhang, Cuihua Li, Shuyang Lin, Yanyun Qu, Member IEEE, and Yinghua Zhang

Abstract—We propose a robust tracking algorithm based on
local sparse coding with discriminative dictionary learning and
new keypoint matching schema. This algorithm consists of two
parts: the local sparse coding with online updated discriminative
dictionary for tracking (SOD part), and the keypoint matching
refinement for enhancing the tracking performance (KP part).
In the SOD part, the local image patches of the target object
and background are represented by their sparse codes using
an over-complete discriminative dictionary. Such discriminative
dictionary, which encodes the information of both the foreground
and the background, may provide more discriminative power.
Furthermore, in order to adapt the dictionary to the variation
of the foreground and background during the tracking, an
online learning method is employed to update the dictionary.
The KP part utilizes refined keypoint matching schema to
improve the performance of the SOD. With the help of sparse
representation and online updated discriminative dictionary, the
KP part are more robust than the traditional method to reject
the incorrect matches and eliminate the outliers. The proposed
method is embedded into a Bayesian inference framework for
visual tracking. Experimental results on several challenging video
sequences demonstrate the effectiveness and robustness of our
approach.

Index Terms—Dictionary learning, object tracking, robust
keypoints matching, sparse representation.

I. Introduction

V ISUAL TRACKING is a challenging problem in com-
puter vision, due to the appearance changes of the

target caused by noise, occlusion, background clutter, different
viewpoint, and illumination conditions. Although many track-
ing methods employ static appearance model, such as [19],
[20], [21], [22], these methods can only handle the modest
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changes and tend to fail when the appearance of the object
changes significantly. As a result, there is a need for learning
appearance model on-the-fly.

A variety of online tracking algorithms have been proposed
to overcome these difficulties during tracking. These methods
can be formulated in two different ways: generative model and
discriminative model. To deal with the challenges mentioned
above, the state-of-the-art algorithms focus on robust object
representation schemes with generative appearance models and
sophisticated classifiers.

Generative methods represent objects with models that
have minimum reconstruction errors, and then the tracking
is expressed as finding the most similar candidate to the
target. Therefore, generative trackers only aim at encoding the
target appearance. The works [1], [2], and [18] belong to the
generative model. The recent development of sparse repre-
sentation has attracted considerable interest in object tracking
[5], [7]–[11] due to its robustness to occlusion and image
noise. However, the traditional generative tracking methods
mentioned above are only trained based on object appearance
without utilizing the information from the background. Instead
of only focusing on appearance model for the target itself,
discriminative trackers aim to find a decision boundary that
can best separate the target from the background, such as [23]–
[27]. Such a way refers to treat object tracking as a binary
classification problem to distinguish between the positive
sample (target) and negative samples (background). For using
the background information, these methods demonstrate strong
robustness to avoid distracters in the background.

In this paper, we propose an online tracking algorithm
based on the sparse coding and the discriminative dictionary
learning. The tracker combines the discriminative model and
the generative model. The discriminative part applies the local
sparse representation with the online discriminative dictionary
to encode the appearance information of both the object target
and the background. Then using the sparse codes of the sam-
ples to train a linear discriminative appearance model to best
separate the target from the background. Different from recent
sparse representation based trackers that use the dictionary
sampled from the target object, the proposed tracker constructs
a discriminative dictionary which contains both the foreground
dictionary and the background dictionary. The generative part
employs a SIFT feature point matching schema to model the
target appearance in order to enhance the performance of
the tracker. It utilizes sparse representation and discriminative
dictionary to reject the incorrect matches and eliminate the
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background keypoints. Both the generative part and the dis-
criminative part will collaborate under the Bayesian inference
framework. In other words, the information from different
parts would be integrated into the observation model and the
motion model. Experimental results on several challenging
video sequences demonstrate the effectiveness and robustness
of our approach.

The contributions of this paper are as follows.

1) A sparsely represented discriminative model based on
the discriminative dictionary, which includes both the
foreground dictionary and the background dictionary, is
proposed to separate the object target from its surround-
ing.

2) An online learning method is employed to update the
discriminative dictionary, which could adapt to the vari-
ation of the foreground and the background during the
tracking.

3) A keypoint matching schema is used to enhance the
performance of the tracker under the Bayesian inference
framework.

4) The keypoint matching can be refined by the sparse
representation with the online discriminative dictionary.

This paper is structured as follows. We begin by re-
viewing the related work in the next section. Section III
firstly shows how to learn object appearance model using
local sparse coding and the discriminative dictionary, then
presents the discriminative dictionary that can be updated
in the online manner. The robust keypoint matching re-
finement and background keypoint elimination are described
in the Section V. Then, the detail of the proposed track-
ing algorithm is shown in Section VI. Experimental re-
sults and some discussion are shown in Section VII. Fi-
nally, Section VIII is devoted to conclusions and future
work.

II. Related Work

There is a rich literature in appearance modeling and
representation that aim at tackling nonstationary appearance
tracking problems. In this section, we review some most
relevant topics that motivate this paper: sparse representation,
dictionary learning, and the keypoints matching.

Recent advancements in sparse representation indicate an-
other path for us to model the appearance of an object by
means of sparsity. Unlike to major sparse representation based
trackers [5]–[7], [13] that are posed within the generative
framework and use reconstruction errors to determine the
location of the target object, [12] describes the object by
local sparse coding using the dictionary sampled from the
object and trivial bases [4], [5]. Inspired by the work [12], we
propose a discriminative appearance model that is based on
the local sparse representation with the online discriminative
dictionary to encode the appearance information of both the
object target and the background. Then using the sparse codes
of the samples to train a linear discriminative appearance
model to best separate the target from the background. The
proposed method overcomes the drawbacks of [12] in the

two aspects. Firstly, instead of using the dictionary sam-
pled from the target object, we construct a discriminative
dictionary that contains both the foreground dictionary and
the background dictionary. Such discriminative dictionary,
which encodes the information of both the foreground and
the background, may provide more discriminative power than
the dictionary used in [12]. Secondly, thanks to the online
dictionary learning proposed by J. Mairal et al. [16], the
discriminative dictionary can be updated in the online manner,
while [12] takes a pseudo-online schema actually. The online
learned dictionary will adapt to the variation of the foreground
and background during the tracking. Moreover, the learned
dictionary can memorize the past (the last few frames) and
current information of the object target and background, lead-
ing to a robust tracker that can handle the drastic appearance
change.

When referring to the keypoint based tracking, we will
emphasize the keypoint matching. There are incorrect matches
due to the ambiguous features or confusing background in-
formation as object features. Thus, we need a method to
refine the matching. Given the matched pairs, a straightfor-
ward way is to use the RANSAC algorithm [28] to fit a
fundamental matrix model and reject incorrect matches. Ref.
[29] eliminates the mismatches between binary features by
computing a homograph using RANSAC, [30] uses RANSAC
to filter out the outliers from the matched SURF feature [31]
pairs to improve the motion estimation. However, RANSAC
will perform poorly when the percent of inliers falls much
below 50% [32]. This case usually happens in object tracking,
where the target is in the clutter background, thereby the
number of the background keypoints is more than that of
the foreground keypoints. To address this issue, we propose
a novel keypoints pair refinement method based on the lo-
cal sparse coding. It utilizes the context information of the
candidate keypoint pair to improve the result of the keypoint
matching.

Another important issue of keypoint-based tracking is to
eliminate the background keypoints inside the object target
bounding box. Here, we refer to the keypoints inside the target
contour as the foreground keypoints, the keypoints outside
the contour are called the background keypoints accordingly.
Commonly, the keypoint-based trackers [29], [33], [34] will
build the appearance model of the target by the foreground
keypoints. However, a fraction of the background keypoints,
which appear inside the target bounding box, will introduce
noise into appearance model and degrade the performance
of the tracker. In order to overcome this problem, [33]
proposes to use nearest neighbor classifier to determine a
keypoint belonging to the foreground set or the background
set. It employs the KD-trees to efficiently perform the near-
est neighbor searching based on the Euclidean distance be-
tween descriptor vectors of the SIFT keypoints. Similar to
[33], we also use the nearest neighbor classifier but with
sparse residual to measure how a keypoint close to the
foreground/background keypoints sets. The performance com-
parison between [33] and the proposed method is presented in
the experimental section, which shows the advantage of our
approach.
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III. Learning Discriminative Object Model with

Sparse Representation

Sparse representation has been widely used in visual track-
ing such as [5], [12], and [13]. In [12], the author employs an
over-complete dictionary to encode the local patches inside the
object, then generates its corresponding sparse code. Inspired
by [12], but unlike to the dictionary only encoding the informa-
tion of the target, we construct a dictionary D = [Dp, Dn] that
contains both the foreground dictionary and the background
dictionary that help to distinguish the object target from the
background. After calculating the sparse codes of the object
and background patches, a linear SVM is used to train a
discriminative model to separate the target object from the
background. We will give the details of this method in this
section.

A. Local Sparse Coding

To construct the foreground dictionary Dp, we extracts the
overlapped image patches using the sliding window method
from the target object region in the first frame, then ag-
gregates the vectorized patches to form the target basis set
Tf = [t1, . . . , tn] ∈ Rd×n, where ti is the ith vectorized patch
and d denotes its dimensionality, n is the number patches
extracted from object region. The over-complete foreground
dictionary is defined as Dp = Tf ∈ Rd×n. Similarly, we use
the sliding window to sample the patches around the target
and vectorize them to form the background basis set Tb =
[t1, . . . , tm] ∈ Rd×m. Then, the over-complete background
dictionary is represented by Dn = Tb ∈ Rd×m.

With the overall dictionary D = [Dp, Dn] ∈ Rd×(n+m), the
sparse codes of any image region can be computed by the
following steps. Firstly, extract N image patches from image
region with each patch vectorized to x ∈ Rd×1, then the image
region can be denoted by X = [x1, . . . , xN ] ∈ Rd×N . Secondly,
the sparse code αi ∈ Rn+m corresponding to xi is calculated
by

min
αi

1

2
‖xi − Dαi‖2

2 + λ‖αi‖1 (1)

where the l1-norm leads to sparsity in coefficient αi. Equation
(1) is actually the Lasso [14] regression that can be solved
efficiently by LARS [15]. Finally, when {αi}Ni=1 are computed
for all patches {xi}Ni=1, the sparse code z of the image region
will be achieved by directly concatenating all the {αi}Ni=1: z =
[αT

1 , . . . , αT
N ]T .

B. Learning Discriminative Appearance Model with Sparse
Representation

Suppose we are given the location of the target Lt = (xt, yt)
in frame t, the positive (foreground) samples Lpos are drawn
according to the Gaussian perturbation that satisfies ‖Lpos −
Lt‖ < γ , the negative (background) samples Lneg are drawn
from the annular region specified by γ < ‖Lneg − Lt‖ < η,
where γ and η are the sampling radius. Using the proposed
discriminative dictionary D, the distribution of the sparse codes
will be totally different between the positive samples and the
negative samples. Therefore, it is easy to train a classifier

Algorithm 1: Online Dictionary Learning [16]

Input: x ∈ Rm ∼ p(x), λ ∈ R, T

Output: learned dictionary DT and AT , BT

if the first frame then1

A0 ← 0, B0 ← 0, random initial dictionary D0;2

else3

A0 ← A′
T , B0 ← B′

T , D0 ← D′
T ;4

end5

for t = 1 to T do6

D7

end8

raw xt from p(x);9

Sparse coding: αt = argminα∈Rk
1
2‖xt − Dt−1α‖2

2 + λ‖α‖1,10

At ← At−1 + αtα
T
t ,11

Bt ← Bt−1 + xtα
T
t ,12

Compute Dt using Algorithm 2, with Dt−1 so that:13

Dt = argminD∈C
1
t

∑t
i=1

1
2‖xi − Dαi‖2

2 + λ‖α‖114

= argminD∈C
1
t

(
1
2Tr(DT DAt) + Tr(DT Bt)

)
// op115

Return DT , AT , BT ;16

on sparse codes to separate the foreground samples from the
background samples.

If we set all training patches denoted by Lpos and Lneg

to the certain scale, which is the same to target object, the
sparse codes {zi}Mi=1 of all the training patches will be computed
to construct the training data {zi, yi}Mi=1, where the vector
z ∈ RN(n+m), yi ∈ {+1, −1}, and M is the number of training
samples.

The optimization of the linear classifier with training data
{zi, yi}Mi=1 can be defined as follows:

min
w

1

2
‖w‖2

2 +
λ

M

M∑
i=1

L(yi, w, zi) (2)

where w is the classifier parameter, λ > 0 is a constant that
controls the tradeoff between training error minimization and
margin maximization. The L(·) is a loss function which is
defined by

L(y, w, z) = log
(

1 + e−ywT z
)

. (3)

In the testing phase, the classification score of any candidate
z can be computed by

f (z) =
1

1 + e−wT z
. (4)

Once the classifier is initialized, the classification score can
be used as the similarity measure for tracking. A sample with
large score indicates that it is more likely to belong to the
foreground class. The sample with highest classification score
is considered as the tracking result for the current frame.

IV. Robust Tracking with Online Dictionary

Learning

The dictionary D mentioned above is the predefined dictio-
nary that only encodes the information of the first few frames.
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Algorithm 2: Dictionary Update [16]

Input: D = [d1, . . . , dk] ∈ Rm×k,
A = [α1, . . . , αk] ∈ Rk×k,
B = [b1, . . . , bk] ∈ Rm×k

Output: D

repeat for j = 1 to k do1

U2

end3

pdate the jth column to optimize for op1 in Algorithm 1:4

uj ← 1
Ajj

(bj − Dαj) + dj5

dj ← 1
max(‖uj‖2,1) uj .6

until convergence Return D;7

However, using such dictionary with off-the-shelf bases may
not adapt to the tracking scenario due to the appearance vari-
ation of both the object target and the background. Therefore,
we need a dictionary updated in the online manner.

Fortunately, J. Mairal et al. [16] proposed a new online
optimization algorithm based on stochastic approximations
for dictionary learning, which can handle large datasets with
millions of training samples. Unlike dictionary learning with
the predefined bases, this algorithm learned an updated dic-
tionary to adapt to the dynamic training data changing over
time, which has been shown to dramatically improve signal
reconstruction in practice. The procedure of online dictionary
learning is shown in Algorithm 1, and one should refer to [16]
for more details.

In the first frame, we achieve the D0 by random initializing.
The matrices A0 and B0 that help to learn the dictionary are
set to 0. After T iteration, we obtain the dictionary DT for
the first frame with two additional matrices AT and BT for
further usage. In the consequent frames, the online dictionary
learning initializes the D0, A0, and B0 in the current training
phase by the DT , AT , and BT obtained from the last frame.
In our experiments, we update the foreground dictionary and
background dictionary respectively and concatenate them to
construct the whole discriminative dictionary. Moreover, we
should appoint the number of the bases in the dictionary. The
number of bases in the dictionary Dp is set to 200, the number
of bases in Dn is 500. It is noteworthy that the dictionary D
will degenerate after a few updating iterations. In other words,
each base dj will tend to zero vector. In order to overcome
such degeneration, we drop the past DT , AT , and BT and re-
sample the dictionary every five frames.

V. Robust Refined Keypoint Matching with Online

Dictionary Learning

The SIFT descriptor [32] is of particular interest because it
performs well compared with other types of image descriptor
in the same class [35]. The sift points matching plays an
important role in the feature-based tracking algorithms. This
section will depict how to apply the sparse representation
and dictionary learning to refine the keypoints matching and
eliminate the background keypoints.

Algorithm 3: Matching refinement

Input: Candidate pairs {sj
t−1, s

j
t }Kj=1, frame It−1 and It

Output: The refined matching set
M = {sj

t−1, s
j
t , {f i

j,t}Ni=1}K̃j=1, K̃ ∈ R

for j = 1 to K do1

Get St−1 = {f i
j,t−1}Ni=1 and St = {f i

j,t}Ni=1 using random2

affine sampling;
Calculate {αi}Ni=1 and {γi}Ni=1 with dictionary St−1 by 5;3

if min({γi}Ni=1) < θ then4

{sj
t−1, s

j
t , {f i

j,t}Ni=1} insert into M;5

end6

end7

Return M;8

A. Keypoint Matching Refinement

In the feature points-based tracker, the first problem to
address is the keypoint matching. The common way is to
use the Euclidean distance to measure the similarity between
the descriptor vectors of the candidate keypoints pair. Then, a
useful data-structure called KD-tree can be employed in order
to fast matching between frames. However, such method may
lead to incorrect matches due to ambiguous features or con-
fused background information. Therefore, a lot of works resort
to RANSAC [28] to improve the matching. It is a nondetermin-
istic algorithm in the sense that it produces a reasonable result
only with a certain probability, with this probability increasing
as more iterations are allowed. RANSAC-based matching do
not consider the context information of the candidate keypoints
pair, then often performs poorly in practice.

We propose a novel keypoint pair refinement method based
on the local sparse coding. Suppose sj

t−1 and sj
t denote the

matched SIFT point pair achieved by RANSAC in the frame
t−1 and t, respectively. Using random affine sampling around
the two keypoints (all the sample patches are scaled to the
same size, and then vectorized), we can get two sample sets
St−1 = {f i

j,t−1}Ni=1 and St = {f i
j,t}Ni=1 for the jth matched

pair (sj
t−1, sj

t ), where f i
j,t−1, f

i
j,t ∈ Rd×1, d is the size of

sample patch and N denotes the number of samples (below
we will call these sampling patches the keypoint samples). If
we consider the St−1 as the dictionary, the sparse code αi of
the sample f i

j,t in St can be computed by

αi = arg min
1

2
‖f i

j,t − St−1 ∗ αi‖2
2 + λ‖α‖1. (5)

For all the samples in St , we can achieve their sparse codes
{αi}Ni=1. Then, their corresponding sparse residual {γi}Ni=1 can
be calculated as follows:

γi = ‖f i
j,t − St−1 ∗ αi‖2. (6)

If min({γi}Ni=1) < θ, it indicates that the keypoints sj
t−1 and sj

t

have the similar context information. Therefore, they can be
seen as the correct matched points pair, otherwise they are the
incorrect matching and will be discarded. The algorithm of
keypoint matching refinement is shown in Algorithm 3
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Algorithm 4: Eliminate background keypoint
Input: Dp,t−1 and Dn,t−1, Mp, frame It−1 and It

Output: The refined foreground set
N = {sj

t−1, s
j
t , {f i

j,t}Ni=1}K̃f

j=1, K̃f ∈ R, the Dp,t and
Dn,t

for j = 1 to K̃p do1

// K̃p is the number of keypoint in
Mp

Calculate Rp and Rn with dictionary Dp,t−1 and2

Dn,t−1 using Eq.();
if min(Rp) < min(Rn) then3

{sj
t−1, s

j
t , {f i

j,t}Ni=1} insert into N;4

end5

end6

Update Dp,t using Dp,t−1 by Algorithm 1,7

Update Dn,t using Dn,t−1 by Algorithm 1,8

Return M,Dp,t and Dn,t;9

B. Online Eliminate Background SIFT Keypoint

Intuitively, one should detect and match the keypoints
only inside the object target bounding box. However, in our
experiments, incorporating the background keypoints around
the object target will help to get the better performance.
Because utilizing the information of the keypoints around the
object target could impose a constraint on the target location.
Moreover, bounding box region will inevitably contain the
background keypoints that are the primary cause of leading
the tracker to drift. Therefore, recognizing and eliminating the
background keypoints inside the bounding box will help to
improve the performance.

The properties of the two kinds of keypoint are that the
foreground keypoint will always inside the object region, while
the background keypoint in the bounding box in a certain
frame may go outside in other frames. Therefore, in order
to distinct between the foreground keypoint and background
keypoint, two dictionaries mentioned above, one for the object
target (the foreground dictionary Dp) and the other for the
background (the background dictionary Dn), will be useful
for distinguishing the kind of a certain keypoint. Then, the
keypoint samples can be sparsely represented by Dp and Dn

R(D, {f i}Ni=1) =
{‖D ∗ αi − f i‖2

}N

i=1 =
{
R(D, f i)

}N

i=1
D = DporDn

(7)

αi = argmin
1

2
‖D ∗ α − f i‖2

2 + λ‖α‖1 (8)

where the R(D, {f i}Ni=1) denotes the reconstruction residual of
the keypoint samples {f i}Ni=1 with dictionary D. The samples
of the keypoint contain the context information around the
keypoint position. If the keypoint samples can be sparsely
represented by the foreground dictionary Dp with lower
residual than by the background dictionary Dn, then we can
conclude that this keypoint belongs to the foreground keypoint,
otherwise belongs to the background keypoint and will be
discarded from the foreground keypoints set. The decision
function can be formally expressed by

Fig. 1. Illustration of nearest neighbor classifier with sparse residual as
similarity measure. f denotes the random samples around the certain keypoint,
Dp is the foreground dictionary and Dn represents the background dictionary.
R(Dp, f ) and R(Dn, f ) denote the minimum sparse residuals from the patches
in f to the foreground and background dictionary, respectively.

C({f i}Ni=1) = sign
(
min(R(Dp, {f i}Ni=1))

−min(R(Dn, {f i}Ni=1))
) (9)

where sign is the sign function.
Observing (9) carefully, it can be viewed as the deci-

sion function of a nearest neighbor classifier, if we con-
sider the sparse residual with respect to a certain dictionary
R(D, {f i}Ni=1) as the distance measure (Fig. 1). Such distance
denotes that keypoint sample f i in {f i}Ni=1 can be well sparsely
reconstructed by a certain dictionary. At [33], S. Gu et al. given
a theoretical analysis that shows why the neighbor works better
than more sophisticated classifiers in the context of tracking.
Suppose that the local information of a sift keypoint can be
represented in a certain feature space, according to the ball
cover theorem [33], such feature space can be well bounded by
the selection criterion defined in (9), while the space in other
classifiers, such as linear or nonlinear SVM, is unbounded.
In experimental section, the keypoint refinement method with
nearest neighbor classifier shows the prospective performance.

Until now we have described elimination of the background
keypoints inside the bounding box between two consecutive
frames. However, both the foreground and background will be
changed during the tracking. Consequently, we should update
the foreground dictionary and background dictionary on-the-
fly. Fortunately, the online updated discriminative dictionary
D = [Dp, Dn] mentioned in Section IV can be straightly
used. The pesudo-code of the online eliminating background
keypoint is depicted in Algorithm 4.

VI. Proposed Tracking Algorithm

A. Two Complementary Part

The proposed tracker contains two complementary parts.
The one is the SOD part mentioned in Section III; the other
is the KP part described in Section V. The combination of
the two parts can be viewed as integrating the discriminative
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model and the generative model into an unified framework
as mentioned in Section I. Moreover, this combination can
also be considered as unifying the global method with local
method. On the one hand, the SOD is a kind of model-based
object tracking approach. It employs the sparse coding and
linear SVM to capture the global feature of the target. The
local sparse representation in SOD is only to encode the
information of the local patch into its corresponding sparse
code. However, all these sparse codes are concatenated
together to represent the object target, therefore it models the
overall information of the target patch actually. On the other
hand, our KP part introduces the local information around
the keypoint position into tracker system, which shares the
same idea as the part-based tracking method that can handle
the partial occlusion. Below, we will discuss how to combine
them under the Bayesian framework.

B. Object Tracking by Bayesian Inference

We embed the two complementary parts into the Bayesian
inference framework to construct a robust tracking algorithm.
Given the observations of the target z1:t = {z1, . . . , zt} up to
time t, the target state xt can be computed by the maximum
a posteriori estimation

x̂t = argmax
xt

p(xt|z1:t). (10)

The posterior probability p(xt|z1:t) can be inferred by the
Bayesian theorem recursively

p(xt|z1:t) ∝ p(zt|xt)p(xt|z1:t−1) (11)

where p(xt|z1:t−1) =
∫

p(xt|xt−1)p(xt−1|z1:t−1)dxt−1. Within
the above formulation, p(xt|xt−1) is the motion model and
p(zt|xt) is the observation model. In our algorithm, we model
the motion of the target between two consecutive frames
by affine transformation. Similar to [17], the state vector
xt = (xt, yt, ηt, st, βt, φt) at time t contains six parameters of
affine transformation, where xt, yt denote the 2-D position and
ηt, st, βt, φt represent the rotation angle, scale, aspect ratio,
and skew direction, respectively. In the following, we will use
the xr

t , r = [xt, yt, ηt, st, βt, φt] to denote the part of the state
vector at the time t.

In our tracker, we apply the voting result of the keypoint to
improve the estimation of target states in consecutive frames.
Suppose that at the time t−1 the tracker memorizes the relative
position of each sift keypoint and object center. At the time
t, after refining the matching and eliminating the background
keypoint, we can achieve the rough position of the target by
the voted center of the foreground keypoints whose relative
positions are memorized at frame t − 1. The voting details
are presented in Algorithm 5. Note that in algorithm 5, if
the voting results are not centralized, it only returns the state
vector of the last frame. Then the transition model p(xt|xt−1)
can be defined in (12),

p(xr
t |xr

t−1)

=

{
N (xr

t ; w1fvote({S}Ni=1, xr
i−1)+w2xr

i−1, 	
r) r ∈ [xt, yt],

N (xr
t ; xr

i−1, 	
r) r ∈ [ηt, st, βt, φt].

(12)

Algorithm 5: Voting Rough Position

Input: Keypoints set {S}Ni=1, xt−1, cluster cutoff threshold
T

Output: Estimated object center C

for r = 1 to N do1

Every point votes to the object’s center (xi, yi) using2

the relative position from the last frame.
end3

Cluster {xi, yi}Ni=1 using cluster cutoff threshold T and get4

K cluster centers {Ci}Ki=1;
Find the cluster center with most vote Cj (L denotes Cj’s5

vote number);
if L > N

α
then6

Return Cj (replace the translation part of state7

vector);
else8

Return center position of xt−1;9

end10

where N (·) denotes the Gaussian distribution and 	 is a diago-
nal covariance matrix whose elements are the variances of the
affine parameters. The fvote represents the voting algorithm
which is the function of the parameters {S}Ni=1 and the 2-D
position part of xi−1 actually. In (12), all the parameters in
state vector xt except the (xt, yt) are governed by a Gaussian
distribution around their previous state xt−1. The 2-D position
parameters (xt, yt) are determined by the weighted sum of the
voted position of the foreground keypoints and the previous
position of the object target.

The observation model of our tracker is defined as

p(zt|xt) ∝ log
(

1 + e−ywT zt

)
+ αK(zt) − βL(zt) (13)

where K(zt) and L(zt) denote the numbers of the foreground
and background sift keypoints inside the patch corresponding
to the particle xt . The first part of the right side of 13 is equal
to 3. It is obvious that the (13) includes the information from
both the SOD part and the KP part. If there are not matched
keypoints between the two consecutive frames, our tracker will
reduce to the pure SOD part. The workflow of the proposed
tracking algorithm is illustrated in Fig. 2, and the pseudo code
is summarized in Algorithm 6.

VII. Experiments

In our experiments, the object target is initialized according
to the first frame in ground truth. The motion is charac-
terized by the state vector xt = (xt, yt, ηt, st, βt, φt), where
xt, yt denote the x, y translation and ηt, st, βt, φt represent
the rotation angle, scale, aspect ratio, and skew direction at
time t, respectively. All those parameters are similar to the
parameters in [17]. We perform the experiments on ten video
sequences, all the testing videos are the benchmark challenging
sequences that can be downloaded from the URL.1 2 The

1http://www.cs.toronto.edu/ dross/ivt/
2http://vision.ucse.edu/ bbabenko/project miltrack.shtml
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Fig. 2. Overview of the proposed tracker. Suppose the target position xt−1 at the time step t − 1, the tracker draws the particles for both SOD part and
KP part. In the SOD part, the discriminative dictionary D is updated using the Algorithm 1. Then, the scores of the particles are evaluated by the retrained
linear SVM. In the KP part, the nearest neighbor classifier is built using the dictionary D provided by the SOD part in order to refine the keypoints matching
and eliminate the background keypoints (Algorithm 3 and 4). The observation model (13) combines the particle score from the SOD part with the identified
numbers of each kind of keypoints (K(zt) and L(zt)). The transition model (12) is constructed using the voted position of the refined foreground keypoints
and the target position at the previous time step. Finally, the tracker utilizes the Bayesian inference to select the best particle xt that represents the current
state of the object target.

challenges of those sequences are listed in Table I, including
pose variation (in the plane or out of plane), illumination
changes, occlusions, scaling, abrupt motion, and cluttered
background. Implemented in MATLAB with MEX, our tracker
runs at 0.1 frames per second with 800 particles on a standard
Core 2 2.8 GHz computer.

A. Analysis the Performance of the SOD

In this subsection, we aim to validate that the proposed
discriminative dictionary that includes both the foreground
and the background information would provide more power
than the generative dictionary used in ODLSR tracker [12].
For this purpose, we compare the performance of the SOD
part (the proposed tracker without using KP part) with the
ODLSR tracker. Two competitors are tested on four sequences
(from the whole dataset used in this paper) and their error
plots are shown in Fig. 3. Comparing the error curves, the
ODLSR tracker achieves comparable results with the SOD
only in Tiger1 sequence. However, in Tiger2 sequence, which
includes the similar background and object target but with all
the challenges enhancement, the performance of the ODLSR

drops dramatically (97 average pixels error) while the SOD
still keeps relative low error (11 average pixels error). It can
be attributed to the discriminative power provided by the
discriminative dictionary that consists both the foreground and
the background information. It is worth to note that both the
ODLSR and the SOD perform poorly in David clip, e.g.,
gradually drifting after frame #150, as it is shown in Fig.
3(d). The reason is that the dictionary-based tracker may easily
introduce the wrong bases (sample patches) into dictionary,
when the tracker gets an inaccurate target location. Then the
noise appearing in dictionary will affect the capability of
the object appearance model. With the additional constraints
imposed by the KP part, the tracker will get more accurate
target location. In the subsection VII-C, the advantage of
combining the SOD with the KP will be illustrated.

B. Analysis the Effect of the Keypoints Refinement

In order to illustrate the effect of the proposed keypoint
refinement method, we qualitatively analyze the results of
comparison between the RANSAC-based refinement and our
approach. Figs. 4 and 5 plot some screenshots of the matched
sift point pairs between the consecutive frames in the Sylvester
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Fig. 3. Performance comparing between ODLSR and SOD (red curve denotes the SOD). (a) Tiger1. (b) Tiger2. (c) Surfer. (d) David.

Fig. 4. Keypoints matched between the consecutive frames on Sylvester sequence (green lines denote the correct matches. Red lines denote the outliers).
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Algorithm 6: Main Tracking Algorithm

Input: Frame set {Fi}Ni=1, initial target state x1,
Output: Target states {xi}Ni=1

Get initial SIFT points S1 from F1 with x1;1

Sampling from F1 to create over-complete foreground2

and background dictionary Dp and Dn to form the whole
dictionary D1 as in Section III-A;
Get M positive and negative patches Ipos and Ineg, and3

compute sparse codes of all patches {zi}Mi=1 with
dictionary D1 as in Section III-B;
Training linear classifier to get w1 using 2 with training4

samples {zi, yi}mi=1;
for i = 2 to N do5

Get matched points Si in Fi corresponding to Si−1;6

Refine the matched points using Algorithm 3 and7

eliminate background keypoints by Algorithm 4 to
get the refined SIFT points set Ŝi;
Calculate rough object position r by Algorithm8

5// Transition Model
Get the best particle xt using the Observation Model9

defined by 13;
Sampling from Fi to update the Dp and Dn10

respectively to construct the whole dictionary
D = [Dp, Dn] with Online Dictionary Learning using
the Algorithm 3;
Training the linear classifier to get wi using 2;11

end12

Return The target states {x}Ni=1;13

TABLE I

Challenges of the Test Sequences

Video Clip Pose Illumination Occlusion Scaling Motion Cluttering
Tiger1

√‡a √ √‡ √ √†b √‡
Tiger2

√† √‡ √‡ √ √‡ √‡
Cliffbar

√‡ × × √‡ √† √‡
Surfer

√ × × √ √† ×
David

√‡ √† × √‡ √ ×
Slvyester

√‡ √‡ × √ √‡ √†
Faceocc1 × × √‡ × × ×
Faceocc2

√† √ √‡ × √ ×
Girl

√‡ √ √‡ √† √‡ √†
Coke Can

√ √‡ √‡ × √‡ √†
a ‡ denotes severe variation, illumination/scale changes, occlusion, fast

random motion or cluttered background.
b † denotes modest variation, illumination/scale changes, partial occlusion,

random motion, or cluttered background.

and Face Occlusion2 sequences, respectively. In these figures,
all the keypoints in the left frames are considered as the
foreground keypoints. The green lines denote the matched
keypoint pairs between the consecutive frames that pass
through the RANSAC algorithm, while the red lines present
the pairs accepted by the RANSCA but further rejected by
the keypoints matching refinement and background keypoints
elimination. The matching results of all the frames of these
two sequences can be found in the supplemental material.

As is shown clearly in Figs. 4(d) and (e) and 5(a)–(d), some
red lines drawn on a slant with high degree are obviously
the incorrect matches. With the help of the local sparse

coding, our method can recognize the information around a
candidate keypoint pair, then measure their similarity by means
of the sparse residual. If the residual exceeds a threshold,
it indicates that the two candidate keypoints correspond to
different locations of the object target. In other words, they
are not the correct matched pair. Beside rejecting the incorrect
matching, the background keypoints also should be eliminated
so as to prevent the appearance model suffering from the
noise. In Figs. 4 and 5, some correct matches are also labeled
as rejected pairs, e.g., the red lines between keypoint pairs
whose location at the leaves which are behind the toy in
Fig. 4(d) and (f) and at the computer screen that is behind
the head of the person in Fig. 5(d), respectively. Since the
foreground and the background information are encoded in an
online learned discriminative dictionary, our proposed method
can filter the background keypoints by using their sparse
residual as the similarity measure. Therefore, even though
those background matched pairs pass through the matching
refinement, they will be discarded to the maximum extent
by the background keypoints elimination. As mentioned in
Section VI, the transition model will be affected by the
position of the foreground keypoints (12) and the observation
model will be partially influenced by the number of both the
foreground and background keypoints (13). Thus, the proposed
tracker will indeed benefit from such keypoints refinement
procedure.

C. Comparative Tracking Results

In this section, we evaluate our proposed tracker on ten
challenging sequences, all of which are publicly available. In
addition, we test other six state-of-the-art trackers on the same
video sequences for comparison. They are Online-AdaBoost
(OAB for short) [24], fragment tracking (FragTrack) [20],
multiple instance tracker (MIL) [23], nearest neighbor tracker
(NNTracker) [33], L1 tracker [5] and ODLSR tracker [12].
The code of all those trackers are publicly available, and we
keep the parameter settings provided by authors for all the
test sequences. All the ten testing videos are the benchmark
challenging sequence that can be downloaded from the URL3.

For quantitative analysis, we use average center location
errors as evaluation criteria to compare performance, the pixel
error in every frame is defined as follows:

error =
√

(x′ − x)2 + (y′ − y)2 (14)

where (x′, y′) represents the object position given by tracker,
(x, y) is the ground truth. The quantitative results are sum-
marized in Table II. In Table II, each row represents average
center location errors of seven comparison algorithms testing
on a certain video sequence. The number marked with red
indicates the best tracker in a certain testing video, blue
indicates the second one. As shown in Table II, our proposed
method acquires eight bests and two second best. For thorough
investigation, we draw the excursion curve according to (14)
for each video sequence [Figs. 6 and 11(d)]. In addition, Figs.
7, 8, 9, and 10 show the screen captures for some of the video
clips. More details of the experiments will be discussed below.

3http://vision.ucsd.edu/bbabenko/project miltrack.shtml
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Fig. 5. Keypoints matched between the consecutive frames on Face Occlusion2 sequence (green lines denote the correct matches. Red lines denote the
outliers).

a) Videos: Tiger1 and Tiger2 : Among all the testing
videos in our experiments, Tiger1 and Tiger2 include most
challenges, such as frequent occlusions, motion blur, back-
ground cluttering, drastic appearance changes (tiger opens
mouth abruptly, rotates in the plane or out of plane) and
illumination changes. The performances of seven methods are
presented in Fig. 6(a) and (b), our proposed tracker achieves
the best in these two sequence with very low pixel errors. In
the subsection VII-A, without the help of the KP part, we
have observed that the SOD is inferior to the ODLSR tracker
slightly in Tiger1 sequence [Fig. 3(a)]. However, comparing
the best two methods on Tiger1 sequence, the performance
of the proposed tracker exceeds that of the ODLSR tracker
due to enhancement obtained by the KP part [the red and
orange curves in Fig. 6(a)]. When testing on Tiger2 clip whose
challenges are more intensive than those of Tiger1, the average
error of ODLSR increases to 97, while the proposed method
only gets the eight average pixel error (see the red bounding
box in Fig. 7). It is obvious that the performance of ODLSR
degenerates dramatically [see the orange curve in Fig. 6(b)].
Therefore, the proposed tracker is more stable than ODLSR.
It is can be explained by the following three factors.

1) The dictionary D in the SOD part, which including both
foreground dictionary (Dp) and background dictionary
(Dn), may provide more discriminative power than the
dictionary used in ODLSR that encodes the information
of the foreground object alone. Hence, our proposed
tracker could suffer less drifting than ODLSR.

2) The SOD updates the dictionary in an online manner,
while ODLSR takes a pseudo-online schema that drops
the old dictionary totally and constructs a new one in
each frame. Because the dictionary in SOD contains the

TABLE II

Average Center Location Errors (Pixels)

Video Clip OAB Fragment NNtracker MIL L1 ODLSR SODKP
Tiger1 42 47 32 20 19 7 5
Tiger2 Lost 38 81 9 35 97 8
Cliffbar 12 33 26 10 69 51 4
Surfer 14 137 38 11 12 13 4
David 65 68 20 24 56 42 5
Sylvester 14 29 20 10 30 14 8
Faceocc1 14 4 10 40 4 4 8
Faceocc2 25 48 18 7 40 8 8
Girl 29 11 12 31 31 11 6
Coke Can 5 35 24 17 53 21 9

OAB tracker loses the target after frame #255.

past and current information of both the foreground and
the background, the SOD tracker can handle the drastic
appearance changes of target during tracking.

3) The KP part will integrate the local invariant information
of the object target between the consecutive frames,
which will enhance the behavior of the proposed tracker.

b) Videos: Surfer & Cliffbar : Our proposed tracker
beats all the competitors on those test sequences. Note that
the average center location errors of our method are only four
pixels for the two sequences, both of which are below ten
pixels (see the third and fourth rows in Table II). The Cliffbar
includes more challenges than the Surfer sequence, so we only
take the Cliffbar sequence for example. The goal of video clip
Cliffbar is to track an object that changes in scale (e.g, the
frame #76 in Fig. 8) and moves against a background that is
very similar in texture. The motion of the target in this clip is
fast and random, then a lot of frames show the motion blur.
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Fig. 6. Error plots for all test sequences (red curve denotes the proposed method). (a) Tiger1. (b) Tiger2. (c) Cliffbar. (d) Surfer. (e) David. (f) Sylvester.
(g) Face Occlusion1. (h) Face Occlusion2. (i) Girl.

Fig. 7. Screenshots of tracking results of the best four trackers on Tiger2
sequence (red box denotes the proposed method).

Only three trackers get the errors below 20 pixels on this
clip, they are OAB, MIL and the proposed tracker (see the
3rd row in Table II). The MIL tracker upgrades the OAB by

applying the multiple instance learning, such learning schema
can handle the sampling ambiguity in the training phase.
Therefore, the drifting of the MIL is less than OAB. The error
curve of the MIL is near to the proposed tracker. But if we
observe the bounding boxes of the MIL tracker carefully in
Fig. 8, they all show the different extent of drifting in the target
location. The SOD part of the proposed tracker combines the
local sparse coding with the online discriminative dictionary
to encode the appearance information of the object target. Due
to such combination, the appearance model is more powerful
than that of the MIL tracker. That is why our proposed tracker
is more accurate.

c) Videos: David & Sylvester : These video clips consist
the similar difficulties including intense illumination change,
scale, and pose variety. The most difficult in Sylvester is the
frequent out-of-plane pose variety. Due to the the global and
local information obtained from the SOD part and KP part
respectively, the two parts can complement each other, leading
to the position correction of the tracker after the significant
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Fig. 8. Screenshots of tracking results of the best four trackers on Cliffbar sequence (red box denotes the proposed method).

Fig. 9. Screenshots of tracking results of the best four trackers on Sylvester sequence (red box denotes the proposed method).

Fig. 10. Screenshots of tracking results of the best four trackers on Girl sequence (red box denotes the proposed method).
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Fig. 11. (a) Object target: a specular Coke can, with its zoomed patch. (b) Sift keypoints appear at the corners or edges of the target; some of them cannot
be refined by our KP part (green lines indicate the matched background keypoints pair). (c) Confidence of particles misled by the background keypoints (using
the Jet colormap). (d) Performance comparison of different weights in transition model (w1 = 0.8 and w1 = 0.2). (e) Performance compared to the another
six trackers.

pose change happening [e.g., the red curve in Fig. 6(f)],
while the magenta and blue curves show that the second
best MIL and OAB tracker present a little drift. Moreover,
some screenshot results of all the trackers in the Sylvester
sequence are shown in Fig. 9. It demonstrates that the pure
discriminative tracker is not enough to handle the large pose
variation without utilizing additional information of the object
target.

In David sequence, the major challenges include the scal-
ing and pose variety (smiling and take on/off the glasses).
Only our tracker can handle those cases very well [see
the red curve in Fig. 6(e)]. Note that we have compared
the performance of the SOD part with the ODLSR tracker
on the David sequence [Fig. 3(d)]. Without the KP part,
the SOD cannot capture the target after #150. Moreover,
the NNTracker, which is based on the traditional keypoint
matching, also tends to drift after the frame #100 where the
person turns his face and changes the distance to the camera.
Therefore, those results can demonstrate the following two
conclusions: 1) the proposed keypoint refinement method can
improve the performance of the SOD tracker by integrating
the local invariant information of the target; 2) the nearest
neighbor classifier employing the sparse residual as similar-
ity measure is more robust than the traditional Euclidean

distance based similarity measure. With the help of the KP
part, our tracker achieves the performance much better than
the NNTracker [compare the red and the black curves in
Fig. 6(e)].

d) Videos: Faceocc1, Faceocc2, and Girl : Two Face
Occlusion videos are designed to test whether a tracking al-
gorithm can handle the partial occlusion and pose changes. In
Faceocc1 sequence, The FragTrack, L1, and ODLSR tracker
perform the best with average four pixels errors. The person’s
face endures severe occlusion but its pose stays unchanged,
therefore, FragTrack employs that a static part-based model
can handle the case easily. Meanwhile, the dictionary of the
ODLSR is sufficient to capture the appearance of the target.
Similarly, the target template set of L1 tracker is unlikely to
update during tracking. Actually, in our experiment, only two
patches in the template set are updated in Faceocc1 sequence.
However, similarly, but more challenging clip (e.g., the person
puts on/off a hat or turns his face) Faceocc2, both FragTrack
and L1 Tracker perform poorly (see the green and blue curves
in Fig. 6(h) after #400 frame). For FragTrack, it could not
update in the online fashion, which leads to failure when object
appearance changes drastically. For L1 Tracker, it is easy to
introduce the inaccurate patches into template set so as to
cause the drifting problem. The OAB, MIL, NNTracker, and
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our proposed own the capability of online updating, leading
to a good performance in this sequence.

The Girl sequence contains all the challenges listed in Table
II. The pure discriminative tracker MIL and OAB failed to
handle the combination of all the challenges, then tend to
drifting after #200 frame gradually [see the blue and magenta
curve in Fig. 6(i)]. The FragTrack, ODLSR, and NNTracker
achieve the good performance with average 11, 11, and 12 pix-
els error, respectively. Here, we will compare the performance
of these tracker with our proposal in several frame intervals.
Since the static appearance model and the pure keypoints-
based method cannot handle drastic appearance change, the
FragTrack and NNTracker behave poorly between frames #50
and #150 [the green and black curve in Fig. 6(i)], where the
girl turns her head around (the green bounding box in Fig.
10 frame #116). The ODLSR tracker tends to drift during the
frames #300 ∼ #350, where the girl rotates her face toward left
and right (the orange bounding boxes in Fig. 10 frames #305
and #331). Thus, such rotation can not be rapidly captured
by the dictionary used in ODLSR as well as our proposed
discriminative dictionary. However, the KP part employed in
our tracker provides the ability of invariant to rotation, leading
our tracker robust to such appearance change. When the girls
are gradually occluded by other person between the frames
#430 and #470 (the frame #441 in Fig. 10), the NNTracker
cannot locate the target accurately while the proposed tracker
always keep relative low errors. This demonstrates our tracker
could handle the occlusion robustly.

e) Videos: Coke : In the Coke sequence, the object
target is a specular coke that has little texture as shown
in Fig. 11(a). Therefore, the amount of the SIFT keypoints
within the region of the target will be small and even zero.
If our uses the high weight w1 in the transition model 12,
the tracker will gradually drift. Although our robust keypoints
matching method can identify the background keypoints within
the target bounding box, the KP part might be ineffective when
most of the keypoints appear at the corners or edges of the
object target [see the sift points in Fig. 11(b)]. Because such
kind of keypoints contain the context information from both
foreground and background, which makes the nearest neighbor
classifier 9 very confused, then the mismatched keypoints will
vote to inaccurate position [as shown in Fig. 11(c), the particles
sampled by the transition model cannot represent the position
of the object target]. To illustrate the influence of the KP
part in the case of specular target, we compare our tracker’s
performance under different weights, whose values are 0.8
(high) and 0.2 (low). As it is shown in Fig. 11(d), the tracker
which is less influenced by the KP part strongly outperforms
the one with putting more focus on the KP part (average
error nine pixels comparing to 22 pixels). In other words, our
tracker should only employ the SOD part when handling the
low texture object target. We also compare the result of our
tracker (with w1 = 0.2 for KP part) to six other algorithms,
as the excursion curves shown in Fig. 11(d). OAB wins the
competition in coke can sequence. It achieves average location
errors five pixels less than our tracker. That is partly because
coke can is a specular object whose gradient characteristic is
inconspicuous, while the intensity based haar-like feature used

in OAB can capture the appearance characters of the object
target. However, OAB loses the target completely after frame
#255, which shows that our method is stable than OAB.

VIII. Conclusion

In this paper, we proposed a discriminative visual tracker
via the sparse representation, online dictionary learning, and
refined keypoint matching schema. The proposed tracker com-
bines the local sparse representation with the online discrimi-
native dictionary to encode the appearance information of both
the object target and the background. Then the sparse codes of
the samples was used to train a linear discriminative appear-
ance model to best separate the target from the background.
Additionally, a new keypoint matching schema that was robust
to incorrect matches and an outlier keypoints was adopted to
improve the performance of the proposed tracker. By applying
several difficult benchmark videos, the experimental results
demonstrated the effectiveness and stability of our approach
compared to some state-of-the-art methods .

There were still some issues in our tracker that can be
further improved. The experiments showed that the dis-
criminative dictionary might includes the inaccurate patches
(bases) whose appearances did not belong to target actu-
ally. This would degrade the performance of the tracker.
Therefore, future directions of this paper will introduce a
postprocessing method to refine the incorrect bases of the
dictionary in the online manner, such as the pruning events
and the structural constraints for object manifold in TLD
tracker [36].
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