
0018-9294 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2020.2971065, IEEE
Transactions on Biomedical Engineering

 

 

Abstract—Objective: We aimed to propose a highly automatic and 

objective model named online transfer learning (OTL) for the 

differential diagnosis of benign and malignant thyroid nodules from 

ultrasound (US) images. Methods: The OTL mothed combined the 

strategy of transfer learning and online learning. Two datasets (1750 

thyroid nodules with 1078 benign and 672 malignant nodules, and 

3852 thyroid nodules with 3213 benign and 639 malignant nodules) 

were collected to develop the model. The diagnostic accuracy was 

also compared with VGG-16 based transfer learning model and 

different input images based model. Analysis of receiver operating 

characteristic (ROC) curves were performed to calculate optimal 

area under it (AUC) for benign and malignant nodules. Results: 

AUC, sensitivity and specificity of OTL were 0.98 (95% confidence 

interval [CI]: 0.97-0.99), 98.7% (95% confidence interval [CI]: 

97.8%-99.6%) and 98.8% (95% confidence interval [CI]: 

97.9%-99.7%) in the final online learning step, which was 

significantly better than other deep learning models (P < 0.01). 

Conclusion: OTL model shows the best overall performance 

comparing with other deep learning models. The model holds a good 

potential for improving the overall diagnostic efficacy in thyroid 

nodule US examinations. Significance: The proposed OTL model 

could be seamlessly integrated into the conventional work-flow of 

thyroid nodule US examinations.   

 
Index Terms—Diagnosis, Online learning, Radiomics, Transfer 

learning, Thyroid nodules, Ultrasound images 

I. INTRODUCTION 

hyroid nodules are defined as discrete lesions within the 

thyroid gland, radiologically distinct from surrounding 

thyroid parenchyma [1]. They are becoming increasingly 

common in clinical practice, being detected in up to 65% of the 

general population in the world [2]. As the majority of thyroid 

nodules are benign or behave indolently [3], the accurate 

identification of benign and malignant thyroid nodules is vital 

in clinical decision-making and management. 

In clinic, Fine-needle aspiration (FNA) biopsy has been 

treated as the golden standard for the diagnosis of benign and 
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malignant thyroid nodules [1, 4]. However, it is invasive and 

limited by specimen collection and operator experience [5]. 

Currently, ultrasound (US) is the first clinical choice of thyroid 

nodules screening, because of its non-radioactivity, 

easy-to-operate, and rapid diagnostic work-up [6]. Therefore, 

US features can be utilized to differentiate malignancies from 

benign thyroid nodules [7, 8].  

At the very beginning, some studies demonstrated that a 

combination of US features provided certain diagnostic 

accuracy [9]. However, many other studies indicated a 

considerable overlap of US features appearing in both benign 

and malignant nodules [10, 11]. The sensitivity and specificity 

of using US for thyroid cancer diagnosis varied from 27% to 63% 

and 78.0% to 96.6% in various studies [1, 8 and 12]. This is 

likely due to interobserver variability in assigning sonographic 

features to nodules and that US is highly operator dependent.  

In contrast, an emerging technology named radiomics based 

on machine learning can extract and analyze thousands of 

quantitatively calculated image features (also called radiomics 

features) from medical images, which has the potential to 

uncover disease characteristics that is impossible for human to 

recognize by naked eyes in clinical practice[13]. Radiomics has 

been proven useful for analyzing magnetic resonance imaging 

(MR) and computed tomography (CT) images with impressive 

effectiveness[14-17], but its applications in US are still rarely 

reported[9, 18-22]. Therefore, it is worthy of investigating 

whether a radiomics approach can make better use of thyroid 

ultrasound images.  

There are only a few radiomics studies that have been 

conducted on ultrasound images for classifying benign and 

malignant thyroid nodules [9, 18 and 21]. However, they were 

limited either by the relatively small number of patient 

population [9, 18], or lacking cytology results as gold standard 

[18], or too much labor work for operators [9, 21].  

Here, we developed an online transfer learning (OTL) 

method based on transfer learning and online learning strategy 

for the quantitative analysis of thyroid ultrasound images. It is a 

deep learning based radiomics approach, and does not require 

complicated manual segmentations of thyroid nodule 

boundaries. Specifically, our contributions are threefold. 

1. We built a deep learning based radiomics method for 

differential diagnosis of benign and malignant thyroid nodules 

in ultrasound images. This method can achieve automatic 

feature extraction, these meaningful features include high-level 

and high-abstract information that allow us to get a good 

classification accuracy. 

Online Transfer Learning for Differential Diagnosis of Benign and Malignant Thyroid 

Nodules with Ultrasound Images 

Hui Zhou, Kun Wang, Jie Tian, Member, IEEE  

T 

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on February 29,2020 at 08:13:51 UTC from IEEE Xplore.  Restrictions apply. 



0018-9294 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2020.2971065, IEEE
Transactions on Biomedical Engineering

 

2. The proposed OTL model adopted transfer learning 

strategy, which reused the features extracted from pre-trained 

model, and we further compared the accuracy with different 

pre-trained models. To the best of our knowledge, it is the first 

attempt that reuses a model pre-trained by ultrasound images. 

Our method showed better results from US based pre-trained 

radiomics model. 

3. The proposed OTL model adopted online learning strategy, 

which made it easier to improve our model through continuous 

medical images, since the images from clinic usually come as a 

batch. The OTL method could be seamlessly integrated into the 

conventional work-flow of clinical thyroid US examinations. 

II. MATERIAL AND METHODS 

A. Datasets 

The thyroid images used in our research were from two 

datasets, one is from Ningbo No.2 hospital, called dataset 1, 

and another is from a public available dataset proposed by 

Pedraza [23], called dataset 2. This retrospective study was 

approved by the Ethics Committee of Ningbo No.2 hospital in 

China. 

Table 1. The distribution of benign and malignant thyroid 

nodules in training and validation cohort for dataset 1 

Cohorts Total Benign 

nodules 

Malignant 

 nodules 

Total 

Training  

1750 

1167 

1078 

719  

672 

448  
Validation 583 359 224 

 

Table 2. The distribution of benign and malignant thyroid 

nodules in training and validation cohort for part 1 of dataset 2 

Cohorts Total Benign 

nodules 

Malignant 

nodules 

Total 

Training  

963 

642 

803 

 535 

160 

107 
Validation 321  268 53 

 

Table 3. The distribution of benign and malignant thyroid 

nodules in different online learning step for part 2 of dataset 2 

Steps Total Benign 

nodules 

Malignant 

nodules 

Total 

Step 1  

2889 

963 

2407 

 803 

482 

160  

Step 2 

Step 3 

963 

963 

 802 

 802 

161 

161  

 

Dataset 1 consists of 1750 thyroid nodules, of which 1078 

nodules are labeled as benign and 672 nodules are labeled as 

malignant according to their FNA results. Dataset 2 consists of 

3852 thyroid nodules, of which 3213 nodules are labeled as 

benign and 639 nodules are labeled as malignant confirmed by 

FNA results. Their distribution are summarized in Table 1, 

Table 2 and Table 3. Examples of benign and malignant thyroid 

nodules ultrasound images for two datasets are displayed in Fig. 

1. 

 
Fig. 1.  Examples of benign and malignant thyroid nodules 

ultrasound images. (A) and (B) benign and malignant thyroid 

nodules from dataset1, (C) and (D) benign and malignant 

thyroid nodules from dataset 2. 

 

B. Preprocessing 

For applying OTL, we designed a simple manual initiation 

by defining region-of-interests (ROIs). For each thyroid nodule, 

one square ROI (size: 200 × 200 pixels) and three square ROIs 

(sizes: 150 × 150 pixels, 200 × 200 pixels and 250 × 250 pixels) 

were automatically generated after one mouse click on the 

nodule center area (Fig. 2) for dataset 1 and dataset 2, 

respectively. These sizes of ROIs were based on the statistical 

analysis of the average size of thyroid nodules, and three 

targeting regions were roughly inside, around and outside the 

thyroid nodule, respectively. 

 
Fig. 2.  Illustration of the region-of-interests (ROIs). Three 

different size of ROIs (sizes: 150 × 150 pixels for the red, 200 × 

200 pixels for the green and 250 × 250 pixels for the blue) were 

automatically generated by a simple designed manual 

initiation. 

To reduce the potential bias caused by the unbalanced data 

and the limited size of population, we applied the data 
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augmentation strategy [24] including the rotation, shift and flip 

operation. Thyroid images were augmented through a number 

of random transformations, which increased the data pool and 

decreased the overfitting of the generated radiomics model. 

Fig. 3.  Illustration of online transfer learning (OTL) flowchart. Dataset 1 and part 1 of dataset 2 were used to develop the 

transferred source model and Multi-ROI target model, respectively. Part 2 of dataset 2 was used for online learning procedure.  

 

Fig. 4.  Illustration of source domain model flowchart. The region-of-interests (ROI) was sent into the input layer, followed by 

three transferred layers, a fine-tuned layer was connected to the transferred layers, and then a fully connected layer was connected 

to the fine-tuned layer to combine different features extracted by the previous layers, at last an output layer was used to calculate 

the probability for the classification. 

 

Fig. 5.  Illustration of target domain model flowchart. Three different size of region-of-interests (ROIs) were sent into the input 

layer, followed by four hidden layers, and then a fully connected layer was connected to the hidden layer to combine different 

features extracted by the previous layers, at last an output layer was used to calculate the probability for the classification.  
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C. Online Transfer Learning 

The proposed OTL model was combined with two major 

strategies, one was transfer learning and another was online 

learning (Fig. 3). First we used transfer learning to train our 

source domain model on dataset 1, then we used multi-ROI 

input strategy to train our target domain model on part 1 of 

dataset 2, finally we adopted online transfer learning to 

combine the two models and test it on part 2 of dataset 2 with 

different batch of images. 

Source domain model 

To develop the source domain model, enrolled patients from 

dataset 1 were randomly divided into the training cohort and 

validation cohort (Table 1). US images and FNA biopsies of the 

training cohort were used to optimize a large number of 

parameters in the CNN model, whereas the validation cohort 

was to evaluate the performance of the trained model. The 

transfer learning was based on convolutional neural network 

(CNN) architecture. It consisted of four hidden layers. The first 

three layers were transferred from one of our previous studies 

without any modification [25], whereas the last hidden layer 

was fine-tuned using enrolled thyroid US images. This layer 

contained 32 feature maps, and the size of the convolution filter 

and the max pooling was 3 × 3 pixels and 2 × 2 pixels, 

respectively. Finally, a fully-connected layer with 32 nodes was 

connected to every neuron in the last three pooling layers, and 

the probability (a malignancy score) of the binary classification 

(benign or malignant) can be calculated in the output layer (Fig. 

4). We also compared the classification accuracy between our 

previous model which was pre-trained by ultrasound images 

and VGG-16 model which was pre-trained by natural images. 

Target domain model 

To develop the target domain model, enrolled patients from 

part 1 of dataset 2 were randomly divided into the training 

cohort and validation cohort (Table 2). The target domain 

model was the same architecture as source domain model, 

except for the input layer and we did not use the transfer 

learning strategy here. For input layer, three cropped images 

were used, and their information were combined at the fully 

connected layer (Fig. 5). We also compared the classification 

accuracy by using only one ROI (size: 200 × 200 pixels) and all 

three ROIs (sizes: 150 × 150 pixels, 200 × 200 pixels and 250 × 

250 pixels). 

OTL model 

To develop OTL model, we adopted online learning strategy 

[26], which aimed to attack an online learning task on a target 

domain by transferring knowledge from some source domain. 

Here, OTL model learned an ensemble prediction function that 

is the mixture of both the source and the target prediction 

functions, i.e., h(x) and f(x), which x stood for the input image. 

In order to effectively combine the two prediction functions 

h(x)  and f(x)  at the t-trial of the online learning task, we 

introduced two combination weighting parameters, 𝑤1,𝑡 

and w2,𝑡, for the two prediction functions respectively. At the 

t-th step, given an instance x2,𝑡 from part 2 of dataset 2 (Table 

3), we predicted its class label by the following prediction 

function: 

𝑦̃𝑡 = sign(𝑤1,𝑡h(x2,𝑡) +  w2,𝑡f(x2,𝑡))                                (1) 

At the beginning of the OTL task, we simply 

initialized 𝑤1,1 =  w2,1 =
1

2
. In order to updating the weighting 

parameters 𝑤1,𝑡 and w2,𝑡 , we adopted the following updating 

function: 

𝑤1,𝑡+1 =
𝑤1,𝑡∗𝑠𝑡(ℎ)

𝑤1,𝑡∗𝑠𝑡(ℎ)+𝑤2,𝑡∗𝑠𝑡(𝑓𝑡)
                                   (2) 

𝑤2,𝑡+1 =
𝑤2,𝑡∗𝑠𝑡(𝑓𝑡)

𝑤1,𝑡∗𝑠𝑡(ℎ)+𝑤2,𝑡∗𝑠𝑡(𝑓𝑡)
                                   (3) 

Where  𝑠𝑡(𝑢) = exp {−𝑛𝑙(𝑢(x2,𝑡), y2,𝑡)} , 𝑙(𝑧, 𝑦)  is a loss 

function, and 𝑙(𝑧, 𝑦) = (𝑧 − 𝑦)2. Finally, Fig. 6 summarized 

the proposed online transfer learning strategy. 

  The detailed introduction and mathematical descriptions of 

CNN model, transfer learning strategy, VGG-16 model and 

Multi-ROI input strategy were demonstrated in supplementary 

materials. 

 
Fig. 6.  Illustration of online transfer learning strategy. The 

weighting parameters 𝑤1,𝑡 and w2,𝑡  were updated by three 

different batch of data from part 2 of dataset 2 

 

D. Statistical Analysis 

  Descriptive statistics were summarized as 95% confidence 

interval (CI). Analysis of receiver operating characteristic 

(ROC) curves were performed to calculate optimal area under it 

(AUC) for benign and malignant nodules. Differences between 

various AUCs were compared by using a Delong test. 

Sensitivity, specificity were also calculated. P values less than 

0.05 indicated statistical significance. The statistical analyses 

were performed using SPSS software for Windows, version 

20.0 (SPSS, Chicago, IL). 

 

III. RESULTS 

A. Diagnostic Accuracy of Source Domain Model 

Both in training and validation cohorts from dataset 1, US 

based transfer learning model demonstrated higher diagnostic 

accuracy comparing with the VGG-16 based transfer learning 

model for the differential diagnosis of benign and malignant 

thyroid nodules (Fig. 7). Differences of AUCs were all 

statistically significant (P < 0.05, Table 4). AUCs of US based 

transfer learning model reached 0.91 and 0.90 in training and 

validation cohorts, respectively, which were 0.05 and 0.05 

higher than these of the VGG-16 based transfer learning model. 
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Table 4. Diagnostic Performance of US based and VGG-16 based transfer learning for the differential diagnosis of benign and 

malignant thyroid nodules in training validation cohorts 

Models Cohorts AUC 
Sensitivity 

% 

Specificity 

% 

 

 

US-TL 

 

 

 

T 

0.91 

(0.89-0.93) 

83.1 

(81.6-84.6) 

80.2 

(78.5-81.9) 

    

V 
0.90 

(0.88-0.92) 

82.3 

(80.8-83.8) 

81.1 

(79.4-82.8) 

     

      

 

VGG-TL 

T 

 

0.86* 

(0.84-0.88) 

74.6 

(72.8-76.4) 

79.8 

(78.1-81.5) 

 V 
0.85* 

(0.83-0.87) 

76.7 

(74.9-78.5) 

79.5 

(77.6-81.4) 

Statistical quantifications were demonstrated with 95% confidence interval. 

Abbreviations: T, training cohort; V, validation cohort; AUC, area under the receiver-operator-characteristic curve; US-TL, 

US based transfer learning; VGG-TL, VGG-16 based transfer learning. 

AUC of US-TL was statistically compared to AUC of VGG-TL (*, P < 0.05). 

Fig. 7.  Comparison of receiver operating characteristic (ROC) curves, area under the curve (AUC) between transferred models 

(US-TL and VGG-TL) for the differential diagnosis of benign and malignant thyroid nodules in training and validation cohorts, 

respectively. (A) and (B) ROC curves in training and validation cohorts, respectively. 

 

Table 5. Diagnostic Performance of three ROIs and one ROI for the differential diagnosis of benign and malignant thyroid nodules 

in training validation cohorts 

Inputs Cohorts AUC 
Sensitivity 

% 

Specificity 

% 

 

 

3 ROIs 

 

 

 

T 

0.88 

(0.86-0.90) 

79.1 

(77.6-80.6) 

78.2 

(76.5-79.9) 

    

V 
0.87 

(0.85-0.89) 

77.9 

(76.1-79.7) 

77.8 

(76.1-79.5) 

     

      

 

1 ROI 

 

T 

 

0.83* 

(0.81-0.85) 

72.7 

(70.9-74.5) 

76.3 

(74.8-77.8) 

 V 
0.82* 

(0.80-0.84) 

73.2 

(71.3-75.1) 

76.1 

(74.3-77.9) 

Statistical quantifications were demonstrated with 95% confidence interval. 
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Abbreviations: T, training cohort; V, validation cohort; AUC, area under the receiver-operator-characteristic curve. 

AUC of three ROIs was statistically compared to AUC of one ROI (*, P < 0.05). 

Fig. 8.  Comparison of receiver operating characteristic (ROC) curves, area under the curve (AUC) between different inputs models 

(3-ROIs and 1-ROI) for the differential diagnosis of benign and malignant thyroid nodules in training and validation cohorts, 

respectively. (A) and (B) ROC curves in training and validation cohorts, respectively. 

 

Table 6. Diagnostic Performance of different steps of online learning for the differential diagnosis of benign and malignant thyroid 

nodules 

Steps AUC 
Sensitivity 

% 

Specificity 

% 

    

Step 1 

       

       

Step 2 

     

0.92* 

(0.91-0.93) 

85.1 

(83.6-86.6) 

85.3 

(83.5-87.1) 

   

0.95* 

(0.94-0.96) 

90.3 

(88.6-92.0) 

89.9 

(88.1-91.6) 

        

Step 3 
0.98 

(0.97-0.99) 

98.7 

(97.8-99.6) 

98.8 

(97.9-99.7) 

Statistical quantifications were demonstrated with 95% confidence interval. 

Abbreviations: AUC, area under the receiver-operator-characteristic curve. 

AUC of step 3 was statistically compared to AUC of step 1 and step 2, respectively (*, P < 0.05). 
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Fig. 9.  Comparison of receiver operating characteristic (ROC) curves, area under the curve (AUC) between different steps of 

online learning produce (step 1, step 2 and step 3) for the differential diagnosis of benign and malignant thyroid nodules in three 

different batch of data, respectively.  

 

B. Diagnostic Accuracy of Target Domain Model 

Both in training and validation cohorts from part 1 of dataset 

2, three ROIs based CNN model demonstrated higher 

diagnostic accuracy comparing with one ROI based model for 

the differential diagnosis of benign and malignant thyroid 

nodules (Fig. 8). Differences of AUCs were all statistically 

significant (P < 0.05, Table 5). AUCs of three ROIs based 

model reached 0.88 and 0.87 in training and validation cohorts, 

respectively, which were 0.05 and 0.05 higher than these of one 

ROI based model. 

 

C. Diagnostic Accuracy of OTL Model 

  As US based transfer learning model and three ROIs based 

model showed the best performance over other approaches, we 

further investigated whether its diagnostic accuracy was 

influenced by different batch of images by using online 

learning in part 2 of dataset 2 (Fig. 9). Differences of AUCs 

were all statistically significant (P < 0.05, Table 6). AUCs 

reached 0.92, 0.95 and 0.98 at different steps. 

 

IV. DISCUSSION 

In this study, we developed an online transfer learning model 

called OTL for the differential diagnosis of benign and 

malignant thyroid nodules by automatic and quantitative 

analysis of thyroid US images. We retrospectively enrolled US 

images and FNA results from two datasets. Dataset 1 and part 1 

of dataset 2 were used to develop source and target domain 

model, respectively. Part 2 of dataset 2 was used to test the 

performance of the proposed OTL model. 

The comparison experiment for transfer learning strategy 

demonstrated that US based transfer learning model showed 

higher diagnostic accuracy comparing with VGG-16 based 

transfer learning. The results indicated that the US based 

strategy was useful for accuracy improvement, maybe because 

it was transferred from the same image domain, i.e. ultrasound 

images. The result also indicated that the US based transfer 

learning model is of great clinical value, since the transferred 

model was designed for US images on purpose. 

  The proposed multi-ROI model also indicated that the 

multiple ROIs strategy made critical contribution for accuracy 

improvement, because it enabled independent analysis 

targeting regions inside and outside each thyroid nodule. This 

strategy suggested that a combination of different region of 

thyroid nodules was critical for radiomics feature extraction 

procedure. 

  The OTL model combined transfer learning and online 

learning strategy, which demonstrated the highest diagnosis 

accuracy. It made full use of the features transferred from US 

based pre-trained model, as well as the advantages of online 

learning. Since the images from hospitals were collected over 

time, we could not process all the data at a time. The OTL 

model made it more realistic for clinical use due to its 

advantages in using data. 

  Our work demonstrated several advantages over other 

studies attempted to differentiate malignant and benign thyroid 

nodules through computer-aided analysis on thyroid US images 

[9, 18 and 21]. The majority of those studies used 

human-defined US features extracted from US images by a lot 

of labor work. OTL was a highly automatic end-to-end 

approach. It automatically extracted thousands of features from 
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the images and adopted transfer learning and online learning 

strategy to optimize the diagnosis model. Besides that, 

compared with the basic CNN model [22] which used all the 

image data at the first time, the procedures of using OTL were 

highly consistent with the existing clinical data collection 

methods, so it could be seamlessly integrated into the 

conventional work-flow of thyroid US examinations without 

extra time and labor cost. 

The major limitation in our study was that the data came 

from retrospective datasets. The performance of OTL needs to 

be further validated in a perspective study. A larger dataset 

acquired from different hospitals and different counties is 

necessary for consisting a more comprehensive dataset, so that 

the accuracy and reliability of OTL can be continuously 

improved. 

V. CONCLUSIONS 

In conclusion, OTL achieved the most accurate differential 

diagnosis of benign and malignant thyroid nodules comparing 

with transfer learning and multi-ROI based model. Its 

performance continuously improved with the increase of data. 

The model holds a good potential for improving the overall 

diagnostic efficacy in thyroid US examinations, and it is very 

consistent with the clinical operation procedure. 
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