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In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic
programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on
the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN
structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees
of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value
function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of
the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously
and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.

Keywords: nonlinear observer; adaptive dynamic programming; neural network; uniformly ultimately bounded; nonlinear
system

1. Introduction

As is well known, various control schemes have been de-
veloped in the literature for optimal control based on full
state measurements. However, in most real cases, the state
variables are unavailable for direct online measurements,
and merely input and output of the system are measurable.
Therefore, estimating the state variables by observers plays
an important role in the control of processes to achieve bet-
ter performances. During the past several decades, many
nonlinear observers have been developed to obtain the
estimated states. However, these conventional nonlinear
observers, such as high-gain observers, and sliding mode
observers (Farza, Sboui, Cherrier, & M’Saad, 2010; Jo &
Seo, 2002; Jung, Huh, & Lee, 2008; Nicosia, Tomei, &
Tornambe, 1989; Slotine & Li, 1991) are only applicable
to systems with specific model structures. Furthermore,
most of them rely on completely knowing the system non-
linearities a priori. Note that, for most practical processes,
obtaining an exact model is a difficult task or is not possible
at all.

Moreover, in recent years, neural-network (NN) tech-
niques have shown a good promise as competitive methods
for nonlinear control, signal processing, and other appli-
cations. The capability of NN for identification, observa-
tion, and control of nonlinear systems has been investi-
gated in online and offline environments (Chen & Khalil,
1995; Michael & Harley, 1995; Narendra & Parthasarathy,
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1990; Park, Huh, Kim, & Seo, 2005; Yu, 2009). In fact, due
to the properties of nonlinearity, adaptivity, self-learning,
fault tolerance, and advanced input–output mapping
(Igelnik & Pao, 1995; Jagannathan, 2006; Lewis, Jagan-
nathan, & Yesildirek, 1999), NNs show powerful poten-
tials in solving the nonlinear state observation problems
without a priori knowledge of system dynamics. In Ahmed
and Riyaz (2002), a general multiple-input-multiple-output
(MIMO) nonlinear system was linearised and an extended
Kalman filter was used to estimate the system states. The
gain of the proposed observer was computed by a multi-
layer feedforward NN. In Selmic and Lewis (2001), multi-
model identification and failure detection using radial basis
function were presented, where one tuneable layer NN was
considered and the persistency of excitation condition was
developed to guarantee the convergence of the parame-
ters of the identifier to the ideal parameters. In Abdollahi,
Talebi, and Patel (2006), an NN-based observer for non-
linear systems was proposed by using a backpropagation
algorithm with a modification term.

In this paper, inspired by Abdollahi et al. (2006), a mul-
tilayer feedforward NN observer for unknown nonlinear
systems is developed, where the observer NN is used to
parameterise the nonlinearities of the system and trained
using the error backpropagation algorithm. In the follow-
ing, after obtaining the observed states, it is necessary to
derive the optimal control of the nonlinear system based on
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the observed states. In the optimal control field, dynamic
programming (DP) has been a useful computational tech-
nique in solving optimal control problems for many years.
However, due to the backward numerical process required
for its solutions, i.e., the well-known ‘curse of dimensional-
ity’ (Bellman, 1957; Lewis & Syrmos, 1995; Wang, Zhang,
& Liu, 2009), it is often computationally untenable to run
DP to obtain the optimal solution.

By means of constructing a module called ‘critic’ to
approximate the cost function in DP, adaptive dynamic pro-
gramming (ADP) successfully avoids the ‘curse of dimen-
sionality’. Therefore, in recent years, ADP has attracted
much attention from researchers (Bertsekas & Tsitsiklis,
1996; Dierks, Thumati, & Jagannathan, 2009; He & Ja-
gannathan, 2007; Lewis & Vrabie, 2009; Liu, Xiong, &
Zhang, 2001; Liu, Zhang, & Zhang, 2005; Murray, Cox,
Lendaris, & Saeks, 2002; Si, Barto, Powell, & Wunsch,
2004; Wang, Liu, & Wei, 2012; Zhang, Luo, & Liu, 2009;
Zhang, Wei, & Luo, 2008). ADP was proposed in Wer-
bos (1977) and Werbos (1992), as a way to solve opti-
mal control problems forward in time. In Prokhorov and
Wunsch (1997), ADP approaches were classified into sev-
eral main schemes including heuristic dynamic program-
ming (HDP), action-dependent heuristic dynamic program-
ming (ADHDP), dual heuristic dynamic programming
(DHP), ADDHP, globalised DHP (GDHP), and ADGDHP.
In Al-Tamimi, Lewis, and Abu-Khalaf (2008), a greedy
iterative HDP was proposed to solve the optimal control
problem for nonlinear discrete-time systems. Vrabie and
Lewis (2009) studied the continuous-time optimal control
problem using ADP. Wang, Jin, Liu, and Wei (2011) de-
veloped an ε-ADP algorithm for studying finite-horizon
optimal control of discrete-time nonlinear systems.

Taking account of practical application conditions, a
novel control scheme is developed for unknown nonlin-
ear systems based on the ADP algorithm and NN observer
in this paper. First, an NN observer is designed to esti-
mate system states. Then, based on the observed states, a
feedforward neuro-controller is constructed using ADP al-
gorithm to obtain the optimal control. Moreover, uniformly
ultimately bounded (UUB) stability of the closed-loop sys-
tem is guaranteed. The actor, critic, and observer structures
are implemented in real-time, continuously and simultane-
ously.

The rest of this paper is organised as follows. In Sec-
tion 2, the problem formulation is presented. In Section 3, by
using a multilayer feedforward NN, an observer is designed
for the unknown nonlinear system. Moreover, the Lyapunov
approach is used to show that state estimation errors and
weight estimation errors are all bounded. In Section 4, a
feedforward neuro-controller is constructed by using ADP
algorithm based on the observed states. Meanwhile, the
boundedness of all signals in the closed-loop observer and
controller is shown. In Section 5, simulation results are
presented to demonstrate the effectiveness of the proposed

optimal control scheme. Several conclusions are drawn in
Section 6.

2. Problem formulation

Consider the nonlinear continuous-time system described
by

ẋ(t) = F (x(t), u(t)),

y(t) = Cx(t), (1)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ R
n is the state

vector, u(t) = [u1(t), u2(t), . . . , um(t)]T ∈ R
m is the con-

trol input vector, y(t) = [y1(t), y2(t), . . . , yl(t)]T ∈ R
l is

the output vector, and F(x, u) is an unknown continuous
nonlinear smooth function with respect to x(t) and u(t).
Moreover, it is assumed that system (1) is observable and
system states are bounded in L∞ (Abdollahi et al., 2006).
This is a common assumption in identification schemes.

For optimal output regulator problems, the control
objective is to design an optimal controller for system
(1) which minimises the generalised infinite-horizon cost
function

V (x(t), t) =
∫ ∞

t

(yT(τ )Qy(τ ) + uT(τ )Ru(τ ))dτ, (2)

where t is the initial time, Q and R are symmetric posi-
tive definite matrices with appropriate dimensions. Notic-
ing that y(t) = Cx(t), (2) can be rewritten as

V (x(t), t) =
∫ ∞

t

r(x(τ ), u(τ ))dτ, (3)

where r(x(τ ), u(τ )) = xT(τ )Qcx(τ ) + uT(τ )Ru(τ ) with
Qc = CTQC, and Qc is symmetric semi-definite due to
the observability of system (1). Meanwhile, for optimal
control problems, it should be noted that the designed feed-
back control u(x) must not only stabilise system (1) but
also guarantee that (3) is finite, i.e., the control must be
admissible (Abu-Khalaf & Lewis, 2005).

Definition 2.1: A control law u(x) is defined to be admis-
sible with respect to (3) on a compact set �, denoted by u
∈ �(�), if u(x) is continuous on �, u(0) = 0, u stabilises
system (1) on �, and V(x(t)) in (3) is finite.

Since the knowledge of system dynamics is completely
unknown and system states are not available, we cannot ap-
ply existing ADP methods to system (1) directly. Therefore,
it is desirable to design a novel control scheme that does
not need the exact knowledge of system dynamics but only
the input and output data measured during the operation of
the system. In this paper, we develop an NN-observer-based
optimal control scheme for unknown nonlinear continuous-
time systems using ADP algorithms. In detail, the design of
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1556 D. Liu et al.

Figure 1. The structure diagram of the NN observer.

proposed controller is divided into two steps: (1) establish
a multilayer feedforward NN observer for unknown nonlin-
ear systems by using the measured input and output data of
the system and (2) based on observed states, we design an
optimal neuro-controller using ADP algorithms.

3. Neural-network-observer design

In this section, a multilayer feedforward NN observer is
designed to obtain estimated states. Specially, the feedfor-
ward NN is used to parameterise the nonlinearities of the
system and trained using the error backpropagation algo-
rithm. Moreover, the observer error dynamics are described
for analysing the stability of the NN observer.

Considering system (1), by adding and subtracting Ax,
we have

ẋ(t) = Ax + G(x, u),

y(t) = Cx(t), (4)

where A is a Hurwitz matrix, the pair (C, A) is observable,
and G(x, u) = F(x, u) − Ax. Now, the state observer for
system (1) can be described by

˙̂x(t) = Ax̂(t) + Ĝ(x̂, u) + L(y − Cx̂),

ŷ(t) = Cx̂(t), (5)

where x̂ and ŷ denote the state and output of the observer,
respectively, and the observer gain L ∈ R

n×l is selected
such that A − LC is a Hurwitz matrix. Since A is selected
such that (C, A) is observable, it ensures that L exists.

The key to designing an NN observer is to employ an
NN to identify the nonlinearity and a conventional observer
to estimate the states (Abdollahi et al., 2006; Ahmed &
Riyaz, 2000; Selmic & Lewis, 2001). The structure of the
designed NN observer is shown in Figure 1.

As is well known, a three-layer NN with a single-hidden
layer is sufficient to approximate nonlinear systems with
any degree of nonlinearity. Here, the function approxima-
tion capability of NNs is used. In fact, it has been shown

by many researchers that for restricted to a compact set �

of x ∈ R
n and for some sufficiently large number of hidden

layer neurons, there exist weights and thresholds such that
any continuous function has an NN representation on the
compact set � (Igelnik & Pao, 1995; Jagannathan, 2006;
Lewis et al., 1999; Yu, 2009). Thus, according to the uni-
versal approximation property of NNs, G(x, u) can be rep-
resented as

G(x, u) = Wσ (V x̄) + ε(x), (6)

where W ∈ R
n×k and V ∈ R

k×(n+m) are the ideal weight
matrices of the output and hidden layers, k is the number of
hidden layer neurons, x̄ = [xT, uT]T is the NN input, and
ε(x) is the bounded NN functional approximation error, i.e.,
‖ε(x)‖ ≤ εM, σ (·) is the NN activation function and selected
to be a hyperbolic tangent function. Besides, NN activation
functions are also bounded such that ‖σ (·)‖ ≤ σ M for a
positive constant σ M.

It is assumed that the upper bounds of the fixed ideal
weights W and V exist such that

‖W‖F ≤ WM, ‖V ‖F ≤ VM. (7)

Then, G(x, u) can be approximated by

Ĝ(x̂, u) = Ŵσ (V̂ ˆ̄x), (8)

where x̂ is the estimated state vector, ˆ̄x = [x̂T, uT]T, Ŵ

and V̂ are the corresponding estimates of the ideal weight
matrices.

Therefore, the dynamics of the NN observer are given
by

˙̂x(t) = Ax̂ + Ŵσ (V̂ ˆ̄x) + L(y − Cx̂),

ŷ(t) = Cx̂(t). (9)

Let the state and output estimation errors be defined as
x̃ = x − x̂ and ỹ = y − ŷ, respectively. Then, considering
(6) and subtracting (9) from (4), the error dynamics can be
expressed as

˙̃x(t) = Ax + Wσ (V x̄) − Ax̂ − Ŵσ (V̂ ˆ̄x),

−L(Cx − Cx̂) + ε(x),

ỹ(t) = Cx̃(t). (10)

Considering (10), by adding and subtracting Wσ (V̂ ˆ̄x), we
obtain

˙̃x(t) = Acx̃ + W̃σ (V̂ ˆ̄x) + ζ (t),

ỹ(t) = Cx̃(t), (11)

where W̃ = W − Ŵ and Ac = A − LC, and ζ (t) =
W [σ (V x̄) − σ (V̂ ˆ̄x)] + ε(x) is a bounded disturbance term,
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International Journal of Control 1557

i.e., ‖ζ (t)‖ ≤ ζ M for some positive constant, due to the
boundedness of the hyperbolic tangent function, the NN
approximation error ε(x), and ideal NN weights (W, V).

In order to guarantee the stability of the NN observer,
a suitable tuning algorithm should be provided for the NN
weights in the design. In this paper, inspired by Abdol-
lahi et al. (2006), we design the weight tuning algorithm
based on the error backpropagation algorithm plus some
modification terms to guarantee the stability of the state ob-
server and the NN weight errors, as detailed in the following
theorem.

Theorem 3.1: Consider system (1) and the observer dy-
namics (9). If the modified NN weight tuning algorithm
with modification terms is provided as

˙̂
W = −η1(ỹTCA−1

c )Tσ T(V̂ ˆ̄x) − θ1‖ỹ‖Ŵ,

˙̂
V = −η2(ỹTCA−1

c Ŵ (I − 
(V̂ ˆ̄x)))TsgnT( ˆ̄x) − θ2‖ỹ‖V̂ ,

(12)

where 
(V̂ ˆ̄x) = diag
{
σ 2

i (V̂ ˆ̄x)
}
, i = 1, 2, . . . , m, and

sgn( ˆ̄x) = [
sgn( ˆ̄x1), sgn( ˆ̄x2), . . . , sgn( ˆ̄xn+m)

]T
with

sgn( ˆ̄xj ) =
⎧⎨
⎩

1, for ˆ̄xj > 0
0, for ˆ̄xj = 0

−1, for ˆ̄xj < 0
, (13)

j = 1, 2, . . . , n + m, and η1, η2 > 0 are the learning
rates, θ1,θ2 are the designed positive numbers, then the
state estimation error x̃ and weight estimation errors W̃ =
W − Ŵ and Ṽ = V − V̂ are UUB.

Proof: Consider Lyapunov function candidate

Jo = 1

2
x̃TP x̃ + 1

2
tr{W̃TW̃ } + 1

2
tr{Ṽ TṼ }, (14)

where P is a positive definite matrix that satisfies

AT
c P + PAc = −� (15)

for the Hurwitz matrix Ac and some positive definite matrix
�. The time derivative of the Lyapunov function candidate
is given by

J̇o = 1

2
˙̃x

T
P x̃ + 1

2
x̃TP ˙̃x + tr(W̃T ˙̃W ) + tr(Ṽ T ˙̃V ). (16)

Using Equation (12), we obtain

˙̃W = η1(ỹTCA−1
c )Tσ T(V̂ ˆ̄x) + θ1‖ỹ‖Ŵ,

˙̃V = η2(ỹTCA−1
c Ŵ (I − 
(V̂ ˆ̄x)))TsgnT( ˆ̄x) + θ2‖ỹ‖V̂ .

(17)

Substituting (11), (15), and (17) into (16), we have

J̇o = −1

2
x̃T�x̃ + x̃P (W̃σ (V̂ ˆ̄x) + ζ )

+ tr(W̃Tη1(ỹTCA−1
c )Tσ T(V̂ ˆ̄x) + W̃Tθ1‖ỹ‖Ŵ )

+ tr(Ṽ Tη2(ỹTCA−1
c Ŵ (I − 
(V̂ ˆ̄x)))TsgnT( ˆ̄x)

+ Ṽ Tθ2‖ỹ‖V̂ ). (18)

By using some polynomial adjustments and (11), Equa-
tion (18) can be rewritten as

J̇o = −1

2
x̃T�x̃ + x̃P (W̃σ (V̂ ˆ̄x) + ζ )

+ tr(W̃Tl1x̃σ T(V̂ ˆ̄x) + W̃Tθ1‖Cx̃‖(W − W̃ ))

+ tr(Ṽ T(I − 
(V̂ ˆ̄x))TŴ l2x̃sgnT( ˆ̄x)

+ Ṽ Tθ2‖Cx̃‖(V − Ṽ )), (19)

where l1 = η1A
−T
c CTC and l2 = η2A

−T
c CTC. Before pro-

ceeding, we provide the following inequalities:

tr(W̃T(W − W̃ )) ≤ WM‖W̃‖ − ‖W̃‖2,

tr(Ṽ T(V − Ṽ )) ≤ VM‖Ṽ ‖ − ‖Ṽ ‖2,

tr(W̃Tl1x̃σ T(V̂ ˆ̄x)) ≤ σM‖W̃‖‖l1‖‖x̃‖. (20)

Note that the last inequality in (20) is obtained based on the
fact that, for two matrices A and B, the following relation-
ship holds:

tr(ATB) = tr(BTA). (21)

On the other hand, by ‖Ŵ‖ = ‖W − W̃‖ ≤ WM + ‖W̃‖,
1 − σ 2

M ≤ 1, and (21), we obtain

tr(Ṽ T(I − 
(V̂ ˆ̄x))TŴ l2x̃sgnT( ˆ̄x))

≤ ‖Ṽ ‖(WM + ‖W̃‖)‖l2‖‖x̃‖. (22)

Then, from (20) and (22), we have

J̇o ≤ −1

2
λmin(�)‖x̃‖2 + ‖x̃‖‖P ‖(‖W̃‖σM + ζM )

+ σM‖W̃‖‖l1‖‖x̃‖ + (WM‖W̃‖ − ‖W̃‖2)θ1‖C‖‖x̃‖
+‖Ṽ ‖‖l2‖(WM + ‖W̃‖)‖x̃‖
+ θ2‖C‖‖x̃‖(VM‖Ṽ ‖ − ‖Ṽ ‖2), (23)

where λmin (�) is the minimum eigenvalue of �.
Next, let K1 = ‖l2‖/2, then, by adding and subtracting

K2
1 ‖W̃‖2‖x̃‖ and ‖Ṽ ‖2‖x̃‖ to the right-hand side of (23),

we obtain

J̇o ≤ −1

2
λmin(�)‖x̃‖2 + [‖P ‖ζM − (θ1‖C‖ − K2

1 )‖W̃‖2

+ (‖P ‖σM + σM‖l1‖ + θ1‖C‖WM )‖W̃‖

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

A
ut

om
at

io
n]

 a
t 1

7:
46

 1
6 

Se
pt

em
be

r 
20

13
 



1558 D. Liu et al.

+ (θ2‖C‖VM + ‖l2‖WM )‖Ṽ ‖
− (θ2‖C‖ − 1)‖Ṽ ‖2 − (K1‖W̃‖ − ‖Ṽ ‖)2

]‖x̃‖. (24)

Denote K2 and K3 as

K2 = ‖P ‖σM + σM‖l1‖ + θ1‖C‖WM

2(θ1‖C‖ − K2
1 )

K3 = θ2‖C‖VM + ‖l2‖WM

2(θ2‖C‖ − 1)
. (25)

Then, in order to complete the squares for the terms ‖W̃‖
and ‖Ṽ ‖, the terms K2

2 ‖x̃‖ and K2
3 ‖x̃‖ are added to and

subtracted from (24), and we have

J̇o ≤ −1

2
λmin(�)‖x̃‖2 + [‖P ‖ω̄ + (θ1‖C‖ − K2

1 )K2
2

+ (θ2‖C‖ − 1)K2
3 − (θ1‖C‖ − K2

1 )(K2 − ‖W̃‖)2

− (θ2‖C‖ − 1)(K3 − ‖Ṽ ‖)2 − (K1‖W̃‖ − ‖Ṽ ‖)2
]‖x̃‖.

(26)

Select θ1 ≥ K2
1 /‖C‖ and θ2 ≥ 1/‖C‖. Then, (26) becomes

J̇o ≤ −1

2
λmin(�)‖x̃‖2 + ‖x̃‖(‖P ‖ω̄ + (θ1‖C‖ − K2

1 )K2
2

+ (θ2‖C‖ − 1)K2
3

)
. (27)

Therefore, for guaranteeing the negativeness of J̇o, the fol-
lowing condition on ‖x̃‖ should hold, i.e.,

‖x̃‖ >
2
(‖P ‖ω̄ + (

θ1‖C‖ − K2
1

)
K2

2 + (θ2‖C‖ − 1) K2
3

)
λmin(�)

= d. (28)

Furthermore, according to the standard Lyapunov theorem
(Lewis & Syrmos, 1995), as long as (28) is satisfied, we
can demonstrate that the observation error x̃ and the weight
estimation errors W̃ and Ṽ are UUB. �
Remark 1: J̇o is negative definite outside the ball with
radius d described as X = {x̃|‖x̃‖ > d}, and x̃ is UUB. The
size of the estimation error bound d can be kept arbitrarily
small by proper selection of the design parameters θ1, θ2,
and the learning rates η1, η2 such that the higher accuracy
can be achieved.

Remark 2: The explanation about selecting an NN ob-
server rather than system identification technique is given
here. In control engineering, a common approach is to start
from measurements of the behaviour of the system and the
external influences (inputs to the system) and try to deter-
mine a mathematical relation between them without going
into the details of what is actually happening inside the sys-
tem (Goodwin & Payne, 1977; Walter & Pronzato, 1997).
This approach is called system identification. Therefore,

we can conclude that based on system identification, we are
generally able to obtain a ‘black box’ model of the nonlinear
system (Jin, Sain, Pham, Spencer, & Ramallo, 2001), but
do not obtain any in-depth knowledge about system states
because they are the internal properties of the system. In
most real cases, the state variables are unavailable for direct
online measurements, and merely input and output of the
system are measurable. Therefore, estimating the state vari-
ables by observers plays an important role in the control of
processes to achieve better performances. Once obtaining
the estimated states, we can design a state feedback con-
troller to achieve the optimisation of system performance
directly (Theocharis & Petridis, 1994). In conclusion, we
choose an NN observer rather than system identification
technique in this paper.

4. Optimal neuro-controller design based on ADP

In this section, based on observed states, a neuro-controller
is developed for obtaining optimal control using ADP al-
gorithms. Moreover, all signals in the closed-loop observer
and controller are proved to be UUB.

By (1) and (3), the Hamiltonian function can be defined
as

H (x, u, Vx) = r(x(t), u(t)) + V T
x F (x(t), u(t)), (29)

where Vx = ∂V(x)/∂x. The optimal cost function V∗(x) is
defined as

V ∗(x) = min
u∈�(�)

(∫ ∞

t

r(x(τ ), u(τ ))dτ

)
(30)

and satisfies the HJB equation

min
u∈�(�)

[
H (x, u, V ∗

x )
] = 0, (31)

where V ∗
x = ∂V ∗(x)/∂x. Assume that the minimum on the

right-hand side of (31) exists and is unique. Then, by solving
∂H(x, u, Vx)/∂u = 0, the optimal control can be obtained
as

u∗ = −1

2
R−1

(
∂F (x, u)

∂u

)T

V ∗
x . (32)

Substituting (32) into (31), we obtain

0 = xTQcx + 1

4
V ∗T

x

∂F (x, u)

∂u
R−1

(
∂F (x, u)

∂u

)T

V ∗
x

+V ∗T
x F

(
x,−1

2
R−1

(
∂F (x, u)

∂u

)T

V ∗
x

)
. (33)

Note that, in order to find the optimal control solution
of the problem, we only need to solve (33) for the cost
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Figure 2. The structure diagram of the NN-observer-based con-
troller.

function and then substitute the solution in (32) to obtain
the optimal control. However, due to the nonlinear nature of
the HJB equation, finding its solution is generally difficult
or impossible.

Therefore, based on the designed observer, a neuro-
controller is developed by using ADP methods. The struc-
ture diagram of the NN-observer-based controller is shown
in Figure 2.

In the following, we focus on the optimal feedback con-
troller design by using the ADP method, which is imple-
mented by employing a critic NN to approximate the cost
function. According to the universal approximation prop-
erty of NNs, the cost function V (x̂) can be represented by
the critic NN as

V (x̂) = WT
c σc

(
V T

c x̂
) + εc(x̂), (34)

where Wc ∈ R
kc×1 and Vc ∈ R

n×kc are the ideal weight ma-
trices of the output and hidden layer, kc is the number of
hidden layer neurons, and εc is the bounded NN functional
approximation error. In our design, based on Igelnik and Pao
(1995), for both simplicity of learning and efficiency of ap-
proximation, the output layer weight matrix Wc is adapted
online, whereas the input layer weight matrix Vc is selected
initially at random and held fixed during the entire learn-
ing process. It is demonstrated in Igelnik and Pao (1995)
that if the number of hidden layer neurons kc is sufficiently
large, the NN approximation error εc can be made arbitrar-
ily small.

For the critic NN, its output can be expressed as

V̂ (x̂) = ŴT
c σc

(
V T

c x̂
) = ŴT

c σc(z), (35)

where Ŵc is the estimate of the ideal weights Wc. Since
the hidden layer weight matrix Vc is fixed, the activation

function vector σc(V T
c x̂) is denoted as σc(z) : R

n → R
kc

with z = V T
c x̂.

The derivative of the cost function V (x̂) with respect to
x̂ is

Vx̂ = ∇σ T
c Wc + ∇εc, (36)

where ∇σ T
c = Vc(∂σ T

c (z)/∂z) and ∇εc = ∂εc/∂x̂. Note that
the gradient of the reconstruction error ∇εc is also bounded.
In addition, the derivative of V̂ (x̂) with respect to x̂ is
derived as

V̂x̂ = ∇σ T
c Ŵc. (37)

Then, the approximate Hamiltonian function can be derived
as

H (x̂, u, Ŵc) = ŴT
c ∇σcF (x̂, u) + r(x̂, u) = ec. (38)

In addition, it is worth pointing out that, in the expression
of the error ec, the knowledge of the system dynamics is
required. To overcome this limitation, the NN observer ˙̂x,
developed in (9), is used to replace the system dynamics
F (x̂, u) in (38) to yield a modified expression of ec as

ec = ŴT
c ∇σc

˙̂x + r(x̂, u). (39)

Given any admissible control policy u, it is desired to select
Ŵc to minimise the squared residual error Ec(Ŵc) as

Ec(Ŵc) = 1

2
eT
c ec. (40)

The weight update law for the critic NN is selected as the
normalised gradient descent algorithm

˙̂
Wc = −α

ψ

(ψTψ + 1)2
(ψTŴc + r(x̂, u)), (41)

where α > 0 is the learning rate and ψ = ∇σ T
c

˙̂x. This is a
modified Levenberg–Marquardt algorithm where (ψTψ +
1)2 is used for normalisation instead of (ψTψ + 1). This is
required in the proofs, where one needs both appearances
of ψ/(ψTψ + 1) in (41) to be bounded (Ioannou & Fidan,
2006). Let the weight estimation error of critic NN be W̃c =
Wc − Ŵc.

Before proceeding, we present an assumption as fol-
lows.

Assumption 1:

(1) The NN approximate error and its gradient are
bounded on a compact set containing � so that
‖εc‖ < εcM and ‖∇εc‖ < εdM.
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1560 D. Liu et al.

(2) The NN activation function and its gradient are
bounded such that
‖σ c‖ < σ cM and ‖∇σ c‖ < σ dM.

Based on Vamvoudakis and Lewis (2010), these assump-
tions are standard. Assumption 1(2) is satisfied, e.g., by sig-
moids, tanh, and other standard NN activation functions.

By (29) and (34), we obtain

0 = r(x̂, u) + WT
c ∇σc

˙̂x − ϑ, (42)

where ϑ = −∇εc
˙̂x is the residual error due to the NN ap-

proximation.
Substituting (42) into (41) and using the notation

ψ1 = ψ/(ψTψ + 1), ψ2 = ψTψ + 1, (43)

we can obtain the dynamics of the critic NN weight estima-
tion error as

˙̃Wc = −αψ1ψ
T
1 W̃c + αψ1

ϑ

ψ2
. (44)

From the form of ψ1, there exists a positive constant
ψ1M > 1 such that ‖ψ1‖ < ψ1M. In addition, it is im-
portant to note that the persistence excitation condition is
required for tuning critic NN. In order to satisfy the per-
sistent excitation condition, probing noise is added to the
control input (Vamvoudakis & Lewis 2010). Furthermore,
the persistent excitation condition ensures ‖ψ1‖ ≥ ψ1m,
with ψ1m being a positive constant.

Next, by using (32) and (36), the corresponding feed-
back control u is given by

u = −1

2
R−1

(
∂F (x, u)

∂u

)T

(∇σ T
c Wc + ∇εc). (45)

The approximate expression of u can be developed as

û = −1

2
R−1

(
∂F̂ (x̂, u)

∂u

)T

∇σ T
c Ŵc. (46)

Additionally, by (45), it is important to note that the
term ∂F(x, u)/∂u is required for computing the control u.
However, for unknown nonlinear systems, this term cannot
be obtained directly. In this paper, using the observer NN,
its estimates can be obtained by

∂F̂ (x̂, u)

∂u
= ∂Ĝ(x̂, u)

∂u
= ∂Ŵσ (V̂ ˆ̄x)

∂u

= Ŵ
∂σ (V̂ ˆ̄x)

∂V̂ ˆ̄x
V̂

∂ ˆ̄x

∂u
. (47)

Thus, it is believed that ∂F̂ (x̂, u)/∂u can be obtained by
the backpropagation from the outputs of the observer NN
to its input u.

In the following, the stability analysis will be per-
formed. For the design of the NN-observer-based control
system, it seems natural to take a Lyapunov function candi-
date that consists of a combination of the Lyapunov func-
tions for the NN observer and the controller. The following
theorem shows the stability of the whole system.

Theorem 4.1: Consider the NN observer system (9) and
the feedback control provided by (45). Let weight tuning
laws for the observer and the controller be provided by

˙̂
W = −η1(ỹTCA−1

c )Tσ T(V̂ ˆ̄x) − θ1‖ỹ‖Ŵ
˙̂
V = −η2(ỹTCA−1

c Ŵ (I − 
(V̂ ˆ̄x)))TsgnT( ˆ̄x) − θ2‖ỹ‖V̂
(48)

and

˙̂
Wc = −α

ψ1

ψTψ + 1
(ψTŴ + r(x̂, u)), (49)

then all the signals x, x̃, W̃ , Ṽ , and W̃c in the NN-observer-
based control system are UUB.

Proof: Choose the following Lyapunov function candi-
date:

J (t) = Jo(t) + Jc(t), (50)

where Jo is defined as in (14) and Jc is given by

Jc = 1

2α
tr
{
W̃T

c W̃c

} + α(xTx + γV (x)) (51)

with γ > 0. The time derivative of Jc is derived as

J̇c = J̇c1 + J̇c2, (52)

where

J̇c1 = 1

α
tr{W̃T

c
˙̃Wc} = 1

α
tr

{
W̃T

c

(
−αψ1ψ

T
1 W̃c + αψ1

ϑ

ψ2

)}

= 1

α
tr

{
−αW̃T

c ψ1ψ
T
1 W̃c + 1

2

(
2αW̃T

c ψ1
ϑ

ψ2

)}

≤ −ψ2
1 ‖W̃c‖2 + 1

2α
(α2ψ2

1 ‖W̃c‖2 + ϑ2)

≤ −
(
ψ1m − α

2
ψ1M

)
‖W̃c‖2 + 1

2α
ϑ2, (53)

J̇c2 = 2αxTẋ + αγ (−xTQcx − uTRu)

= 2αxT(Ax + Wσ (V x̄) + ε) + αγ (−xTQcx − uTRu)

≤ α(2‖A‖ + 2)‖x‖2 + α‖Wσ (V x̄)‖2 + ‖ε‖2

−αγλmin(Qc)‖x‖2 − αγλmin(R)‖u‖2
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≤ α
(
2‖A‖ + 2 − γ λmin(Qc)

)‖x‖2 − αγλmin(R)‖u‖2

+αW 2
Mσ 2

M + ε2
M. (54)

Thus, we have

J̇c ≤ −
(
ψ1m − α

2
ψ1M

)
‖W̃c‖2

−α
(− 2‖A‖ − 2 + γ λmin(Qc)

)‖x‖2

−αγλmin(R)‖u‖2 + 1

2α
ϑ2 + αW 2

Mσ 2
M + ε2

M. (55)

Note that, according to Assumption 1, it is assumed that
the gradients of the critic NN approximation error and the
activation function vector are upper bounded, i.e., ∇εc ≤
εdM, ∇σ c ≤ σ dM, and the residual error is upper bounded,
i.e., ϑ ≤ ϑM. Hence, we have

J̇c ≤ −
(
ψ1m − α

2
ψ1M

)
‖W̃c‖2

−α
(− 2‖A‖ − 2 + γ λmin(Qc)

)‖x‖2

−αγλmin(R)‖u‖2 + DM, (56)

where

DM = 1

2α
ϑ2

M + αW 2
Mσ 2

M + ε2
M. (57)

Then, based on (27) and (55), combining Jo(t) and Jc(t),
J̇ (t) becomes

J̇ (t) ≤ −1

2
λmin(�)‖x̃‖2 + ‖x̃‖(‖P ‖ω̄ + (

θ1‖C‖ − K2
1

)
K2

2

+ (θ2‖C‖ − 1)K2
3

) −
(
ψ1m − α

2
ψ1M

)
‖W̃c‖2

−α
(− 2‖A‖ − 2 + γ λmin(Qc)

)‖x‖2

−αγλmin(R)‖u‖2 + DM. (58)

Therefore, if θ1, θ2, γ , and α are selected to satisfy

θ1 ≥ K2
1 /‖C‖, θ2 ≥ 1/‖C‖,

γ >
2‖A‖ + 2

λmin(Qc)
, α <

2ψ1m

ψ1M

,
(59)

and given that the inequalities

‖x̃‖ >
2
(‖P ‖ω̄ + (

θ1‖C‖ − K2
1

)
K2

2 + (θ2‖C‖ − 1) K2
3

)
λmin(�)

‖W̃c‖ >

√
DM

ψ1m − α
2 ψ1M

(60)

hold, then J̇ (t) < 0. Hence, using Lyapunov theory (Lewis
et al., 1999), it can be concluded that the observer error x̃,

the state x, and the NN weight estimation errors W̃ , Ṽ , and
W̃c are UUB in the NN-observer-based control system. �

Remark 3: It should be noted that in (59) and (60), the
constraints for θ1, θ2, and x̃ are set the same as the NN
observer designed earlier. In fact, a nonlinear separation
principle is not valid. However, for the proof of the NN-
observer-based control system, the closed-loop dynamics
incorporates the observer dynamics, then we can develop
simultaneous weight tuning algorithms for the NN observer
and the neuro-controller.

5. Simulation study

In this section, two examples are provided to demonstrate
the effectiveness of the NN-observer-based optimal control
scheme developed in this paper.

5.1. Example 1

Consider the affine nonlinear continuous-time system de-
scribed by

ẋ1 = x2

ẋ2 = x3

ẋ3 = −0.5x2 − 0.5x3(1 − (cos(2x1) + 2)2) + cos(2x1)u

+ 2u

y = x1 + x3, (61)

with initial conditions x1(0) = 1, x2(0) = −1, and x3(0) = 1.
The performance index function is defined by (2), where Q
and R are chosen as identity matrices of appropriate dimen-
sions. It is assumed that the system dynamics are unknown,
the system states are not available for measurements, and
only the input and output of the system are measurable.

During the design process, the following statements
are need. In Bernard (1970), the square matrix A is called
Hurwitz matrix if every eigenvalue of A has strictly negative
real part, i.e., Re[A] < 0 for each eigenvalue. With regard
to observable (Dorf, 1991; Singh, 1975), a system is com-
pletely observable if and only if there exists a finite time T
such that the initial state x(0) can be determined from the
observation history y(t) given the control u(t). Here, the sys-
tem is observable when the determinant of the observabil-
ity matrix Po is nonzero, where Po = [CCA . . . CAn−1]T

which is an n × n matrix; that is, if the row rank of the
observability matrix Po is equal to n, then the system is
observable (Dorf, 1991).

At first, an NN observer is established to estimate sys-
tem states. For ensuring that A is Hurwitz matrix, the pair
(C, A) is observable and A − LC is Hurwitz matrix, we
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select

A =
⎡
⎣ 0 1 0

0 0 1
−12 −16 −7

⎤
⎦ , L =

⎡
⎣ 28

−30
15

⎤
⎦ . (62)

The observer NN is a three-layer NN with one hidden layer
containing eight neurons. The input layer involves four neu-
rons and the output layer contains three neurons. The activa-
tion function σ (·) is selected as hyperbolic tangent function
tanh (·). Let the learning rates be η1 = η2 = 100 and the
design parameters be θ1 = θ2 = 1.5. Additionally, the initial
weights of W and V are all set to be random within [0, 0.2].
Then, according to Figure 1, we can complete the design of
the NN observer for system (61).

Then, based on the observed states, a feedforward
neuro-controller is constructed via the ADP method to ob-
tain the optimal control of the system. The basic idea of
ADP is to obtain the nearly optimal control by constructing
a critic NN to approximate the cost function. In the design,
for both simplicity of learning and efficiency of approx-
imation, based on Igelnik and Pao (1995), the activation
functions of the critic NN are chosen from the fourth-order
series expansion of the value function. Only polynomial
terms of even order are considered, therefore,

σc = [
x2

1 , x1x2, x1x3, x
2
2 , x2x3, x

2
3 , x4

1 , x4
2 , x4

3 , x3
1x2, x

3
1x3,

x3
2x1, x

3
2x3, x

3
3x1, x

3
3x2, x

2
1x2

2 , x2
2x2

3 , x
2
1x2

3 , x2
1x2x3,

x1x
2
2x3, x1x2x

2
3

]
.

Then, the critic NN weights are denoted as Ŵc =
[Ŵc1, Ŵc2, . . . , Ŵc21]T. The learning rate for the critic NN
is selected as α = 0.5. Additionally, in the beginning, the ini-
tial weights of Ŵc are set as [0.7, 0.7, . . . , 0.7]T. Moreover,
based on the critic NN and the observer NN, the control is
updated by calculating (46). In order to maintain the exci-
tation condition, probing noise is added to the control input
for the first 10 s as in Vamvoudakis and Lewis (2010). Note
that for initialisation of network weights, the ideal initial
values for weights, i.e., those weights will maximise the ef-
fectiveness and speed with which an NN learns. However,
the ideal initial weights cannot yet be determined theo-
retically (Tamura & Tateishi, 1997). Here, the best possible
NN parameters containing the initial weight are ascertained
by repeating experiment. Furthermore, for different initial
weight (Haykin, 1999), there exist some differences on the
effectiveness and speed with which an NN learns. More-
over, when the initialisation of weights is irrational, the
convergence results of NNs are probably bad. The struc-
ture diagram in Figure 2 illustrates the design of the NN-
observer-based controller using the ADP method.

Upon completion of simulation, the observed-state tra-
jectories are shown in Figures 3–5, where the correspond-
ing real-state trajectories are also plotted for assessing the

Figure 3. The trajectories of real state x1 and observed state xo1.

Figure 4. The trajectories of real state x2 and observed state xo2.

performance of the NN observer. Moreover, the errors be-
tween the observed and real states are shown in Figure 6.
From Figure 6, it is clear that the observed states xo1, xo2,
xo3, i.e., x̂1, x̂2, x̂3, quickly approach the real states. The
convergence curves of norms of the observer NN weights
and critic NN weights are shown in Figure 7. Figures 8

Figure 5. The trajectories of real state x3 and observed state xo3.
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Figure 6. The NN observer errors eo1, eo2, and eo3.

Figure 7. The norms of observer NN and critic NN weights ‖W‖,
‖V‖, ‖Wc‖.

and 9 depict the system output trajectory y and the nearly
optimal control signal u, respectively. It can be seen from
Figures 8 and 9 that proposed NN-observer-based optimal
controller yields very good control effect.

Figure 8. The system output y.

Figure 9. The control input u.

Additionally, it is significant to state that based on Dorf
(1991), only the real parts of all eigenvalues of (A − LC) are
negative, x̃ can be attenuated to zero, and x̂ approximates
the actual state x. Moreover, the rate of state approxima-
tion depends mainly on the choice of L and the eigenvalue
assignment of (A − LC). In simulation, we select A and L
by repetitious experiments for yielding better performance
of the whole system which contains the NN observer and
the neuro-controller. From Figures 3–5, we can find that the
observed states xo1, xo2, and xo3 approach the real states at
different rates. This is mainly due to the difference of the
negative real parts of eigenvalues of (A − LC).

5.2. Example 2

Consider the nonaffine nonlinear continuous-time system

ẋ1 = −x1 + x2,

ẋ2 = −x1 − (1 − sin2(x1))x2 + sin(x1)u + 0.1u2,

y = x1, (63)

with initial conditions x1(0) = 1 and x2(0) = −0.5. The
performance index function is also defined by (2), where Q
and R are chosen as identity matrices of appropriate dimen-
sions. It is assumed that the system dynamics are unknown,
the system states are not available for measurements, and
only the input and output of the system are measurable.

In order to estimate the system states, an NN observer
is set up and the corresponding parameters are chosen as

A =
[

0 1
−6 −5

]
, L =

[
10
−2

]
. (64)

The observer NN is a three-layer NN with one hidden layer
containing eight neurons. The input layer involves three
neurons and the output layer contains two neurons. The
activation function σ (·), the learning rates η1, η2, and the
design parameters θ1, θ2 are set the same as Example 1.
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Figure 10. The trajectories of real state x1 and observed state
xo1.

The initial weights of W and V are all set to be random
within [0.5, 1]. From Figures 10 and 11, it is clear that the
observed states xo1, xo2, i.e., x̂1, x̂2, quickly approach the
real states.

Then, based on the observed states, similar to Example
1, a critic NN is constructed to obtain the nearly optimal
control. The activation functions of the critic NN are cho-
sen from the sixth-order series expansion of the value func-
tion. Only polynomial terms of even order are considered,
therefore,

σc = [
x2

1 , x1x2, x
2
2 , x4

1 , x3
1x2, x

2
1x2

2 , x1x
3
2 , x4

2 , x6
1 , x5

1x2,

x4
1x

2
2 , x3

1x3
2 , x2

1x4
2 , x1x

5
2 , x

6
2

]
.

The corresponding parameters are set the same as Exam-
ple 1. Additionally, the initial weights of Ŵc are set as
[1, 1, . . . , 1]T. Moreover, in order to maintain the excita-
tion condition, probing noise is added to the control input
for the first 10 s as in Vamvoudakis and Lewis (2010).

Figure 11. The trajectories of real state x2 and observed state
xo2.

Figure 12. The system output y.

Figure 13. The control input u.

After simulation, the observed-state trajectories are
shown in Figures 10 and 11, where the corresponding real-
state trajectories are also plotted for assessing the perfor-
mance of the NN observer. Figures 12 and 13 depict the
system output trajectory y and the nearly optimal control
signal u, respectively. It can be seen from Figures 12 and 13
that the proposed NN-observer-based optimal controller is
valid.

6. Conclusion

In this paper, we develop an observer-based optimal control
scheme for unknown nonlinear continuous-time systems.
An NN observer is designed to estimate the system states.
Then, based on the observed states, the feedforward neuro-
controller is developed based on the ADP method. In the
implementation of the scheme, two NN structures are used:
a three-layer feedforward NN is used to construct the NN
observer which can be applied to systems with higher de-
grees of nonlinearity and without a priori knowledge of the
system dynamics, and a critic NN is employed to approx-
imate the value function. Moreover, the UUB stability of
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the NN-observer-based control system is proved. The sim-
ulation results have confirmed the validity of the proposed
observer-based optimal control scheme based on ADP.
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