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Abstract This paper develops an online algorithm based

on policy iteration for optimal control with infinite horizon

cost for continuous-time nonlinear systems. In the present

method, a discounted value function is employed, which is

considered to be a more general case for optimal control

problems. Meanwhile, without knowledge of the internal

system dynamics, the algorithm can converge uniformly

online to the optimal control, which is the solution of the

modified Hamilton–Jacobi–Bellman equation. By means of

two neural networks, the algorithm is able to find suitable

approximations of both the optimal control and the optimal

cost. The uniform convergence to the optimal control is

shown, guaranteeing the stability of the nonlinear system.

A simulation example is provided to illustrate the effec-

tiveness and applicability of the present approach.
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1 Introduction

Optimal control has drawn considerable attention since it

was formally developed about five decades ago by

Pontryagin [1] and Bellman [2]. Nowadays, with the

development of the theory, optimal control has been one of

the fundamental principles of modern control systems

design. From mathematical perspectives, the solutions of

control problems can be obtained by solving the Hamilton–

Jacobi–Bellman (HJB) equation, which guarantees the

sufficient conditions for existence of optimality [3]. For

linear dynamic systems and quadratic costs, the HJB

equation reduces to the Riccati equation, which can be

accurately solved by analytical or numerical methods [4–

6]. However, in the case of continuous-time (CT) nonlinear

systems, the HJB equation is actually a nonlinear partial

differential equation, which is extremely intractable to

solve by analytical approaches. Consequently, a huge

number of significant efforts [7–10] have been made to

develop algorithms which approximately solve this type of

equations. Furthermore, large amounts of important mea-

sures to deal with discrete-time (DT) HJB equations [11–

15] have also been taken.

Among the methods involved in computational intelli-

gence techniques, there are two approaches known as value

iteration (VI) [11] and policy iteration (PI) [16]. The main

difference between PI and VI is that PI requires a stabi-

lizing initial policy while VI does not, but VI cannot

guarantee the stability of control policies derived during

iteration at each step. In [17, 18], both of the authors

proposed an online PI algorithm for CT nonlinear systems

which converges to the optimal control. However, in [17],

only partial knowledge of the nonlinear system was

required. After that, Lee et al. [19] developed an online

algorithm based on generalized VI technique for uncertain

CT linear systems with the performance index involving a

discount factor.

Motivated by the above work, in this paper, we inves-

tigate an online approximate optimal control based on PI
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for partially unknown CT nonlinear systems with the

infinite horizon cost involving a discount factor. As we

know, for DT nonlinear systems, there is no distinct dif-

ference for HJB equations [14, 15], whether the discount

factor is involved in the performance index or not.

However, there are distinctly different characteristics

between the present HJB equation (we call it the modified

HJB equation in this paper) and the classical HJB equa-

tion for CT nonlinear systems. To the best of our

knowledge, the discount factor, which was generally set-

ting in optimal control problems, was seldom considered

for CT nonlinear dynamic systems. Moreover, there is no

strict proof of the convergence to the optimal control

which is the solution of the modified HJB equation.

Consequently, a significant difference between [9, 17–19]

and the present investigation is that, in our case, the

convergence to the optimal control with the infinite

horizon cost involving a discount factor is explicitly

established. Meanwhile, we show that the performance of

the convergence to the optimal control is closely linked

with the discount factor in the simulation example. Fur-

thermore, this paper can be viewed as the generalized

form of the literatures [9, 13, 17, 18].

The rest of this paper is arranged as follows. Section 2

presents preliminaries of optimal control problems for

nonlinear systems. Section 3 gives an online algorithm

based on PI to solve the modified HJB equation, and shows

the convergence of the algorithm. Section 4 provides the

formulation of the algorithm by using neural networks

approximation. Section 5 presents a simulation example to

complete the theoretical discussions. Finally, in Sect. 6, the

paper is concluded with several remarks.

2 Preliminaries of optimal control problems

For purpose of the present paper, we consider a time-

invariant input affine plant of the form

_xðtÞ ¼ f ðxðtÞÞ þ gðxðtÞÞuðxðtÞÞ; xð0Þ ¼ x0; ð1Þ

where xðtÞ 2 R
n; f ðxÞ 2 R

n; gðxÞ 2 R
n�m and uðxÞ 2 R

m.

Assume that f(0) = 0 and f(x) ? g(x)u is Lipschitz con-

tinuous on a compact set X � R
n which contains the origin.

The nonlinear system is stabilizable on X, that is, there

exists a control policy u(t) such that the given system is

asymptotically stable on X.

Definition 1 (Discount factor for CT systems [20]) Let,

k[ 0 and r(x,u) C 0. If the performance index for a CT

system _x ¼ f ðx; uÞ has the form

Vðxð0ÞÞ ¼
Z1

0

eksrðxðsÞ; uðsÞÞds;

then k is the discount factor, and V(x) is the discounted

value function for the CT system.

In this paper, a discounted value function for system (1)

is described by

VðxðtÞÞ ¼
Z1

t

eaðs�tÞrðxðsÞ; uðsÞÞds; ðs� tÞ; ð2Þ

where a[ 0; rðx; uÞ ¼ QðxÞ þ uTRu (T is the transposi-

tion symbol), and Q(x) is positive definite, that is, for V
x = 0, Q(x) [ 0 and x = 0, Q(x) = 0. Furthermore, R is

a symmetric positive definite matrix.

Definition 2 (Admissible control [8]) A control uðxÞ:
R

n ! R
m is defined to be admissible with respect to (2) on

X, written as uðxÞ 2AðXÞ, if u(x) is continuous on

X; uð0Þ ¼ 0; uðxÞ stabilizes system (1) on X and V(x0) is

finite for every x 2 X.

Given a control uðxÞ 2AðXÞ, if the associated value

function VðxÞ 2 C1ðXÞ, then its infinitesimal version is

ðVxÞTðf ðxÞ þ gðxÞuðxÞÞ þ aVðxÞ þ rðx; uðxÞÞ ¼ 0;

Vð0Þ ¼ 0;
ð3Þ

where Vx denotes the partial derivative of the value func-

tion V(x(t)) with respect to x. Actually, (3) is the general-

ized Hamilton–Jacobi–Bellman (GHJB) equation for the

nonlinear system [8].

Define the pre-Hamilton function for the control

uðxÞ 2AðXÞ and the associated value function V(x) by

Hðx;Vx; uÞ ¼ ðVxÞTðf ðxÞ þ gðxÞuðxÞÞ
þ aVðxÞ þ rðx; uðxÞÞ:

Then, the optimal cost V*(x) is obtained by solving the HJB

equation that

min
uðxÞ2AðXÞ

Hðx;V�x ; uÞ ¼ 0: ð4Þ

Suppose that the minimum value on the left-hand side of

the Eq. (4) exists and is unique. Then, the optimal control

for system (1) with the performance index (2) is

u�ðxÞ ¼ �1

2
R�1gTðxÞV�x : ð5Þ

Substituting (5) into (3), we derive the modified HJB

equation as

ðV�x Þ
T
f ðxÞ þ aV�ðxÞ þ QðxÞ

� 1

4
ðV�x Þ

T
gðxÞR�1gTðxÞV�x ¼ 0;

V�ð0Þ ¼ 0:

ð6Þ

Remark 1 From (6), one shall note that there is a
V*(x) involved in the HJB equation. To solve (6), we need
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the knowledge of both a V* and Vx
*. However, this is quite

different from the form appeared in classic literatures [7–9].

Consequently, we call (6) the modified HJB equation.

3 Policy iteration algorithm for solving optimal control

problems

The purpose of this section is devoted to present an online

iterative algorithm for solving optimal control problems.

And the convergence of the algorithm to the optimal con-

trol is developed.

(a) Given an initial control uðiÞðxÞ 2AðXÞ, solve the

value function V(i)(x) by

V ðiÞðxðtÞÞ ¼
ZtþT

t

eaðs�tÞrðxðsÞ; uðiÞðsÞÞds

þ eaT VðiÞðxðt þ TÞÞ;
V ðiÞð0Þ ¼ 0:

ð7Þ

(b) Update the control policy via

uðiþ1ÞðxÞ ¼ min
u2AðXÞ

Hðx;V ðiÞx ; uÞ

¼ �1

2
R�1gTðxÞV ðiÞx :

ð8Þ

From (7) and (8), one shall notice that the iteration

algorithm can solve the optimal control problem without

knowledge of the internal dynamics of the nonlinear system,

that is, the knowledge of f(x) is not required. This online

policy iteration algorithm was first proposed in [17]. In this

paper, we apply this method to investigate CT nonlinear

systems with a discount factor in the value function.

In fact, (7) can be viewed as the GHJB equation for the

nonlinear system. For convenience, we denote it as follows:

GHJBðV ðiÞ; uðiÞÞ ¼
ZtþT

t

eaðs�tÞrðxðsÞ; uðiÞðsÞÞds

þ eaT VðiÞðxðt þ TÞÞ � VðiÞðxðtÞÞ
¼ 0;

V ðiÞð0Þ ¼ 0:

ð9Þ

Prior to showing the convergence of the iteration algo-

rithm, we need to establish the following lemma for our

further discussion.

Lemma 1 Assume that uðiÞðxÞ 2AðXÞ; then,V(i)(x) is the

unique solution of (9) if and only ifV(i)(x) is the only solution of

ðVðiÞx Þ
Tðf ðxÞ þ gðxÞuðiÞðxÞÞ þ aV ðiÞðxÞ þ rðx; uðiÞðxÞÞ ¼ 0;

V ðiÞð0Þ ¼ 0: ð10Þ

Proof We divide the proof into two parts: (i) we show the

solution of (9) is equivalent to the solution of (10); (ii) we

show that there exists a unique solution of (9).

(i) (Sufficiency) Since V(i)(x) is the solution of (9), we

have that

lim
T!0

1

T

ZtþT

t

eaðs�tÞrðxðsÞ; uðiÞðsÞÞds

¼ lim
T!0

1

T
V ðiÞðxðtÞÞ � eaT VðiÞðxðt þ TÞÞ
h i

¼ lim
T!0

1

T
V ðiÞðxðtÞÞ � V ðiÞðxðt þ TÞÞ
h i

þ lim
T!0

1� eaT

T
VðiÞðxðt þ TÞÞ:

That is,

rðx; uðiÞðxÞÞ ¼ � _V ðiÞðxðtÞÞ � aVðiÞðxðtÞÞ
¼ �ðV ðiÞx Þ

Tðf ðxÞ þ gðxÞuðiÞÞ � aV ðiÞðxÞ:

Accordingly, V(i)(x) is the solution of (10).

(Necessity) Suppose that V(i)(x) is the solution of

(10). Then, we get

�eatrðx; uðiÞðxÞÞ ¼ eat ðVðiÞx Þ
Tðf ðxÞ þ gðxÞuðiÞÞ

h

þaV ðiÞðxÞ
i

¼ dðeatV ðiÞxðtÞÞ
dt

:

ð11Þ

Integrating both sides of (11) over the time interval

[t, t ? T], we obtain that

�
ZtþT

t

eaðs�tÞrðxðsÞ; uðiÞðsÞÞds

¼ eaT V ðiÞðxðt þ TÞÞ � VðiÞðxðtÞÞ:

Consequently, V(i)(x) is the solution of (9).

(ii) In light of uðiÞðxÞ 2AðXÞ, we have that V ðiÞðxÞ
2 C1ðXÞ. Let, h(V(i), t) = a V(i)(x(t)) ? r(x(t), u(i)(t)).

Then, for 8V
ðiÞ
1 2 VðXÞ; V

ðiÞ
2 2 VðXÞ, we obtain that

jhðV ðiÞ1 ; tÞ � hðVðiÞ2 ; tÞj ¼ ajVðiÞ1 ðxðtÞÞ � V
ðiÞ
2 ðxðtÞÞj:

Obviously, h(V(i), t) satisfies the Lipschitz condition on

V ðiÞðXÞ � ½0;1Þ. By means of the theory of ordinary

differential equations (Picard theorem), we can derive

that (10) has the unique solution. Considering part (i),

there exists the unique solution of (9). h

Theorem 1 Let uðiÞðxÞ 2AðXÞand V ðiÞðxÞ 2 C1ðXÞ
satisfies GHJB(V(i), u(i)) = 0 with the boundary condition
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V(i)(0) = 0. Then, the control policy (8) is an admissible control

for the system (1) on X. Furthermore, if V(i?1)(x) is the unique

positive definite function such that GHJB(V(i?1), u(i?1)) = 0

with V(i?1)(0) = 0, then V*(x) B V(i?1)(x) B V(i)(x).

Proof We divide the proof into two parts. First, we show

that uðiþ1ÞðxÞ 2AðXÞ. Second, we show that the sequence

{V(i)(x)} is monotonically nonincreasing over the compact

set X, that is, V*(x) B V(i?1)(x) B V(i)(x).

(a) The proof for uðiþ1ÞðxÞ 2AðXÞ.
Observing the expression of u(i?1)(x) in (8) and

V ðiÞ 2 C1ðXÞ, we obtain that uðiþ1ÞðxÞ 2 CðXÞ.
In light of V(i)(x(t)) C 0 and V(i)(x(t)) = 0 , x(t) = 0,

we have that Vx
(i)|x=0 = 0. Hence, u(i?1)(0) = 0. Taking the

derivative of V(i)(x) along the trajectory of system

f(x) ? g(x)u(i?1), we get that

_V ðiÞðx; uðiþ1ÞÞ ¼ ðV ðiÞx Þ
T
f þ ðV ðiÞx Þ

T
guðiþ1Þ: ð12Þ

Since GHJB(V(i), u(i)) = 0, by using Lemma 1, we have that

ðVðiÞx Þ
T
f ¼ �ðV ðiÞx Þ

T
guðiÞ � aV ðiÞ � rðx; uðiÞÞ:

Therefore, (12) can be rewritten as

_V ðiÞðx; uðiþ1ÞÞ ¼ �ðVðiÞx Þ
T
guðiÞ þ ðV ðiÞx Þ

T
guðiþ1Þ

� aV ðiÞ � rðx; uðiÞÞ: ð13Þ

From (8) and (13), we obtain that

_V ðiÞðx; uðiþ1ÞÞ ¼ �aVðiÞ � QðxÞ � ðuðiÞÞTRuðiÞ
h

þ 2ðuðiþ1ÞÞTRðuðiþ1Þ � uðiÞÞ
i
: ð14Þ

Since R is a positive definite matrix, we can denote R ¼ KRK,

where K is an orthogonal symmetric matrix, and R is the

diagonal matrix with its values being the singular values of

R. Denote that R ¼ ðRkkÞ. Then, we have that

Rkk [ 0; k ¼ 1; 2; . . .; n. Moreover, change the coordinate

with uðiÞ ¼ K�1zðiÞ. Let,

£ ¼ 2ðuðiþ1ÞÞTRðuðiþ1Þ � uðiÞÞ þ ðuðiÞÞTRuðiÞ:

Then, we derive that

£ ¼ 2ðzðiþ1ÞÞTK�1ðKRKÞðK�1zðiþ1Þ � K�1zðiÞÞ
þ ðzðiÞÞTK�1ðKRKÞK�1zðiÞ

¼ 2ðzðiþ1ÞÞTRðzðiþ1Þ � zðiÞÞ þ ðzðiÞÞTRðzðiÞÞ

¼
Xm

k¼1

Rkk 2z
ðiþ1Þ
k ðzðiþ1Þ

k � z
ðiÞ
k Þ þ ðz

ðiÞ
k Þ

2
h i

¼
Xm

k¼1

Rkk ðzðiþ1Þ
k Þ2 þ ðzðiþ1Þ

k � z
ðiÞ
k Þ

2
h i

� 0:

ð15Þ

Noticing that aV(i)(x) [ 0 and Q(x) [ 0 for Vx = 0, by

means of (14) and (15), we obtain that _V ðiÞðx; uðiþ1ÞÞ\0.

Therefore, V(i)(x) is the Lyapunov function for u(i?1)(x) on

X. Hence, we derive that uðiþ1ÞðxÞ 2AðXÞ.
(b) The proof for V*(x) B V(i?1)(x) B V(i)(x).

Taking the derivative of V(i)(x) along the trajectory of

system f ? gu(i?1), we have that

V ðiþ1ÞðxðtÞÞ � VðiÞðxðtÞÞ

¼ �
Z1

t

dðVðiþ1Þ � V ðiÞÞ
dx

ðf þ guðiþ1ÞÞds: ð16Þ

Observing that GHJB(V(i), ui) = 0, GHJB(V(i?1), ui?1)

= 0, we obtain that

ðV ðiÞx Þ
T
f ¼ �ðVðiÞx Þ

T
guðiÞ � aV ðiÞ � rðx; uðiÞÞ; ð17Þ

ðV ðiþ1Þ
x ÞTf ¼ �ðV ðiþ1Þ

x ÞTguðiþ1Þ

� aVðiþ1Þ � rðx; uðiþ1ÞÞ:
ð18Þ

By virtue of (16)–(18), we derive that

V ðiþ1ÞðxðtÞÞ � V ðiÞðxðtÞÞ

¼
Z1

t

a½V ðiþ1ÞðxðsÞÞ�VðiÞðxðsÞÞ��RðuðsÞÞ
n o

ds;

ð19Þ

where

RðuÞ ¼ 2ðuðiþ1ÞÞTRðuðiþ1Þ � uðiÞÞ
þ ðuðiÞÞTRuðiÞ � ðuðiþ1ÞÞTRuðiþ1Þ:

By the same technique used in part (a), we can prove that

RðuðtÞÞ ¼
Xm

k¼1

Rkkðzðiþ1Þ
k � z

ðiÞ
k Þ

2� 0:

Let, F(t) = V(i?1)(x(t)) - V(i)(x(t)); then, (19) can be

rewritten as

FðtÞ ¼ a
Z1

t

FðsÞds�
Z1

t

RðuðsÞÞds: ð20Þ

Taking the derivative of both sides of (20) with respect to t,

we get that

_FðtÞ þ aFðtÞ ¼ RðuðtÞÞ� 0: ð21Þ

Multiplying eat to both sides of (21), we can derive that

dðeatFðtÞÞ
dt

� 0: ð22Þ

Integrating both sides of (22) over the time interval ½t;1Þ,
and noticing that Fð1Þ ¼ 0, we obtain that F(t) B 0.

Therefore, V(i?1)(x(t)) B V(i)(x(t)). Furthermore, it can be

shown by contradiction that
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V�ðxðtÞÞ	Vðiþ1ÞðxðtÞÞ; 8 t� 0:

Let, f ðxÞ ¼ ðf 1ðxÞ; f 2ðxÞ; . . .; f nðxÞÞ 2 R
n, and define the

norm of the vector-valued function f(x) as kfk ¼
supx2X; 1	 k	 nfjf kðxÞjg.

Definition 3 (Uniform Convergence) A sequence of

vector-valued function of f mðxÞ 2 R
n is said to converge

uniformly to f(x) with the norm k � k on a set X if, for

8 e [ 0, there exists a positive N (depending only on e)
such that m [ N implies kf mðxÞ � f ðxÞk\e. For brief, we

write that, for m!1; f mðxÞ� f ðxÞ; 8 x 2 X.

Theorem 2 Given an initial control uð0ÞðxÞ 2AðXÞ, then

uðiÞðxÞ 2AðXÞ; 8 i� 0. Furthermore, for 8 e [ 0, there

exists i0 2 N such that i C i0 implies

sup
x2X
jV ðiÞðxÞ � V�ðxÞj\e; kuðiÞðxÞ � u�ðxÞk\e:

Proof By means of Theorem 1 and the method of

mathematical induction, we have that uðiÞðxÞ 2AðXÞ;
8 i� 0. Meanwhile, we obtain the decreasing sequence

V ð1ÞðxÞ�V ð2ÞðxÞ� � � � �V ðiþ1ÞðxÞ� � � � �V�ðxÞ:

Therefore, by employing the monotone convergence theorem

[21], we get that, for each fixed ~x 2 X, there exists

limi!1 V ðiÞð~xÞ ¼ infi2NfVðiÞð~xÞg. In view of infi2N
fV ðiÞð~xÞg ¼ V�ð~xÞ, we obtain limi!1 V ðiÞð~xÞ ¼ V�ð~xÞ.
Since X 
 R

n is a compact set, by virtue of Dini’s theorem,

we can derive that, for i!1,

V ðiÞðxÞ�V�ðxÞ; 8 x 2 X:

Observing that V ðiÞðxÞ 2 R and by the definition of the

norm k � k, we obtain that, for 8e [ 0, there exists i1 2 N

such that i C i1 implies

sup
x2X
jV ðiÞðxÞ � V�ðxÞj\e:

Meanwhile, it implies that the sequence of system trajectories

is uniformly convergent. Consequently, u(i) is also uniformly

convergent on X, that is, Vx
(i) is uniformly convergent on X.

Noticing that VðiÞðxÞ 2 C1ðXÞ, by employing the theorem

about the relationship between the uniform convergence and

differentiation [21], we derive that, for i!1;VðiÞx �V�x .

Therefore, for i??, there exists

uðiÞðxÞ� u�ðxÞ; 8 x 2 X:

In view of uðiÞðxÞ 2 R
n, we have that, for 8 e [ 0, there

exists i2 2 N such that i C i2 implies kuðiÞðxÞ � u�ðxÞk\e.
Let, i0 = max{i1,i2}. Accordingly, for 8 e [ 0, there exists

i0 2 N such that i C i0 implies

sup
x2X
jV ðiÞðxÞ � V�ðxÞj\e; kuðiÞðxÞ � u�ðxÞk\e:

From Theorem 2, one can draw the conclusion that the

proposed online policy iteration algorithm in (7) and (8)

shall converge to the solution of optimal control problems

(1) and (2). Therefore, in order to derive the optimal

control, one does not need to have the knowledge of f(x).

4 Neural network-based least-squares approximate

HJB solution

In this section, neural networks (NNs) are used to solve

approximately for the value function V(i)(x) with arbitrary

x 2 X in (7). It is well known that NNs are able to

approximate smooth time-invariant functions on given

compact sets [22]. Hence, one can approximate the value

function V(i)(x) on the compact set X by

V
ðiÞ
L ðxÞ ¼

XL

i¼1

xðiÞj rjðxÞ ¼ ðxðiÞL Þ
T
rLðxÞ; ð23Þ

where x
ðiÞ
L ¼ ½x

ðiÞ
1 ;x

ðiÞ
2 ; . . .;xðiÞL �

T
is the weight vector, L is

the number of neurons in the hidden layers, rLðxÞ ¼
½r1ðxÞ; r2ðxÞ; . . .; rLðxÞ�T is the vector activation function,

and rjðxÞ 2 C1ðXÞ; rjð0Þ ¼ 0. The set {rj(x)}1
L is often

selected to be linearly independent.

By replacing V(i)(x) with VL
(i)(x) in (7), we have that

ðxðiÞL Þ
T
rLðxðtÞÞ ¼

ZtþT

t

eaðs�tÞrðxðsÞ; uðiÞðsÞÞds

þ eaTðxðiÞL Þ
T
rLðxðt þ TÞÞ;

ð24Þ

and the residual error is

e
ðiÞ
L ðx; TÞ ¼

ZtþT

t

eaðs�tÞrðxðsÞ; uðiÞðsÞÞds

þ ðxðiÞL Þ
T

eaTrLðxðt þ TÞÞ � rLðxðtÞÞ
� �

:

ð25Þ

In order to derive the least-squares solution, the method

of weighted residual [23] is employed. The weight x
ðiÞ
L ðxÞ

is determined by projecting the residual error onto the term

de
ðiÞ
L ðx; TÞ=dx

ðiÞ
L to obtain

de
ðiÞ
L ðx; TÞ
dx
ðiÞ
L

; e
ðiÞ
L ðx; TÞ

* +

X

¼ 0; ð26Þ

where hf ; giX ¼
R

X fgTdx is the Lebesgue integral on X. Let

Nðx; TÞ ¼ eaTrLðxðt þ TÞÞ � rLðxðtÞÞ: ð27Þ
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From (25)–(27), we derive that

Nðx; TÞ;
ZtþT

t

eaðs�tÞrðxðsÞ; uðiÞðsÞÞds

* +

X

þ Nðx; TÞ;Nðx; TÞh iXx
ðiÞ
L ¼ 0:

ð28Þ

Lemma 2 If the set {rj(x)}1
Lis linearly independent, then

the following set

rrT
j ðf þ guÞ þ arj

n oL

1

is also linearly independent.

Proof If there exists a nonzero k ¼ ðk1; k2; . . .; kLÞT 2 RL,

such that

XL

j¼1

kj rrT
j ðf þ guÞ þ arj

h i
¼ 0;

, eatkT rrT
Lðf þ guÞ þ arL

� �
¼ 0;

ð29Þ

then along the trajectories x(t; x0, u), we have thatZ 1
t

easkT rrT
Lðf þ guÞ þ arL

� �
ds ¼ 0;

, kT

Z1

t

dðeasrLðxðsÞÞÞ
ds

ds ¼ 0:

ð30Þ

Observing that rLðxð1ÞÞ ¼ 0, by virtue of (30), we have that

kTrLðxÞ ¼ 0. Since the set rjðxÞ
� �L

1
is linearly independent,

one can conclude k ¼ 0, which contradicts k 6¼ 0. Therefore,

the set rrT
j ðf þ guÞ þ arj

n oL

1
is linearly independent. h

Lemma 3 Assume that uðxÞ 2AðXÞ. If the set {rj(x)}1
Lis

linearly independent, then A T [ 0 such that, for every

x 2 X n f0g; Njðx; TÞ ¼ eaTrjðxðt þ TÞÞ � rjðxðtÞÞ
� �L

1
is

also linearly independent.

Proof In view of uðxÞ 2AðXÞ, we can derive that the

vector field f ? gu is asymptotically stable. Then, along the

trajectories hðt; x0; uÞ; x0 2 X, we have that

Njðx; TÞ ¼
ZtþT

t

dðeaðs�tÞrjÞ
ds

ds

¼
ZtþT

t

eaðs�tÞ½arj þrrT
j ðf þ guÞ�

� ðhðt; x0; uÞÞds:

Now, assume that the lemma is not true. Then, there exists

a nonzero j 2 R
n, for VT [ 0, such that jTNðx; TÞ ¼ 0.

This implies that for Vx0, VT [ 0,

Z tþT

t

eaðs�tÞjT½arL þrrL
Tðf þ guÞ�ds ¼ 0;

) jT½arL þrrL
Tðf þ guÞ� ¼ 0;

which contradicts the linear independence of frrT
j

ðf þ guÞ þ arjgL
1.

By Lemma 3, we know that hNðx; TÞ;Nðx; TÞiX is

invertible. Accordingly, from (28), we can derive that

x
ðiÞ
L ¼ �hNðx; TÞ;Nðx; TÞi

�1
X �

Nðx; TÞ;
ZtþT

t

eaðs�tÞrðxðsÞ; uðiÞðsÞÞds

* +

X

:
ð31Þ

Since the weight x
ðiÞ
L is available, one can get the improved

control policy by

uðiþ1ÞðxÞ ¼ �1

2
R�1gTrrT

LðxÞx
ðiÞ
L : ð32Þ

And (32) can be viewed as the output of the action NN.

Therefore, (7) and (8) can be solved by using the critic NN

described by (23) and the action NN developed by (32),

respectively.

4.1 Algorithm based on NN approximation

Solving the integration in (31) is rather complicated, since

the evolution of the L2 inner product over X is required.

However, by means of the method in [9], the integral can

be well approximated by discretization. A mesh of points

of size of dx over the integration region is introduced on X.

Then, we can define

M ¼ Nðx; TÞjx1
� � � Nðx;TÞjxp

h iT

;

where Nðx; TÞ ¼ eaTrLðxðt þ TÞÞ � rLðxðtÞÞ, and

N ¼
ZtþT

t

eaðs�tÞrðxðsÞ; uðiÞðsÞÞdsjx1

2
4

� � �
ZtþT

t

eaðs�tÞrðxðsÞ; uðiÞðsÞÞdsjxp

3
5

T

;

where p represents the number of points in the mesh on X.

Reducing the size of the mesh, we obtain that

hNðx; TÞ;Nðx;TÞiX ¼ lim
kdxk!0

ðMTMÞdx;

Nðx; TÞ;
Z tþT

t

eaðs�tÞrðxðsÞ; uðiÞðsÞÞds

� �
X

¼ lim
kdxk!0

ðMTNÞdx:
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Therefore, (31) can be rewritten as

x
ðiÞ
L;p ¼ �ðMTMÞ�1ðMTNÞ: ð33Þ

5 Simulation study

The purpose of this section is to establish an example to

verify the theoretical results. Consider the affine CT non-

linear systems described by [17]

_x1 ¼ �x1 þ x2 þ 2x3
2; _x2 ¼ f ðxÞ þ gðxÞu; ð34Þ

where

f ðxÞ ¼ 1
2
ðx1 þ x2Þ þ 1

2
x2ð1þ 2x2

2Þ sin2ðx1Þ; gðxÞ ¼ sinðx1Þ.
The control objective is to regulate the system while

minimizing the quadratic functional of the states and the

control

VðxðtÞÞ ¼
Z1

t

eaðs�tÞðQðxðsÞÞ þ u2ðxðsÞÞÞds;

where Q(x) = x1
2 ? x2

2 ? 2x2
4. In order to find the optimal

control, we apply polynomials to approximate the cost

function as follows:

V
ðiÞ
8 ðx1; x2Þ ¼x1x2

1 þ x2x1x2 þ x3x2
2 þ x4x4

1

þ x5x3
1x2 þ x6x2

1x2
2 þ x7x1x3

2 þ x8x4
2:

The initial stabilizing control is uð0ÞðxÞ ¼ � sinðx1Þ
ð1:5x1 � 0:1x2

1x2 þ 6x3
2Þ, and the initial state is x0 ¼ ½1; 1�T.

The simulation was conducted by using data collected from

the system (34) on X ¼ ½�1; 1� � ½�1; 1� at T = 0.25 s.

Now, we provide the convergence of parameters by

decreasing the discount factor a. It is significant to note

that, though Theorem 2 guarantees the convergence to the

optimal control with a[ 0, the discount factor a cannot be

selected as a large number in this example. If a is selected

to be a large number, the result of simulation will become

rather oscillatory before it comes to convergence. To make

matter worse, it might sometimes turn out to be divergent

in finite time. Actually, in real control engineering, a
cannot be chosen very large. Hence, for convenience, we

select 0 \ a\ 1 in this example. When a = 0.4, by

employing the algorithm, the result of simulation is pre-

sented by Fig. 1. When a = 0.2, the result of simulation is

shown by Fig. 2. Though the discount factor is a 2 ð0; 1Þ,
we can let a! 0. If assuming that a = 0, we obtain Fig. 3,

which is similar with [17]. From Figs. 1, 2 and 3, we know

that it costs different time for the parameters of NNs to

converge to the coefficients of the value function. When

a = 0.4, the convergence of parameters needs about 25 s.

Meanwhile, there are several oscillations before the

parameters become convergent. When a = 0.2, the

0 5 10 15 20 25
−0.5

0

0.5

1

1.5

2

2.5

3
NN parameters

Time (s)

w1
w2
w3
w4
w5
w6
w7
w8

Fig. 1 The convergence of weight parameters, a = 0.4

0 5 10 15 20 25
−0.5

0

0.5

1

1.5

2

2.5

3
NN parameters

Time (s)

w1
w2
w3
w4
w5
w6
w7
w8

Fig. 2 The convergence of weight parameters, a = 0.2
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Fig. 3 The convergence of weight parameters, a = 0
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convergence of parameters needs about 20 s. Moreover,

there exist seldom oscillations before the parameters turn to

convergence. When a = 0, the convergence of parameters

needs about 10s. Furthermore, it turns out to be less

oscillations than Fig. 2 before the parameters of NNs

converging to the coefficients of the value function. From

the above analysis, one can come to the conclusion that,

when the discount factor is smaller, the rate for the

parameters of NNs converging to the coefficients of the

value function is higher, and the oscillation is less, and vice

versa. Hence, the discount factor a has a significant impact

on the performance of the convergence to the optimal cost

and the optimal control.

6 Conclusions

In this paper, we investigated the adaptive optimal control

problem for infinite horizon cost with a discount factor

involved. Without knowledge of the internal dynamics of

the nonlinear system and by employing PI, a suboptimal

control is obtained. And we find that the impact of the

discount factor for CT nonlinear systems is rather different

from its influence on DT nonlinear systems. For [14 and

15], there is no significant difference for DT nonlinear

systems whether the discount factor is involved in the

performance index or not. However, in this paper, not only

the HJB equation is modified, but also the convergence to

the optimal control has a close connection to the discount

factor. Recently, in [24], the discount factor for a DT linear

system was discussed, and it presented that the discount

factor could significantly alleviate the deleterious effects of

probing noise. Whether the discount factor for CT non-

linear systems has the same characteristic or better qualities

than DT systems, it is still unknown. These will be

investigated in our future work.
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