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Abstract In this paper, a new dual iterative adaptive

dynamic programming (ADP) algorithm is developed to

solve optimal control problems for a class of nonlinear

systems with time-delays in state and control variables. The

idea is to use the dynamic programming theory to solve the

expressions of the optimal performance index function and

control. Then, the dual iterative ADP algorithm is intro-

duced to obtain the optimal solutions iteratively, where in

each iteration, the performance index function and the

system states are both updated. Convergence analysis is

presented to prove the performance index function to reach

the optimum by the proposed method. Neural networks are

used to approximate the performance index function and

compute the optimal control policy, respectively, for

facilitating the implementation of the dual iterative ADP

algorithm. Simulation examples are given to demonstrate

the validity of the proposed optimal control scheme.

Keywords Adaptive dynamic programming �
Approximate dynamic programming � Adaptive critic

designs � Optimal control � Time-delay �
Nonlinear systems

1 Introduction

Strictly speaking, time-delays exist in most practical con-

trol systems, which mainly result from the time taken in

the online data acquisition of sensors, the time taken in the

processing of the sensory data, the time taken by the

actuator to produce the required control force, and so on.

Time-delays may result in degradation of the control effi-

ciency even instability of the control systems [21]. So,

there have been many studies on the control systems with

time-delays in various research fields such as power sys-

tems control, chemical process control, and networked

control [10–12, 15, 26, 28, 48]. The optimal control

problem with time-delays has been the key focus in the

control field in the last several decades [4, 25, 42]. As the

systems with time-delays are generally infinite-dimensional

systems [21], the optimal control problem with time-delays

generates some of the most challenging problems in control

engineering. Lots of analysis and applications are limited

to simple cases: linear systems with only state delays [5, 8],

or the linear systems with only control delays [4, 22]. For

nonlinear case, traditional method is to adopt fuzzy method

or robust method which transforms the nonlinear time-

delay system to a linear one [44, 48]. For the systems with

time-delays both in states and controls, the optimal con-

troller contains the delayed state and control information

which makes the analysis of the system very difficult. Till

now, it is still a open problem for the optimal control

problem for the system with time-delays both in states and

controls [25]. This motivates our research.

As is well known, dynamic programming is a very

useful tool in solving the optimal control problems. How-

ever, due to the ‘‘curse of dimensionality’’ [6], it is often

computationally untenable to run dynamic programming to

obtain the optimal solution. Although there are some

intelligent control methods to overcome the curse of

dimensionality [17–19, 30, 33, 41, 43], most of them are

only considered as the stability of the system.

The adaptive dynamic programming (ADP) algorithm

was proposed by [37, 39] as a way to solve optimal control

problems forward-in-time. In [38], ADP approaches were
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classified into four main schemes: heuristic dynamic pro-

gramming (HDP), dual heuristic dynamic programming

(DHP), action-dependent heuristic dynamic programming

(ADHDP), also known as Q-learning [35], and action-

dependent dual heuristic dynamic programming (ADDHP).

In [24], another two ADP schemes known as globalized-

DHP (GDHP) and ADGDHP were developed. In [23], a

convergent ADP algorithm was developed for stabilizing

the continuous-time nonlinear systems. In [45], a greedy

HDP iteration algorithm to solve the discrete-time Hamil-

ton–Jacobi–Bellman (HJB) equation of the optimal control

problem for general nonlinear discrete-time systems was

proposed, which does not require an initially stable policy.

It was proved in [3] that the greedy HDP iteration algo-

rithm is convergent. Though in recent years, ADP has been

further studied by many researchers [1, 2, 7, 9, 13, 16, 20,

31, 32, 34, 36, 40, 46], most of discussions are focus on the

optimal problems without time-delays. Only in [29, 47],

state delays were considered to obtain the optimal control

by ADP. To the best of our knowledge, there have been no

results discussing how to use ADP to solve the optimal

control problems for nonlinear systems with time-delays in

both state and control variables.

In this paper, it is the first time that the optimal control

problem for a class of nonlinear system with time-delays in

both state and control variables is solved by a dual iterative

ADP algorithm. The significance of the algorithm is that in

each iteration, the performance index function and the

iterative states both update according to the iterative con-

trol policy, where the infinite-dimensional controller is

effectively avoided. Next, it will show that the dual itera-

tive ADP algorithm can obtain the optimal control that

makes the performance index function converge to the

optimum. Furthermore, in order to facilitate the imple-

mentation of the dual iterative ADP algorithm, we show

how to introduce neural networks to obtain the iterative

performance index functions.

2 Problem statement

Basically, we consider the following discrete-time affine

nonlinear system with multiple time-delays in state and

control variables

xðk þ 1Þ ¼ f ðxðk � r0Þ; xðk � r1Þ; . . .; xðk � rmÞÞ
þ g0ðxðk � r0Þ; xðk � r1Þ; . . .; xðk � rmÞÞ
� uðk � s0Þ
þ g1ðxðk � r0Þ; xðk � r1Þ; . . .; xðk � rmÞÞ
� uðk � s1Þ
. . .
þ gnðxðk � r0Þ; xðk � r1Þ; . . .; xðk � rmÞÞ
� uðk � snÞ ð1Þ

where r0; . . .; rm are the state delays and s0 ¼ 0; s1; . . .; sn

are the control delays. Set r0 = 0 and 8ri; i ¼ 1; . . .;m, is

positive integer number. Set s0 = 0 and 8si; i ¼ 1; 2; . . .; n,

is also positive integer number. Without loss of generality,

let r0� r1� � � � � rm and s0� s1� � � � � sn. Here,

xðkÞ 2 <n is the state variable and uðkÞ 2 <m denotes the

control variable. The initial condition is given by xðsÞ ¼
/ðsÞ; s 2 f�rm;�rm þ 1; . . .;�1; 0g and u(r) = 0 for

r \ 0. Assume that f ; g0; g1; . . .; gn are all Lipschitz

continuous functions and the system (1) is controllable in

<n. In this paper, we mainly discuss how to design an

optimal feedback controller for discrete-time nonlinear

systems with multiple time-delays (1). Therefore, it is

desired to find a sequence of control uk ¼ fuðkÞ; uðk þ
1Þ; . . .g to minimize the following generalized quadratic

performance index function

Vðxð0Þ; u0Þ ¼
X1

k¼0

XTðkÞQXðkÞ þ UTðkÞRUðkÞ
� �

ð2Þ

where XðkÞ ¼ ½xTðk � r0Þ� � � xTðk � rmÞ�T and UðkÞ ¼ ½uT

ðk � s0Þ� � � uTðk � snÞ�T . Let Q [ 0 and R [ 0 be both

positive definite matrices with suitable dimensions. Let

l(X(k), U(k)) = XT(k)QX(k) ? UT(k)RU(k) be the utility

function.

Let V�ðx�ðkÞÞ denote the optimal performance index

function which satisfies

V�ðx�ðkÞÞ ¼ min
uk

VðxðkÞ; ukÞ ¼ Vðx�ðkÞ; u�kÞ ð3Þ

where u�k is the optimal control sequence and x�ðkÞ is the

resultant optimal state at time k under the optimal control

sequence u�k .

For the convenience, we let

FðXðkÞÞ ¼ f ðxðk � r0Þ; . . .; xðk � rmÞÞ ð4Þ

and

GðXðkÞÞ ¼ g0ðxðk � r0Þ; . . .; xðk � rmÞÞ;½
g1ðxðk � r0Þ; . . .; xðk � rmÞÞ;
. . .;

gnðxðk � r0Þ; . . .; xðk � rmÞÞ�;

ð5Þ

and then (1) can be expressed as

xðk þ 1Þ ¼ FðXðkÞÞ þ GðXðkÞÞUðkÞ: ð6Þ

According to the Bellman’s optimal principle, we can

get the following HJB equation

V�ðx�ðkÞÞ ¼ min
UðkÞ

XTðkÞQXðkÞ þ UTðkÞRUðkÞ
�

þV�ðxðk þ 1ÞÞg
¼ X�TðkÞQX�ðkÞ þ U�TðkÞRU�ðkÞ
þ V�ðx�ðk þ 1ÞÞ

ð7Þ
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where U�ðkÞ ¼ ½u�ðk � s0Þu�ðk � s1Þ� � � u�ðk � snÞ�T and

X�ðkÞ ¼ ½x�ðk � r0Þx�ðk � r1Þ� � � x�ðk � rmÞ�T is the

resultant optimal state sequence of U�ðkÞ.
By a sequence of transformations, we can see that the

term with time-delays has been avoided in the HJB equa-

tion (7). But, it should be pointed out that (7) is different

from the HJB equation of delay free systems. One obvious

difference is that in (7), for V k, we need a sequence of

optimal control, i.e., fu�ðk � snÞ; u�ðk � sn�1Þ; . . .; u�

ðk � s1Þ; u�ðkÞg, to obtain the optimal performance index

function V*(x*(k)). While for the HJB equation of system

without time-delays, we only need a optimal control at time

k, i.e., u(k), to obtain the optimal performance index

function. Second, the optimal controls in the sequence

fu�ðk � snÞ; u�ðk � sn�1Þ; . . .; u�ðk � s1Þ; u�ðkÞg of U*(k)

couple with each other, while for the HJB equation of

system without time-delays, the optimal control of current

time u*(k) does not couple with the one of previous time.

So, we say that time-delays do not be avoided in the HJB

equation (7) essentially. The HJB equation with time-

delays is more complex than the one without time-delays,

and it is nearly impossible to obtain the optimal control

sequence fu�ðk � snÞ; u�ðk � sn�1Þ; . . .; u�ðk � s1Þ; u�ðkÞg
by solving (7) directly. To overcome the difficulties, a new

dual iterative ADP algorithm is developed in this paper.

3 Dual iterative adaptive dynamic programming

algorithm

In this section, dual iterative ADP approach is developed to

obtain the optimal control for nonlinear system with time-

delays. The goal of the proposed dual iterative ADP

method is to use adaptive critic design technique to adap-

tively construct an optimal control sequence u�k , which

takes an arbitrary initial state x(0) to the singularity 0 and

simultaneously makes the performance index function

reach the optimum V�ðx�ðkÞÞ with convergence proofs.

3.1 Derivation of the iterative ADP algorithm

By solving the HJB equation (7), we can obtain the optimal

control sequence U*(k) expressed as

U�ðkÞ ¼ arg min
UðkÞ

XTðkÞQXðkÞ þ UTðkÞRUðkÞ
�

þV�ðXðk þ 1ÞÞg

¼ � 1

2
R�1GTðX�ðkÞÞ oV�ðx�ðk þ 1ÞÞ

oX�ðk þ 1Þ :

ð8Þ

As the optimal performance index function V*(x*(k)) is

unknown, it is nearly impossible to obtain the optimal

control sequence from (8). So, an iterative index i is

introduced in the algorithm.

In the dual iterative ADP algorithm, the iterative per-

formance index functions are updated by recurrent itera-

tion. The iterative control policies and the corresponding

state are also updated by recurrent iteration, with the iter-

ation number i increasing from 0 to 1. First, set the iter-

ation index i = 0. We start with initial performance index

V ð0Þð�Þ ¼ 0. Then, for Vk C 0, the iterative control

sequence U(0)(k) can be computed as follows:

Uð0ÞðkÞ ¼ arg min
UðkÞ

XTðkÞQXðkÞ þ UTðkÞRUðkÞ
� �

ð9Þ

Then we update the performance index function as

V ð1Þðxð0ÞðkÞÞ¼min
UðkÞ
fXTðkÞQXðkÞþUTðkÞRUðkÞg

¼Xð0ÞTðkÞQXð0ÞðkÞþUð0ÞTðkÞRUð0ÞðkÞ ð10Þ

where Uð0ÞðkÞ ¼ ½uð0ÞTðk � s0Þ; . . .; uð0ÞTðk � snÞ�T and

Xð0ÞðkÞ ¼ ½xð0ÞTðk � r0Þ; . . .; xð0ÞTðk � rmÞ�T .

We can see that before we obtain the iterative perfor-

mance index function V(1)(x(0)(k)), we can obtain

U(0)(k) from (9). It should be noticed that U(0)(k) contains a

sequence of control fuð0Þðk � s0Þ; uð0Þðk � s1Þ; . . .; uð0Þðk �
snÞg which couples with each other. So, for V k, we cannot

obtain U(0)(k) directly by solving (9). To overcome this

difficulty, we start the algorithm at j = 0. Then, we

have uðj� s1Þ ¼ uðk � sjÞ ¼ � � � ¼ uðj� snÞ ¼ 0 and

xðj� r1Þ ¼ /ðj� r1Þ; . . .; xðj� rmÞ ¼ /ðj� rmÞ. Then,

we can easily obtain U(0)(0) and V(1)(x(0)(0)) from (9) and

(10), respectively, and then, we can obtain x(0)(1) from (6).

Then, start the algorithm at j = 1. As U(0)(0) and x(0)(1)

both are known, we then can obtain U(0)(1) and V(1)(x(0)(1))

from (9) and (10), respectively. Then, after running the

algorithm at j ¼ 0; 1; . . .; k � 1, we can obtain a iterative

control sequence expressed as fuð0Þð0Þ; uð0Þð1Þ; . . .; uð0Þ

ðk � 1Þg and a iterative state sequence expressed as

fxð0Þð0Þ; xð0Þð1Þ; . . .; xð0ÞðkÞg. Then, running the algorithm

at j = k, we can obtain U(0)(k) and V(1)(x(0)(k)) from (9)

and (10), respectively.

For the iterative index i ¼ 1; 2; . . . and Vk C 0, the

iterative ADP algorithm update the iterative control

U(i)(k) by

UðiÞðkÞ ¼ arg min
UðkÞ

�
XTðkÞQXðkÞ þ UTðkÞRUðkÞ:

þV ðiÞðXði�1Þðk þ 1ÞÞ
�
:

ð11Þ

Then we update the performance index function by

V ðiþ1ÞðxðiÞðkÞÞ ¼ min
UðkÞ

XTðkÞQXðkÞ þ UTðkÞRUðkÞ
�

þVðiÞðXði�1Þðk þ 1ÞÞg

¼ XðiÞTðkÞQXðiÞðkÞ þ UðiÞTðkÞRUðiÞðkÞ

þV ðiÞðxði�1Þðk þ 1ÞÞ; ð12Þ

Neural Comput & Applic (2013) 23:1851–1863 1853

123



where UðiÞðkÞ ¼ ½uðiÞTðk � s0Þ� � �uðiÞTðk � snÞ�T . Let

V ðiÞðXði�1Þðk þ 1ÞÞ be expressed as

V ðiÞðXði�1Þðk þ 1ÞÞ
¼ V ðiÞðf ðxði�1Þðk � r0Þ; . . .; xði�1Þðk � rmÞÞ
þ g0ðxði�1Þðk � r0Þ; . . .; xði�1Þðk � rmÞÞuðk � s0Þ
þ g1ðxði�1Þðk � r0Þ; . . .; xði�1Þðk � rmÞÞuðk � s1Þ
. . .

þ gnðxði�1Þðk � r0Þ; . . .; xði�1Þðk � rmÞÞuðk � snÞÞ

ð13Þ

and V(i)(x(i-1)(k ? 1)) be expressed as

V ðiÞðxði�1Þðk þ 1ÞÞ
¼ VðiÞðf ðxði�1Þðk � r0Þ; . . .; xði�1Þðk � rmÞÞ
þ g0ðxði�1Þðk � r0Þ; . . .; xði�1Þðk � rmÞÞuðiÞðk � s0Þ
þ g1ðxði�1Þðk � r0Þ; . . .; xði�1Þðk � rmÞÞuðiÞðk � s1Þ
. . .

þ gnðxði�1Þðk � r0Þ; . . .; xði�1Þðk � rmÞÞuðiÞðk � snÞÞ:
ð14Þ

Following the idea of the iterative algorithm for i = 0,

for the iterative index i ¼ 1; 2; . . ., the iterative ADP

algorithm firstly runs at j = 0 and then obtain U(i)(0) and

V(i?1)(x(i)(0)) from (11) and (12), respectively, and then we

can obtain x(i)(1) from (6). Then, start the algorithm at

j = 1. As U(i)(0) and x(i)(1) both are known, we then can

obtain U(i)(1) and V(i?1)(x(i)(1)) from (11) and (12),

respectively. Then, after running the algorithm at

j ¼ 0; 1; . . .; k � 1, we can obtain an iterative control

sequence expressed as fuðiÞð0Þ; uðiÞð1Þ; . . .; uðiÞðk � 1Þg
and an iterative state sequence expressed as

fxðiÞð0Þ; xðiÞð1Þ; . . .; xðiÞðkÞg. Then, running the algorithm

at j = k and we can obtain U(i)(k) and V(i?1)(x(i)(k)) from

(11) and (12), respectively.

There is an important property that we must point out.

The iterative ADP algorithm from (9) to (12) is different

from the value iteration algorithm in [3]. In [3], the state

vector x(k) is arbitrarily chosen in the state space. While in

this paper, as the system (1) is a time-delay system, we can

see that the state vectors xðk � r0Þ; xðk � r1Þ; . . .; xðk �
rmÞ and control vectors uðk � s0Þ; uðk � s1Þ; . . .; uðk � snÞ
couple with each other. So, it is impossible to arbitrarily

chosen the expansion state sequence X(k) in the state space.

On the other side, for the value iteration algorithm in [3],

the state x(k) is fixed for any iteration index i ¼ 0; 1; . . .

and the iterative performance index functions are updated

according to the optimality conditions. While in this paper,

the iterative performance index functions are updated

as the iterative index i increase from 0 to 1. Simulta-

neously, the iterative state sequence X(i)(k) also updates

when the iterative index i increase from 0 to 1. So, for

different iteration index, such as i = j, we have iterative

state sequence X(i)(k) = X(j)(k). To obtain the iterative

state sequence X(i)(k), the iterative algorithm has to be

implemented at j ¼ 0; 1; . . .; k � 1, respectively. So, the

value iteration algorithm in [3] is invalid for the nonlinear

system with time-delays (1). The dual iterative ADP

algorithm proposed in this paper is called performance

index function and state iterative ADP algorithm (dual

iterative ADP algorithm, for brief).

Remark 1 Generally speaking, the optimal control prob-

lem for the systems with time-delays belongs to the infi-

nite-dimensional control problem [21]. The design of the

infinite-dimensional controller and the analysis of the

system are both very difficult. While from the dual iterative

ADP algorithm proposed in this paper, we can see that for

8i ¼ 0; 1; . . ., the iterative control U(i)(k) is updated only

using the previous iteration information which has been

obtained. So, the infinite-dimensional controller in [21] is

effectively avoided.

Remark 2 For i ¼ 0; 1; . . . and j ¼ 0; 1; . . .; k, as the

performance index functions and the system states both

update according to the iterative control sequence U(i)(j),

this means the iterative state sequence fxðiÞðj�
r0Þ; . . .; xðiÞðj� rmÞg in X(i)(j) and the iterative control

sequence fuðiÞðj� s0Þ; uðiÞðj� s1Þ; . . .; uðiÞðj� snÞg in

U(i)(j) both need to update. While according to the initial

condition of the system (1), we have xðsÞ ¼ /ðsÞ; s 2
f�r;�rþ 1; . . .;�1; 0g and u(r) = 0 for r \ 0. This

means if the implementation time k� max rm; snf g, there

may exist one or more state or control variables which

belong to the initial condition and cannot be updated.

Therefore, to implement the dual iterative ADP algorithm

effectively, we must let the implementation time

k [ max{r m, sn}.

Remark 3 During the process of the dual iterative ADP

algorithm, as the iterative states update from j = 0 to k, the

nonlinear system with time-delays transforms frequently.

For example, when rh \ j B rl, where h; l ¼ 0; 1; . . .;m

and h \ l, we can see that the state sequence

fxðrlÞ; xðrlþ1Þ; . . .; xðrmÞg belongs to the initial state and is

uncontrollable. When sh B j \ sl, where h; l ¼ 0; 1; . . .; n

and h \ l, then, we have the controls uðk � slÞ ¼ uðk �
slþ1Þ ¼ � � � ¼ uðk � snÞ ¼ 0 which means that these con-

trols are invalid. If we combine the two sequence frhg; h ¼
0; 1; . . .;m and fslg; l ¼ 0; 1; . . .; n into one sequence

fk0; k1; . . .; kmþng where k0 ¼ 0; kmþn ¼ maxfrm; sng and

kh� kl; h; l ¼ 0; 1; . . .;maxfrm; sng then, we can say that

the iterative performance index functions V(i?1)(x(k)) and

the law of the iterative controls U(i)(k) will change at

k ¼ kj; j ¼ 0; 1; . . .;maxfrm; sng. For k [ maxfrm; sng, we

can see that all the states are controllable and all the controls
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are effective to the system. Therefore, for the dual iterative

ADP algorithm (11) and (12), all the iterative performance

index functions and the law of the iterative control at k ¼
kj; j ¼ 0; 1; . . .;maxfrm; sng should be recorded.

Remark 4 The proposed dual iterative ADP algorithm is

also effective for the nonlinear systems with state delays or

control delays. In Sect. 5, we will give an example to show the

effectiveness. For the nonlinear systems without time-delays,

we can see that the current control u(k) does not couple with

the time-delayed control. So, the state iteration is not nec-

essary. If we omit the state iteration and fix the state in the

dual iterative ADP algorithm, then the iterative algorithm

reduces to the value iteration algorithm proposed in [3].

From (9) to (12), it can be seen that during the iteration

process, the control policies for different iteration steps

have different control laws. For UðiÞð�Þ; i ¼ 0; 1; . . . that

obtained by (11), we run the delayed system (1) to obtain

the corresponding state trajectory xðiÞð1Þ; xðiÞð2Þ; . . .; xðiÞðkÞ.
After ith iteration, the control laws sequence can be

expressed as Uð0Þð�Þ;Uð1Þð�Þ; . . .;UðiÞð�Þ
� �

, which are dif-

ferent from each other. For the infinite-horizon problem,

however, both the optimal performance index function and

the optimal control law is unique. Therefore, it is necessary

to show that the iterative performance index function

V(i?1)(x(i)(k)) will converge when the iteration number i!
1 under the iterative control U(i)(k) and it will be proved in

the following subsection.

3.2 Properties of the iterative ADP method

In this subsection, we focus on the proof of convergence of

the dual ADP iterative algorithm between (9) to (12), with

the performance index Vðiþ1ÞðxðiÞðkÞÞ ! V�ðx�ðkÞÞ; 8k.

Theorem 1 Let eU ðiÞðkÞ; k ¼ 0; 1. . . be an arbitrary con-

trol and U(i)(k) is expressed as (11). Define V(i?1)(x(i)(k)) by

(12) and Kðiþ1Þð~xðiÞðkÞÞ by

Kðiþ1Þð~xðiÞðkÞÞ ¼ eX ðiÞTðkÞQeX ðiÞðkÞ þ eU ðiÞTðkÞReU ðiÞðkÞ
þ KðiÞð~xði�1Þðk þ 1ÞÞ ð15Þ

where KðiÞð~xði�1Þðk þ 1ÞÞ is expressed by

KðiÞð~xðiÞðk þ 1ÞÞ
¼ KðiÞðf ð~xði�1Þðk � r0Þ; . . .;~xði�1Þðk � rmÞÞ
þ g0ð~xði�1Þðk � r0Þ; . . .;~xði�1Þðk � rmÞÞ~uðiÞðk � s0Þ
þ g1ð~xði�1Þðk � r0Þ; . . .;~xði�1Þðk � rmÞÞ~uðiÞðk � s1Þ
. . .

þ gnð~xði�1Þðk � r0Þ; . . .;~xði�1Þðk � rmÞÞ~uðiÞðk � snÞÞ:
ð16Þ

If for 8xðkÞ;V ð0Þð�Þ ¼ Kð0Þð�Þ ¼ 0, then V ðiþ1ÞðxðiÞðkÞÞ
�Kðiþ1Þð~xðiÞðkÞÞ; 8i.

Proof From the expression of Kðiþ1Þð~xðiÞðkÞÞ, we can also

derive the expression KðiÞð~xði�1Þðk þ 1ÞÞ as

KðiÞð~xði�1Þðk þ 1ÞÞ ¼ ~Xði�1ÞTðk þ 1ÞQ~Xði�1Þðk þ 1Þ

þ ~Uði�1ÞTðk þ 1ÞR ~Uði�1Þðk þ 1Þ

þ Kði�1Þð~xði�2Þðk þ 2ÞÞ: ð17Þ

Then (15) can be written as

Kðiþ1Þð~xðiÞðkÞÞ ¼ ~XðiÞTðkÞQ~XðiÞðkÞ þ ~UðiÞTðkÞR ~UðiÞðkÞ
~Xði�1ÞTðk þ 1ÞQ~Xði�1Þðk þ 1Þ

þ ~Uði�1ÞTðk þ 1ÞR ~Uði�1Þðk þ 1Þ

þ Kði�1Þð~xði�2Þðk þ 2ÞÞ: ð18Þ

Using the idea of iteration, we have

Kðiþ1Þð~xðiÞðkÞÞ ¼ ~XðiÞTðkÞQ~XðiÞðkÞ þ ~UðiÞTðkÞR ~UðiÞðkÞ

þ ~Xði�1ÞTðk þ 1ÞQ~Xði�1Þðk þ 1Þ

þ ~Uði�1ÞTðk þ 1ÞR ~Uði�1Þðk þ 1Þ

..

.

þ ~Xð0ÞTðk þ iÞQ~Xð0Þðk þ iÞ

þ ~Uð0ÞTðk þ iÞR ~Uð0Þðk þ iÞ: ð19Þ

For j ¼ 0; 1; . . .; i, let

~Lðk þ jÞ ¼ ~Xði�jÞTðk þ jÞQ~Xði�jÞðk þ jÞ
þ ~Uði�jÞTðk þ jÞR ~Uði�jÞðk þ jÞ:

ð20Þ

Then (15) can be written as

Kðiþ1Þð~xðiÞðkÞÞ ¼
Xi

j¼0

~Lðk þ jÞ: ð21Þ

On the other side, according to (12), V(i?1)(x(i)(k)) can be

expressed as

V ðiþ1ÞðxðiÞðkÞÞ
¼min

UðkÞ
fXTðkÞQXðkÞ þUTðkÞRUðkÞ

þ min
Uðkþ1Þ

fXTðkþ 1ÞQXðkþ 1Þ þUTðkþ 1ÞRUðkþ 1Þ

þ � � �
þ min

UðkþiÞ
fXTðkþ iÞQXðkþ iÞ þUTðkþ iÞRUðkþ iÞggg

¼ min
UðkÞ;Uðkþ1Þ;...;UðkþiÞ

Xi

j¼0

Lðkþ jÞ
( )

:

ð22Þ
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Then we have

V ðiþ1ÞðxðiÞðkÞÞ�Kðiþ1Þð~xðiÞðkÞÞ: ð23Þ

In order to prove the convergence of the performance

index function, the following definition is necessary.

Definition 1 A control sequence uk ¼ fuðkÞ; uðk þ
1Þ; . . .g is defined to be an admissible control sequence

with respect to (2), if uk stabilizes (1) and for V
x(k), V(x(k)) is finite.

Then we have the following corollary.

Corollary 1 Let the iterative performance index function

V ðiþ1ÞðxðiÞðkÞÞ be defined by (12). If the system (1) is con-

trollable, then there is an upper bound Y such that

0 B V(i?1)(x(i)(k)) B Y, Vi.

Proof Let �uðiÞðkÞ
� �

be any admissible control sequence.

Then, for i ¼ 0; 1; . . ., we have �UðiÞðkÞ ¼ ½�uðiÞTðk �
s0Þ; . . .; �uðiÞTðk � snÞ�T is admissible. Define a new

sequence PðiÞð�xðkÞÞ as follows:

Pðiþ1Þð�xðiÞðkÞÞ ¼ �XðiÞTðkÞQ�XðiÞðkÞ þ �UðiÞTðkÞR �UðiÞðkÞ
þ PðiÞð�xði�1Þðk þ 1ÞÞ ð24Þ

with Pð0Þð�Þ ¼ Vð0Þð�Þ ¼ 0, where PðiÞð�xði�1Þðk þ 1ÞÞ is

expressed by

PðiÞð�xði�1Þðkþ 1ÞÞ ¼ PðiÞðf ð�xði�1Þðk�r0Þ; . . .;�xði�1Þðk�rmÞÞ
þ g0ð�xði�1Þðk�r0Þ; . . .;�xði�1Þðk�rmÞÞ�uðiÞðk� s0Þ
þ g1ð�xði�1Þðk�r0Þ; . . .;�xði�1Þðk�rmÞÞ�uðiÞðk� s1Þ
. . .

þ gnð�xði�1Þðk�r0Þ; . . .;�xði�1Þðk�rmÞÞ�uðiÞðk� snÞÞ:
ð25Þ

From the iteration idea (17–21), we have

Pðiþ1Þð�xðiÞðkÞÞ ¼
Xi

j¼0

�Lðk þ jÞ; ð26Þ

where

�Lðk þ jÞ ¼ �Xði�jÞTðk þ jÞQ�Xði�jÞðk þ jÞ
þ �Uði�jÞTðk þ jÞR �Uði�jÞðk þ jÞ:

ð27Þ

Noting that the control input �UðiÞðkÞ
� �

is an admissible

control sequence, we can obtain

8i : Pðiþ1Þð�xðiÞðkÞÞ ¼
Xi�1

j¼0

�Lðkþ jÞ�
X1

j¼0

�Lðkþ jÞ�Y : ð28Þ

From Lemma 1, we have

8i : V ðiþ1ÞðxðiÞðkÞÞ�Pðiþ1Þð�xðiÞðkÞÞ� Y: ð29Þ

With Theorem 1 and Corollary 1, the following main

theorem can be derived.

Theorem 2 Define the iterative performance index

function Vðiþ1ÞðxðiÞðkÞÞ as (12), with V ð0Þð�Þ ¼ 0. If the

system (1) is controllable, then V ðiþ1ÞðxðiÞðkÞÞ is a nonde-

creasing convergent sequence as i!1.

Proof For the convenience of analysis, define a new

sequence Uðiþ1Þðxðiþ1ÞðkÞÞ as follows:

Uðiþ1Þðxðiþ1ÞðkÞÞ ¼ Xðiþ1ÞTðkÞQXðiþ1ÞðkÞ
þ Uðiþ1ÞTðkÞRUðiþ1ÞðkÞ
þ UðiÞðxðiÞðk þ 1ÞÞ

ð30Þ

where UðiÞðxðiÞðk þ 1ÞÞ is expressed by

UðiÞðxðiÞðkþ 1ÞÞ
¼ UðiÞðf ðxðiÞðk� r0Þ; . . .; xðiÞðk� rmÞÞ
þ g0ðxðiÞðk� r0Þ; . . .; xðiÞðk� rmÞÞuðiþ1Þðk� s0Þ
þ g1ðxðiÞðk� r0Þ; . . .; xðiÞðk� rmÞÞuðiþ1Þðk� s1Þ
. . .

þ gnðxðiÞðk� r0Þ; . . .; xðiÞðk� rmÞÞuðiþ1Þðk� snÞÞ

ð31Þ

with Uð0Þð�Þ ¼ Vð0Þð�Þ ¼ 0 and V(i?1)(x(i)(k)) is updated by

(12). In the following part, we prove Uðiþ1ÞðxðiÞðkÞÞ
�V ðiþ1ÞðxðiÞðkÞÞ by mathematical induction.

First, we prove it holds for i = 0. Noting that

V ð1Þðxð0ÞðkÞÞ � Uð0Þðxð0ÞðkÞÞ
¼ Xð0ÞTðkÞQXð0ÞðkÞ þ Uð0ÞTðkÞRUð0ÞðkÞ
� 0;

ð32Þ

where the equal sign holds if and only if X(0)(k) =

U(0)(k) = 0. Thus for i = 0, we can get

V ð1Þðxð0ÞðkÞÞ�Uð0Þðxð0ÞðkÞÞ: ð33Þ

Second, we assume it holds for i - 1, i.e., VðiÞ

ðxði�1ÞðkÞÞ � Uði�1Þðxði�1ÞðkÞÞ� 0; 8xði�1ÞðkÞ. Then, for i,

because

UðiÞðxðiÞðkÞÞ ¼ XðiÞTðkÞQXðiÞðkÞ
þ UðiÞTðkÞRUðiÞðkÞ
þ Uði�1Þðxði�1Þðk þ 1ÞÞ

ð34Þ

and

V ðiþ1ÞðxðiÞðkÞÞ ¼ XðiÞTðkÞQXðiÞðkÞ þ UðiÞTðkÞRUðiÞðkÞ
þ V ðiÞðxði�1Þðk þ 1ÞÞ: ð35Þ
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Thus, we can obtain

V ðiþ1ÞðxðiÞðkÞÞ � UðiÞðxðiÞðkÞÞ
¼ V ðiÞðxði�1ÞðkÞÞ � Uði�1Þðxði�1ÞðkÞÞ
� 0;

ð36Þ

i.e.,

UðiÞðxðiÞðkÞÞ�V ðiþ1ÞðxðiÞðkÞÞ: ð37Þ

Therefore, the mathematical induction proof is

completed. Next, we will prove that V ðiÞðxði�1ÞðkÞÞ
�UðiÞðxðiÞðkÞÞ.

According to (15), let ~UðiÞðkÞ ¼ Uðiþ1ÞðkÞ, then we can

get the corresponding state ~XðiÞðkÞ ¼ Xðiþ1ÞðkÞ. Hence we

have Kðiþ1Þðxðiþ1ÞðkÞÞ ¼ Uðiþ1Þðxðiþ1ÞðkÞÞ. According to

Lemma 1, we have Vðiþ1ÞðxðiÞðkÞÞ�Kðiþ1Þðxðiþ1ÞðkÞÞ
¼ Uðiþ1Þðxðiþ1ÞðkÞÞ. Replace i by i - 1, and then we can

obtain

V ðiÞðxði�1ÞðkÞÞ�UðiÞðxðiÞðkÞÞ�V ðiþ1ÞðxðiÞðkÞÞ: ð38Þ

According to (29), we have V ðiþ1ÞðxðiÞðkÞÞ bounded.

Hence, we conclude that V(i?1)(x(i)(k)) a nondecreasing

convergent sequence as i!1.

From Theorem 2, we know that the performance index

function V(i)(x(i-1)(k)) C 0 is a monotonically nonincreas-

ing convergent sequence. Then, we can define the perfor-

mance index function V ð1Þðxð1ÞðkÞÞ as the limit of the

iterative function V(i)(x(i-1)(k)), i.e.,

V ð1Þðxð1ÞðkÞÞ ¼ lim
i!1

V ðiÞðxði�1ÞðkÞÞ: ð39Þ

Then we have the following corollary.

Corollary 2 If the system (1) is controllable and the

iterative performance index function Vðiþ1ÞðxðiÞðkÞÞ is

convergent to V ð1Þðxð1ÞðkÞÞ as i!1, then we have the

iterative control sequence U(i)(k) is also convergent, i.e.,

Uð1ÞðkÞ ¼ lim
i!1

UðiÞðkÞ: ð40Þ

Now, we can derive the following theorem.

Theorem 3 If we let V ð1Þðxð1ÞðkÞÞ be defined as (39)

and Uð1ÞðkÞ be defined as (40), then we have

V ð1Þðxð1ÞðkÞÞ
¼ Xð1ÞTðkÞQXð1ÞðkÞ þ Uð1ÞTðkÞQUð1ÞðkÞ
þ Vð1Þðxð1Þðk þ 1ÞÞ
¼ min

UðkÞ
fXTðkÞQXðkÞ þ UTðkÞQUðkÞ

þ V ð1Þðxðk þ 1ÞÞg;

ð41Þ

where xð1ÞðkÞ is the corresponding state under the control

sequence Uð1ÞðkÞ.

Proof According to Theorem 2 and (12), we have

V ð1Þðxð1ÞðkÞÞ�Vðiþ1ÞðxðiÞðkÞÞ

¼XðiÞTðkÞQXðiÞðkÞ þ UðiÞTðkÞRUðiÞðkÞ

þ V ðiÞðxði�1Þðk þ 1ÞÞ
¼ min

UðkÞ

�
XTðkÞQXðkÞ þ UTðkÞRUðkÞ:

þVðiÞðXði�1Þðk þ 1ÞÞ
�
; ð42Þ

where Xði�1Þðk þ 1Þ is expressed in (12).

Let i!1, and we have

V ð1Þðxð1ÞðkÞÞ�Xð1ÞTðkÞQXð1ÞðkÞ þ Uð1ÞTðkÞRUð1ÞðkÞ
þ V ð1Þðxð1Þðk þ 1ÞÞ
¼min

UðkÞ

�
XTðkÞQXðkÞ þ UTðkÞRUðkÞ:

þV ð1ÞðXð1Þðk þ 1ÞÞ
�
: ð43Þ

Since V(i)(x(i-1)(k)) is nonincreasing for i C 1 and

V ð1Þðxð1ÞðkÞÞ ¼ lim
i!1

V ðiÞðxði�1ÞðkÞÞ, for an arbitrary

positive number e [ 0, there exists a positive integer

p such that

V ðpÞðxðp�1ÞðkÞÞ�V ð1Þðxð1ÞðkÞÞ�VðpÞðxðp�1ÞðkÞÞ þ e:

From (12), we have

V ðpÞðxðp�1ÞðkÞÞ ¼ Xðp�1ÞTðkÞQXðp�1ÞðkÞ
þUðp�1ÞTðkÞRUðp�1ÞðkÞ
þ Vðp�1Þðxðp�2ÞðkÞÞ:

ð44Þ

Hence,

V ð1Þðxð1ÞðkÞÞ

�Xðp�1ÞTðkÞQXðp�1ÞðkÞ þ Uðp�1ÞTðkÞRUðp�1ÞðkÞ

þ Vðp�1Þðxðp�2Þðk þ 1ÞÞ þ e

�Xðp�1ÞTðkÞQXðp�1ÞðkÞ þ Uðp�1ÞTðkÞRUðp�1ÞðkÞ

þ Vð1Þðxð1Þðk þ 1ÞÞ þ e

� min
UðkÞ

XTðkÞQXðkÞ
�

þ UTðkÞRUðkÞ

þVð1ÞðXð1Þðk þ 1ÞÞ
�
þ e:

ð45Þ

Since e is arbitrary, we have

V ð1Þðxð1ÞðkÞÞ� min
UðkÞ

XTðkÞQXðkÞ
�

þ UTðkÞRUðkÞ

þVð1ÞðXð1Þðk þ 1ÞÞ
�
:

ð46Þ
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Combining (43) and (46), we have

V ð1Þðxð1ÞðkÞÞ ¼ min
UðkÞ

XTðkÞQXðkÞ
�

þ UTðkÞRUðkÞ

þV ð1ÞðXð1Þðk þ 1ÞÞ
�
:

ð47Þ

As fxð1ÞðkÞg; k� 1 is the state resultant sequence of the

control sequence fuð1ÞðkÞg; k� 0; we have

V ð1Þðxð1ÞðkÞÞ
¼ min

UðkÞ

�
XTðkÞQXðkÞ þ UTðkÞRUðkÞ

þ Vð1ÞðXð1Þðk þ 1ÞÞ
�

¼ min
UðkÞ
fXTðkÞQXðkÞ þ UTðkÞQUðkÞ

þ Vð1Þðxðk þ 1ÞÞg
¼ Xð1ÞTðkÞQXð1ÞðkÞ þ Uð1ÞTðkÞQUð1ÞðkÞ
þ Vð1Þðxð1Þðk þ 1ÞÞ

ð48Þ

which proves the result.

Theorem 4 Let V(i?1)(x(i)(k)) be defined by (12). If the

system state x(k) is controllable, then we have the limit of

the iterative performance index function Vð1Þðxð1ÞðkÞÞ
equals to the optimal performance index function

V�ðx�ðkÞÞ, i.e.,

V ðiþ1ÞðxðiÞðkÞÞ ! V�ðx�ðkÞÞ ð49Þ

as i!1.

Proof As

V�ðx�ðkÞÞ ¼ V�ðx�ðkÞÞ ¼ min
uk

VðxðkÞ; ukÞ; ð50Þ

we have

V�ðx�ðkÞÞ�V ðiþ1ÞðxðiÞðkÞÞ: ð51Þ

Then, let i!1, we have

V�ðx�ðkÞÞ�V ð1Þðxð1ÞðkÞÞ ð52Þ

On the other side, according to Theorem 1 and Corollary

1, for any control sequence {l(k)}, we have

V ðqþ1ÞðxðqÞðkÞÞ�Cðqþ1ÞðxðqÞðkÞÞ ¼
Xq

j¼0

eLðk þ jÞ ð53Þ

where

eLðk þ jÞ ¼ eX ðq�jÞTðk þ jÞQeX ðq�jÞðk þ jÞ
þPðq�jÞTðk þ jÞRPðq�jÞðk þ jÞ ð54Þ

and Pðq�jÞðkÞ ¼ lðq�jÞTðk � s0Þ; . . .; lðq�jÞTðk � snÞ
� �T

:

eX ðq�jÞTðkÞ is the resultant state of the control Pðq�jÞTðkÞ.
Let q!1, and we have

V ð1Þðxð1ÞðkÞÞ�Cð1Þðxð1ÞðkÞÞ ¼
X1

j¼0

eLðk þ jÞ: ð55Þ

As {l(k)} is any control sequence, we have

V ð1Þðxð1ÞðkÞÞ� min
l

k

X1

j¼0

eLðk þ jÞ
( )

¼ V�ðx�ðkÞÞ:
ð56Þ

Combining (52) and (56), we have

V ð1Þðxð1ÞðkÞÞ ¼ V�ðx�ðkÞÞ: ð57Þ

The proof is completed. h

3.3 Summary of the dual iterative ADP algorithm

Now, we summarize the dual iterative ADP algorithm as

follows.

Step 1 Choose a random array of initial states x0 and

choose the time point k [ max rm; snf g. Set a computation

precision e.

Step 2 Let the iteration index i = 0 and V(0) = 0.

Implement the dual iterative ADP algorithm (9–10) at

j ¼ 0; 1; . . .; k. Obtain the iterative control sequence

fuð0Þð0Þ; uð0Þð1Þ; . . .; uð0Þðk � 1Þg and corresponding itera-

tive state sequence fxð0Þð0Þ; xð0Þð1Þ; . . .; xð0ÞðkÞg.

Step 3 Record the iterative performance index functions

V(1)(x(0)(j)) at j ¼ 0; 1; . . .; k.

Step 4 For i ¼ 1; 2; . . ., implement the algorithm at

j ¼ 0; 1; . . .; k � 1. Obtain the iterative control sequence

fuðiÞð0Þ; uðiÞð1Þ; . . .; uðiÞðk � 1Þg and the iterative state

sequence fxðiÞð0Þ; xðiÞð1Þ; . . .; xðiÞðkÞg.

Step 5 Record the iterative performance index functions

V(i?1)(x(i)(j)) at j ¼ 0; 1; . . .; k.

Step 6 If jVðiþ1ÞðxðiÞðkÞÞ � V ðiÞðxði�1ÞðkÞÞj � e, goto Step

7; else let i = i ? 1 and goto Step 4.

Step 7 Stop.

4 Neural network implementation for the control

scheme with time-delays

In this subsection, we will present the realization of the

dual iterative ADP algorithm using neural networks.

Assume the number of hidden layer neurons is denoted by

l, the weight matrix between the input layer and hidden

layer is denoted by V, the weight matrix between the hid-

den layer and output layer is denoted by W, then the output

of three-layer neural network is represented by:
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F̂ðX;V ;WÞ ¼ WTrðVT XÞ ð58Þ

where rðVT XÞ 2 Rl; ½rðzÞ�i ¼
ez

i � e�zi

ez
i þ e�zi

; i ¼ 1; . . .l; are the

activation function.

The NN estimation error can be expressed by

FðXÞ ¼ FðX;V�;W�Þ þ eðXÞ ð59Þ

where V�;W� are the ideal weight parameters, eðXÞ is the

reconstruction error.

Here, there are two parts of neural networks, which are

critic network, and action network, respectively. All the

neural networks are chosen as three-layer feed-forward

network. The whole structure diagram is shown in Fig. 1.

The utility term in the figure denotes l(X(k), U(k)) =

XT(k)QX(k) ? UT(k)RU(k).

The details of training the neural networks can be seen

in [27] and omitted here.

5 Simulation study

In this section, two examples are provided to demonstrate

the effectiveness of the optimal control scheme proposed in

this paper.

5.1 Optimal control for nonlinear system with time-

delay in state variables

For the first example, we will show that the proposed dual

iterative ADP algorithm is effective for nonlinear systems

with time-delay in the state variables. The system is chosen

as the example in [14] with some modifications. We con-

sider the following affine nonlinear system

xðk þ 1Þ ¼ f ðxðkÞ; xðk � rÞÞ þ gðxðkÞ; xðk � rÞÞuðkÞ
ð60Þ

where

f ðxðkÞ; xðk � rÞÞ

¼
x2ðkÞ þ sinðx1ðk � rÞÞ

ð1� x2
1ðkÞÞx2ðkÞ � x1ðkÞ þ x1ðk � rÞx2ðk � rÞ

� �
;

gðxðkÞ; xðk � rÞÞ

¼
ð1þ x2

1ðkÞ þ x2
2ðkÞÞ 0

0 ð1þ x2
1ðkÞ þ x2

2ðkÞÞ

" #
:

The initial conditions are the same as the example in

[14]. Let the time-delay in state variables r = 2, x(s) = [-

0.3, 1]T for s = -2, -1, 0. The performance index

function is defined as (2), where Q = R = I. We choose

three-layer neural networks as the critic network and the

action network with the structures 2-10-1 and 4-10-2,

respectively. The initial weights of the critic network and

the action network are both set to be random in [-0.5, 0.5].

We implement the algorithm at the time instant k = 4. The

algorithm iterates for i = 200 times to guarantee the

convergence of the algorithm. In each iteration step, the

critic network and the action network are trained for 500

steps so that the given accuracy e ¼ 10�6 is reached. In

the training process, the learning rate ac = ba = 0.01.

Fig. 1 The structure diagram

of the algorithm
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For each iteration index, we should implement the dual

iterative ADP algorithm at k = 0, 1, 2, 3 to obtain the state

sequence ½xðiÞð0Þ; xðiÞð1Þ; . . .; xðiÞð4Þ�. The trajectories of

xðiÞð4Þ; i ¼ 0; 1; . . .; 200 are shown in Fig. 2. The

convergence curve of the performance index function at

k = 4 is shown in Fig. 3. Then, we apply the optimal

control to the system for Tf = 30 time steps and obtain the

following results. The state trajectories are given as Fig. 4,

and the corresponding control curves are given as Fig. 5.

Remark 5 From Fig. 2, we can see that for each iteration,

the iterative states at k = 4 are different, i.e.,

x(i)(4) = x(j)(4) for i = j. This is an obvious difference

between the dual iterative ADP algorithm and the value

iteration algorithm in [2]. While we can see that the per-

formance index functions are still a nondecreasing trajec-

tory as i increasing just like the value iteration algorithm in

[2]. So, we can say that value iteration algorithm is a

special case of the dual iterative ADP algorithm proposed

in this paper.

5.2 Optimal control for nonlinear system with time-

delays in state and control variables

In the second example, we will show that the proposed

dual iterative ADP algorithm is effective for nonlinear

systems with time-delays in the state and control vari-

ables. We introduce the control delays in the system of

Example 1. Then, we consider the following affine non-

linear system

xðk þ 1Þ ¼ f ðxðkÞ; xðk � rÞÞ þ g0ðxðkÞ; xðk � rÞÞuðkÞ
þ g1ðxðkÞ; xðk � rÞÞuðk � sÞ

ð61Þ
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Fig. 2 The convergence of states at k = 4
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where

f ðxðkÞ; xðk � rÞÞ

¼
x2ðkÞ þ sinðx1ðk � rÞÞ

ð1� x2
1ðkÞÞx2ðkÞ � x1ðkÞ þ x1ðk � rÞx2ðk � rÞ

� �
;

g0ðxðkÞ; xðk � rÞÞ

¼ ð1þ x2
1ðkÞ þ x2

2ðkÞÞ 0

0 ð1þ x2
1ðkÞ þ x2

2ðkÞÞ

� �
;

g1ðxðkÞ; xðk � rÞÞ

¼ 0:3ð1þ x2
1ðkÞ þ x2

2ðkÞÞ 0

0 0:2ð1þ x2
1ðkÞ þ x2

2ðkÞÞ

� �
:

ð62Þ

The initial conditions are the same as the ones in

Example 1. Let the time-delay of control variables

s = 1, x(s) = [-0.3, 1]T for s = -2, -1, 0. We also

choose three-layer neural networks as the critic network

and the action network with the structures 2-10-1 and 6-10-

2, respectively. The initial weights of the action network,

critic network, and model network are all set to be random

in [-0.5, 0.5]T. We implement the algorithm at the time

instant k = 4. The algorithm iterates for i = 200 times to

guarantee the convergence of the algorithm. In each

iteration step, the critic network and the action network

are trained for 500 steps so that the given accuracy e ¼
10�6 is reached. In the training process, the learning rate

ac = ba = 0.01. For each iteration index, we implement

the dual iterative ADP algorithm at k = 0, 1, 2, 3 and

obtain the state sequence ½xðiÞð0Þ; xðiÞð1Þ; . . .; xðiÞð4Þ�. The

trajectories of xðiÞð4Þ; i ¼ 0; 1; . . .; 200 are shown in Fig. 6.

The convergence curve of the performance index function

at k = 4 is shown in Fig. 7. Then, we apply the optimal

control to the system for Tf = 50 time steps and obtain the

following results. The state trajectories are given as Fig. 8,

and the corresponding control curves are given as Fig. 9.

0 20 40 60 80 100 120 140 160 180 200
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Iteration steps

Ite
ra

tiv
e 

st
at

e 
tr

aj
ec

to
rie

s

x
1
(i)(4)

x
2
(i)(4)

Fig. 6 The convergence of states at k = 4

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

Iteration steps

P
er

fo
rm

an
ce

 in
de

x 
fu

nc
tio

n

Fig. 7 The convergence of performance index function

0 5 10 15 20 25 30 35 40 45 50
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time steps

S
ta

te
 tr

aj
ec

to
rie

s

 

 

x
1

x
2

Fig. 8 The optimal state trajectories

0 5 10 15 20 25 30 35 40 45 50
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time steps

C
on

tr
ol

 tr
aj

ec
to

rie
s

u
1

u
2

Fig. 9 The optimal control trajectories

Neural Comput & Applic (2013) 23:1851–1863 1861

123



6 Conclusion

In this paper, we propose an effective dual iterative algo-

rithm to find the infinite-horizon optimal controller for a

class of discrete-time nonlinear systems with time-delays

in state and control variables using adaptive dynamic

programming. Performance index functions and system

state both are updated in each iteration to reach the optimal

solution of the optimal problem. Convergence analysis of

the performance index function for the dual iterative ADP

algorithm is proved to guarantee the performance index

function to reach the optimum. Neural networks are used to

implement the dual iterative ADP algorithm. Finally, two

simulation examples are given to illustrate the performance

of the proposed algorithm.
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