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ABSTRACT   

Background: The differential diagnosis of benign and malignant thyroid nodules from ultrasound (US) images remained 

challengeable in clinical practice. We aimed to develop and validate a highly automatic and objective diagnostic model 

named deep learning Radiomics of thyroid (DLRT) for the differential diagnosis of benign and malignant thyroid 

nodules from US images. Methods: We retrospectively enrolled US images and corresponding fine-needle aspiration 

biopsies from 1645 thyroid nodules. A basic convolutional neural network (CNN) model, a transfer learning model, and 

a newly designed model named deep learning Radiomics of thyroid (DLRT) were used for the investigation. Their 

diagnostic accuracy was further compared with human observers (one senior and one junior US radiologist). Results: 

AUCs of DLRT were 0.96 (95% confidence interval [CI]: 0.94-0.98) and 0.95 (95% confidence interval [CI]: 0.93-0.97) 

in the training and validation cohort, respectively, for the differential diagnosis of benign and malignant thyroid nodules, 

which were significantly better than other deep learning models (P < 0.05) and human observers (P < 0.05). Conclusions: 

DLRT shows the best overall performance comparing with other deep learning models and human observers. It holds 

great promise for improving the differential diagnosis of benign and malignant thyroid nodules.  
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1. INTRODUCTION  

Thyroid nodules are defined as discrete lesions within the thyroid gland, radiologically distinct from surrounding thyroid 

parenchyma1. They are becoming increasingly common in clinical practice, being detected in up to 65% of the general 

population2. Among the large number of detected nodules, most of them are benign, clinically insignificant, and safely 

managed by the surveillance program. However, approximately 10% of patients presenting thyroid nodules are at risk of 

malignancy3, and the incidence of thyroid cancer has continuously increased worldwide4. Therefore, the accurate 

identification of benign and malignant thyroid nodules is vital in clinical decision-making and management. 

 

In clinic, Fine-needle aspiration (FNA) biopsy has been treated as the golden standard for the diagnosis of benign and 

malignant thyroid nodules1, 5. However, it is invasive and limited by specimen collection and operator experience6. 

Currently, ultrasound (US) is the first clinical choice of thyroid nodules screening, because of its non-radioactivity, easy-

to-operate, and rapid diagnostic work-up4. Therefore, US features can be utilized to differentiate malignancies from 

benign thyroid nodules7, 8. 

 

At present, an emerging technology named Radiomics based on machine learning can extract and analyze thousands of 

quantitatively calculated image features (also called Radiomics features) from medical images, which has the potential to 

reveal disease characteristics that is impossible for human to recognize by naked eyes in daily practice9. Radiomics has 

been widely used for analyzing CT and MR images with impressive effectiveness10-13, but its applications in US are still 

rarely reported14-17. Therefore, it is worthy of investigating whether a Radiomics approach can make better use of thyroid 

ultrasound images and achieve more accurate diagnosis of differentiating malignant from benign thyroid nodules. 
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Here, we developed a convolutional neural network (CNN) based transfer learning method tailed for the quantitative 

analysis of thyroid ultrasound images. It is a deep learning approach, named as DLRT (deep learning Radiomics of 

thyroid), that does not require complicated manual segmentations of thyroid nodule boundaries. 

 

2. METHODOLOGY 

This was a retrospective study. A new diagnostic approach named DLRT was used for the differential diagnosis of 

benign and malignant thyroid nodules. FNA biopsy was used as the golden standard, and DLRT was compared with two 

other deep learning models as well as two radiologists.  

2.1 Basic CNN model 

The CNN architecture contains input, convolution, activation, pooling, forward computation, and back propagation (Fig. 

1). Its details are explained as following. 

Input. The CNN model starts with the input layer, i.e. 

                                                                          0
C X                                                                                      (1) 

Where X stands for the input image data, 0
C  stands for the output of the input layer. 

Convolution. The result of convolution between matrix 0
C

 and matrix 1
W

 (the weights, size of 3 3 ) is to let matrix 

1
W

 slides on the matrix 0
C

, in other words, matrix 1
W

 and all of the 3 3  continuous submatrix of 0
C

 will perform 

the operation of "corresponding sum of product of elements".  

Activation. After the operation of convolution, the result will be activated by an activation function, here we adopted the 

“ReLU” function
( ) max(0, )f x x

, when the input is negative, the output of the activation function will be zero, and 

when the input is positive, the result will be equal to the input. Then we could get the output of the first hidden layer 

                                                                   
1 1 1 0 1

( * )C W C b                                                                           (2) 

Where 1


 is the activation function ReLU, 1
b

 denotes the bias, * denotes the convolution operation, 1
C

 is the output of 

the first convolution layer, called feature map. 

Pooling. The pooling operation of 1
C

 is as follows 

                                                                
1 1
=maxpooling(C )P                                                                          (3) 

Where 1
P

 is the pooled map. The operation “maxpooling” means only the maximum value of the matrix 1
C

 within 

disjoint 2 2  small matrixes will be kept for next step. All the convolution, activation and pooling operations will be 

repeated in all four hidden layers 

Forward computation. The input of the first convolutional layer is the raw data matrix X  with a size of 250 250 , 

after an operation of convolution which contains a number of 16 filters with the size of 3 3 , the output of this 
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convolutional layer will be a number of 16 feature maps with the size of 248 248 , and then the result will be activated 

with the activation function of “ReLU”.  

After the first operation of convolution, there will be a pooling operation. The size of the pooling window is 2 2 , and 

we will adopt the max-pooling strategy here. Then the 248 248 feature map will be transferred to a 124 124  pooled 

map.  

A total of four times of convolution, activation and pooling operations will be executed to complete the computation in 

turn. When it comes to the last fully connected layer and the output layer, the result will be the possibility. 

Back propagation. Assuming the loss function of the whole network is J , and

2

( , )

1

1 1
( , ) ( )

2

q
j j

w b

j

J w b y p x
q 

   
, 

where 
j

 represents the order of neuron, 
q

 means the number of neuron. The most important parameters in the network 

are the weights w  between two neurons and the bias b  between two layers. And x  is the input of a neuron, 
( )p x

 

means the actual output of the neuron, while 
y

 is the expected output of the neuron.  

Therefore, J  represents the sum of squared error between the actual output and the expected output. In the end, our task 

is to make J  as small as possible, and to achieve this goal, we need to acquire suitable parameters w  and b  through 

learning process from data, here we will use gradient descent strategy,2 then 

:
l l

l

J
w w

w



 

  and 

:
l l

l

J
b b

b



 

  

to fine-tuning w  and b ,where l  means the order of the layer,  means the learning rate. 

The parameters w  and b  will continue to improve at the end of each iteration of the whole training process. When the 

loss function tends to decrease and be stable, the CNN model is considered as having completed the training process, 

which means the CNN model is ready to predict new data. 

 

Figure 1. Illustration of basic convolutional neural network (CNN) model flowchart. 
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2.2 Transfer learning model 

Transfer learning is a machine learning method where a model developed for a task is reused as the starting point for a 

model on another task. Here we adopted the pre-trained model which was transferred from one of our previous studies 

followed by a strategy called fine-tuning. This approach consists of selecting source model, reusing model and fine-

tuning model (Fig. 2). 

Select Source Model. A pre-trained source model which was developed for another ultrasound image classification task18 

was chosen for the DLRT base model. 

Reuse Model. The pre-trained model could then be used as the starting point for a model on the DLRT task. This part 

involved using the first three hidden layers of the model. 

Tune Model. Lastly, the model need to be adapted or refined on the input-output pair data available for the task of DLRT. 

This part involved freezing the first three hidden layers and fine-tuning the rest part of the model. 

 

Figure 2. Illustration of transfer learning model flowchart. 

 

2.3 DLRT model 

For applying DLRT, we designed a simple manual initiation by defining multiple region-of-interests (ROIs). For each 

thyroid nodule, three square ROIs (sizes: 150 × 150 pixels, 200 × 200 pixels and 250 × 250 pixels) whose sizes were 

based on statistics, were automatically generated after one mouse click on the nodule center area. Then, the 

corresponding three cropped images were used as input layers to trigger the DLRT model (Fig. 3). DLRT adopted the 

CNN architecture and transfer learning strategy. It consisted of four hidden layers. The first three layers were transferred 

from one of our previous studies without any modification18, whereas the last hidden layer was fine-tuned using enrolled 

thyroid US images. This layer contained 32 feature maps, and the size of the convolution filter and the max pooling was 

3 × 3 pixels and 2 × 2 pixels, respectively. Finally, a fully-connected layer with 32 nodes was connected to every neuron 

in the last three pooling layers, and the probability (a malignancy score) of the binary classification (benign or malignant) 

can be calculated in the output layer. 
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Figure 3. Illustration of deep learning radiomics of thyroid (DLRT) model flowchart. 

 

2.4 Comparison between different radiomics models 

As DLRT adopted both CNN architecture and transfer learning strategy, we compared the performances of the basic 

CNN model, the transfer learning model, and DLRT. The Basic CNN model had exactly the same network architecture 

with DLRT (four hidden layers followed with a fully connected layer), but all parameters of every layer were trained by 

US images and FNA histological results of the training cohort. Differently, the transfer learning model employed 

transferred parameters for the first three layers from another study18 without using any data from our training cohort. 

Only the parameters of the last hidden layer were trained by the training cohort, which was the same as DLRT. The 

biggest difference between these two models and DLRT was that they only can use one ROI as the input layer for each 

US image, whereas DLRT was designed to take three different ROIs from a single image as the input. Therefore, we 

chose the middle size ROI as the input for the basic CNN and transfer learning models. 

 

2.5 Comparison between radiomics and human observers 

Thyroid nodule images from validation cohort was given to two ultrasound radiologists who were blind to the FNA 

histological results and did not review any of the images that were acquired during the original ultrasound examination. 

One has more than 12 years of experience in thyroid diagnosis, the other has only three years of experience. Their 

diagnostic performances were compared with DLRT, the basic CNN model, and the transfer learning model. 

 

3. DATA 

From January 2017 to March 2018, 2179 consecutive thyroid patients who underwent US examination and US-guided 

FNA biopsy were recruited at our hospital. The inclusion criteria were as follows: (1) no previous fine-needle aspiration 

biopsy, (2) no previous surgical treatment, and (3) conventional US examination before the biopsy, with thyroid nodule 

indication in recorded US images. The exclusion criteria were: (1) nodule diameter < 5 mm, (2) unqualified histology 

with ambiguous diagnostic findings (too few cells or atypical pathology), and (3) follicular neoplasm or suspicious for a 
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follicular neoplasm. Demographic information, imaging examination, and clinical baseline characteristics were collected 

from the hospital PACS workstation. 

A total of 2212 nodules from 2179 potentially eligible patients were retrospectively enrolled in this study. Among them, 

423 patients were excluded due to too few cells from US-guided FNA for pathology, atypical pathology, or follicular 

neoplasm. Another 127 patients were excluded, because their nodule diameter was less than 5 mm. Finally, 1629 patients 

with 1645 thyroid nodules were enrolled, and we only employed one US image from each nodule for analysis.  

After randomization of enrolled 1629 patients (1645 nodules), 1097 nodules (428 malignant, 39.0%) were assigned to 

the training cohort, and the other 548 nodules (214 malignant, 39.1%) composed the validation cohort.  

 

4. RESULTS 

4.1 Diagnostic accuracy of DLRT, the basic CNN, and the transfer learning model 

Both in training and validation cohorts, DLRT demonstrated the highest diagnostic accuracy comparing with the other 

two models for the differential diagnosis of benign and malignant thyroid nodules (Fig. 4A and B). Differences of AUCs 

were all statistically significant (P < 0.05). AUCs of DLRT reached 0.96 and 0.95 in training and validation cohorts, 

respectively, which were 0.09 and 0.10 higher than these of the transfer learning model who offered the second highest 

AUCs. The basic CNN model offered the worst AUCs in both training and validation cohorts, which were 0.82 and 0.81, 

respectively. 

 

Figure 4. Comparison of receiver operating characteristic (ROC) curves, area under the curve (AUC) between radiomics 

models (DLRT, the basic CNN, and the transfer learning model), and human observers (a senior and a junior US Radiologist) 

for the differential diagnosis of benign and malignant thyroid nodules in training and validation cohorts, respectively. 

 

4.2 Comparison between Radiomics and human observers 

A senior and a junior US Radiologist who were blind to pathology data performed differential diagnosis using US 

images from the validation cohort. Without surprise, the senior observer (Doctor A) outperformed the junior one (Doctor 

B) with a significant AUC improvement of 0.07 (P < 0.05). However, both human observers provided lower AUC than 

all three Radiomics models (Fig. 4B). The gap of AUC between the best (DLRT) and worst (Doctor B) researched 0.29 

(P < 0.001). 
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5. CONCLUSIONS 

In conclusion, DLRT achieved the most accurate differential diagnosis of benign and malignant thyroid nodules 

comparing with other deep learning models and human observers. It holds a good potential for improving the overall 

diagnostic efficacy in routine thyroid US examinations. 
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