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a b s t r a c t

In this paper, a reinforcement-learning-based direct adaptive control is developed to deliver a desired
tracking performance for a class of discrete-time (DT) nonlinear systems with unknown bounded
disturbances. We investigate multi-input–multi-output unknown nonaffine nonlinear DT systems and
employ two neural networks (NNs). By using Implicit Function Theorem, an action NN is used to generate
the control signal and it is also designed to cancel the nonlinearity of unknown DT systems, for purpose
of utilizing feedback linearization methods. On the other hand, a critic NN is applied to estimate the
cost function, which satisfies the recursive equations derived from heuristic dynamic programming. The
weights of both the action NN and the critic NN are directly updated online instead of offline training.
By utilizing Lyapunov’s direct method, the closed-loop tracking errors and the NN estimated weights are
demonstrated to be uniformly ultimately bounded. Two numerical examples are provided to show the
effectiveness of the present approach.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Adaptive control theory has been an active area of research for
several decades, which aims to find stable controllers for nonlin-
ear dynamic systems (Chemachema, 2012; Chen&Khalil, 1995; Ge,
Hang, & Zhang, 1999; Lewis, Yesildirek, & Liu, 1996; Liu, Venayag-
amoorthy, & Wunsch, 2003; Nakanishi & Schaal, 2004; Naren-
dra & Mukhopadhyay, 1994). Nevertheless, stability is only a bare
minimum requirement in a system design. The optimality based
on a prescribed cost function is usually taken into consideration
for control problems of nonlinear systems. In other words, con-
trol schemes should be proposed to guarantee the stability of the
closed-loop system, while keeping the cost function as small as
possible.

In order to derive such a controller, large amounts of significant
methods have been proposed. Among these approaches, dynamic
programming (DP) has been widely applied to generate optimal
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control for nonlinear systems by employing Bellman’s principle
of optimality (Bellman, 1957). The method guarantees to perform
optimization backward-in-time. However, a serious shortcoming
about DP is that the computation is untenable to be runwith the in-
creasing dimension of nonlinear systems, which is thewell-known
‘‘curse of dimensionality’’. Moreover, the backward direction of
search obviously prohibits the wide use of DP in real-time con-
trol. On the other hand, with considerable investigations engaged
in artificial neural networks (NNs), researchers find NNs can suc-
cessfully be applied to intelligent control due to their properties of
nonlinearity, adaptivity, self-learning, and fault tolerance (Haykin,
2008; Yu, 2009). Consequently, NNs are extensively utilized for
universal function approximation in adaptive dynamic program-
ming (ADP) algorithms, which were proposed by Werbos (1991,
1992, 2007, 2008), as methods to solve optimal control problems
forward-in-time. There are several synonyms used for ADP includ-
ing ‘‘adaptive dynamic programming’’ (Liu, Wang, & Yang, 2013;
Liu &Wei, 2013; Liu, Zhang, & Zhang, 2005; Murray, Cox, Lendaris,
& Saeks, 2002;Wang, Liu, &Wei, 2012;Wang, Liu, Wei, Zhao, & Jin,
2012;Wang, Zhang, & Liu, 2009;Wei& Liu, 2012; Zhang,Wei, & Liu,
2011), ‘‘approximate dynamic programming’’ (Al-Tamimi, Lewis,
& Abu-Khalaf, 2008), ‘‘adaptive critic designs’’ (ACDs) (Prokhorov
& Wunsch, 1997), ‘‘neuro-dynamic programming’’ (NDP) (Bert-
sekas & Tsitsiklis, 1996), and ‘‘neural dynamic programming’’ (Si
& Wang, 2001). Furthermore, according to Prokhorov andWunsch
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(1997) andWerbos (1992), ADP algorithms aremainly classified as
follows: heuristic dynamic programming (HDP), dual heuris-
tic programming (DHP), globalized dual heuristic programming
(GDHP). When the action is introduced as an additional input to
the critic, ACDs are referred to action dependent version of the
ACDs, such as action dependent HDP (ADHDP), action dependent
DHP (ADDHP), and action dependent GDHP (ADGDHP).

Unfortunately, most of ADP algorithms are implemented either
by an offline process via iterative schemes or need a priori
knowledge of dynamics of nonlinear systems. Since the exact
knowledge of nonlinear systems is often unavailable, it brings
about great challenges to implement these algorithms. In order to
overcome the difficulty, reinforcement learning (RL) is introduced
to cope with optimal control problems. RL is a class of approaches
used in machine learning to methodically revise the actions of an
agent based on responses from its environment (Sutton & Barto,
1998). A distinct difference between the traditional supervised NN
learning and RL is that, there is no prescribed behavior or training
model proposed to RL schemes. If the cost function is viewed as the
reinforcement signal, then ADP algorithms become RL approaches.
Therefore, ADP algorithms are actually a class of RLmethods (Lewis
& Vamvoudakis, 2011; Lewis, Vrabie, & Vamvoudakis, 2012). Since
RL shares considerable common features with ADP algorithms, it is
often employed for adaptive optimal controller designs.

Applications of RL methods to feedback control have been
widely investigated in the literature (Bhasin et al., 2013; He
& Jagannathan, 2005; Lewis, Lendaris, & Liu, 2008; Lewis &
Vamvoudakis, 2011; Liu, Yang, & Li, 2013; Vamvoudakis & Lewis,
2010, 2011; Yang & Jagannathan, 2012; Yang, Liu, & Huang, 2013;
Yang, Si, Tsakalis, & Rodriguez, 2009). In He and Jagannathan
(2005), an RL-based output feedback control was developed for
multi-input–multi-output (MIMO) unknown affine nonlinear DT
systems. By using Lyapunov’s direct approach, the estimated state
errors, the tracking errors and the NN estimated weights were
all guaranteed to be uniformly ultimately bounded (UUB). After
that, in Yang et al. (2009), a direct HDP was proposed to obtain
online learning control for MIMO unknown affine nonlinear DT
systems. With the aid of Lyapunov’s direct method, the uniform
ultimate boundedness of both the closed-loop tracking errors and
the NN estimatedweightswas derived. Just asmentioned above, in
this literature, the authors took the cost function as the reinforce-
ment signal. Recently, in Vamvoudakis and Lewis (2010), an online
algorithm based on RL for affine nonlinear continuous-time (CT)
systems was proposed. By employing the algorithm, both the op-
timal cost and the optimal control were well approximated in real
time, while guaranteeing the uniform ultimate boundedness of the
closed-loop system. In addition, the NN estimated weights were
guaranteed to be UUB by using Lyapunov’s direct method. More
recently, in Vamvoudakis and Lewis (2011), RL methods were also
applied to multi-player differential games for nonlinear CT sys-
tems. Based on Lyapunov’s direct method, the uniform ultimate
boundedness of both the closed-loop system and the NN estimated
weights was demonstrated.

However, all of them deal with feedback control problems
of RL methods for affine nonlinear systems. To the best of our
knowledge, there are rather few investigations on feedback con-
trol of RL approaches for nonaffine nonlinear systems, especially
MIMOunknownnonaffine nonlinear DT systems. Though there ex-
ist some researches about nonaffine nonlinear DT systems (Deng,
Li, &Wu, 2008;Noriega&Wang, 1998; Yang, Vance, & Jagannathan,
2008), most of them focus on feedback control problems of nonlin-
ear autoregressive moving average with exogenous inputs (NAR-
MAX) systems. This form is less convenient than the state-form
of nonaffine nonlinear systems for purpose of adaptive control
using NNs. On the other hand, since the output of affine nonlin-
ear systems is linear with respect to the control input, it is easy to
design a controller to follow prescribed trajectories by using feed-
back linearization methods. Nevertheless, feedback linearization
approaches cannot be implemented for nonaffine nonlinear sys-
tems, for the output of this type of systems depends nonlinearly on
the control signal. It gives rise to great difficulties for researchers
to design an efficient controller of such a nonaffine nonlinear sys-
tem, which aims at achieving desired trajectories. Furthermore, in
real engineering, control approaches of affine nonlinear systems do
not always hold and control methods for nonaffine nonlinear sys-
tems are necessary. Therefore, control problems of RL methods for
unknown nonaffine nonlinear systems are very significant in both
theory and applications.

The objective of this paper is to develop an online direct adap-
tive control based on RL methods by delivering a desired tracking
performance for MIMO unknown nonaffine nonlinear DT systems
with unknown bounded disturbances. Two NNs are employed in
the controller design: an action NN is utilized to generate the con-
trol signal. Meanwhile, by using Implicit Function Theorem, the
action NN approximation is well designed to cancel the nonlin-
earity of unknown nonlinear DT systems, for purpose of utilizing
feedback linearization methods. A critic NN is used to estimate the
prescribed cost function, which satisfies the recursive equations
derived fromHDP. The weights of both the action NN and the critic
NN are directly updated online instead of preliminary offline train-
ing. By using Lyapunov’s direct method, the closed-loop tracking
errors and the NN estimated weights are verified to be UUB.

The main contributions of the paper include the following:

1. To the best of our knowledge, it is the first time that an online
RL-based direct adaptive control is developed for the state-
form of MIMO unknown nonaffine nonlinear DT systems with
unknown bounded disturbances.

2. Compared with He and Jagannathan (2005), Yang et al. (2009),
and Yang and Jagannathan (2012), we consider nonaffine non-
linear DT systems with unknown system drift dynamics. A sig-
nificant difference between these literature and the present
paper is that, in our case, the adaptive control is developed
based on Implicit Function TheoremandRLmethods since feed-
back linearization methods cannot be directly implemented for
nonaffine nonlinear DT systems.

The rest of the paper is organized as follows. Section 2 provides
the problem statement and preliminaries. Section 3 develops an
online adaptive control by using RL approaches. Section 4 shows
the stability analysis and the performance of the closed-loop
systems. Section 5 presents two simulation results to verify the
effectiveness of the established theory. Finally, Section 6 gives
several concluding remarks.

For convenience,we introduce the notations,whichwill be used
throughout the paper.

• R denotes the real numbers, Rm and Rm×n denote the real m-
vectors and the real m × n matrices, respectively. ⊗ denotes
the Kronecker product. If there is no special explanation, T is a
transposition symbol.

• Ω is a compact set of Rmn, Cm(Ω) =

f (m)

∈ C|f :Ω → Rm

.

Let Ωi ⊂ Ω (i = 1, 2), Ω1 × Ω2 =

(x, y)|x ∈ Ω1, y ∈ Ω2


stands for the Cartesian product of Ω1 and Ω2.

• ∥·∥ stands for any suitable norm.When z is a vector,∥z∥denotes
the Euclidean norm of z. When A is a matrix, ∥A∥ denotes the
2-norm of A.
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2. Problem statement and preliminaries

2.1. Dynamics of nonaffine nonlinear DT systems

For purpose of the present paper, we consider an mnth-order
MIMO nonaffine nonlinear DT plant of the form

x1(k + 1) = x2(k)
...

xn−1(k + 1) = xn(k)
xn(k + 1) = h


x(k), u(x(k))


+ d(k)

y(k) = x1(k) (1)

with the state x(k) =

xT1(k), x

T
2(k), . . . , x

T
n(k)

T
∈ Rmn, and each

xi(k) ∈ Rm, i = 1, 2, . . . , n. u(x(k)) ∈ Rm is the control input,
which is a continuous function with respect to x(k). For conve-
nience, we denote υ(k) = u(x(k)). d(k) ∈ Rm is an unknown dis-
turbance bounded by a known constant dM > 0, i.e., ∥d(k)∥ ≤ dM .
h

x(k), υ(k)


∈ Rm is an unknown nonaffine nonlinear function

with h(0, 0) = 0, and y(k) ∈ Rm is the system output. In order to
make the controllability of the system,weprovide the assumptions
as follows.

Assumption 1. The state x(k) is available from measurement at
the k-th step for the state-feedback control.

Assumption 2. Them×mmatrix ∂h

x(k), υ(k)


/∂υ(k) is positive

definite. It implies

det


∂h


x(k), υ(k)


∂υ(k)


≠ 0 (2)

for ∀

x(k), υ(k)


∈ Ω × Rm with a compact region Ω ⊂ Rmn.

Assumption 3. Let the desired trajectory of system (1) be xd(k) =
xT1d(k), x

T
2d(k), . . . , x

T
nd(k)

T
∈ Rmn, where xid(k) is arbitrarily se-

lected and satisfies that xid(k+1) = x(i+1)d(k), i = 1, 2, . . . , n−1.
The desired output trajectory yd(k) is bounded by a known smooth
function over the compact set Ω .

FromAssumption 3 and system (1), we can obtain that x(i+1)d(k)
= yd(k + i), i = 0, 1, . . . , n − 1. Hence, the tracking error can be
defined as

ei(k) = yd(k + i) − y(k + i)
= x(i+1)d(k) − xi+1(k) (3)

where i = 0, 1, . . . , n − 1.

2.2. A basic controller design approach

The purpose of this subsection is to develop a basic approach
of the controller design for system (1). As mentioned before,
due to the output of nonaffine nonlinear systems depending
nonlinearly on the control input, feedback linearization methods
cannot directly be used to design the controller for system (1). In
order to handle this problem, we establish a novel control law for
plant (1) based on Hovakimyan, Nardi, Calise, and Kim (2002) and
Park, Huh, Kim, Seo, and Park (2005), which deals with CT adaptive
control problems. From system (1), we have

y(k + n) = h

x(k), υ(k)


+ d(k)

= αυ(k) + f

x(k), υ(k)


+ d(k) (4)

where f

x(k), υ(k)


= h


x(k), υ(k)


−αυ(k), andα > 0 is a design

constant.
Define the control input υ(k) as

υ(k) =
1
α


υs(k) − υa(k)


(5)

whereυs(k) is a feedback controller designed to stabilize linearized
error dynamics, υa(k) is an adaptive controller designed to
approximate the unknown nonlinear term f


x(k), υ(k)


by using

a single-hidden layer feedforward NN.
From (4) and (5), we obtain

y(k + n) = f

x(k), υ(k)


− υa(k) + υs(k) + d(k). (6)

In view of the objective of υs(k) and υa(k), we develop
υa(k) = f̂


x(k), υ(k)


υs(k) = yd(k + n) + λ1en−1(k) + · · · + λne0(k)

(7)

where f̂

x(k), υ(k)


is an approximation of f


x(k), υ(k)


, en−1(k),

. . . , e0(k) are the delayed values of en(k), and λ1, . . . , λn are
constant matrices selected such that

zn + λ1zn−1
+ · · · + λn

 is
stable, that is, the solutions of

zn + λ1zn−1
+ · · · + λn

 = 0 are
located inside the unit circle centered at the origin.

Let the approximation error of the unknown nonlinear function
f

x(k), υ(k)


be

f̃

x(k), υ(k)


= f̂


x(k), υ(k)


− f


x(k), υ(k)


. (8)

Then, we can develop the following lemma.

Lemma 1. Assume that the tracking error ei(k) is given by (3) and
υs(k) is proposed as in (7). Then, the error dynamics can be derived as

e(k + 1) = Ãe(k) + B̃

f̃

x(k), υ(k)


− d(k)


(9)

where

e(k) =

eT0(k), . . . , e

T
n−1(k)

T
A =

 0 1 · · · 0
...

...
...

−λn −λn−1 · · · −λ1

 B =

0
...
1


Ã = A ⊗ Im, B̃ = B ⊗ Im.

(10)

Proof. By using Assumption 3 and (3), we have that

ei(k) = yd(k + i) − y(k + i)
= xid(k + 1) − xi(k + 1)
= ei−1(k + 1) i = 1, 2, . . . , n − 1. (11)

Meanwhile, from (6) to (8), we can obtain

en(k) = −λTe(k) + f̃

x(k), υ(k)


− d(k)

where λ =

λn, λn−1, . . . , λ1

T
.

Noticing that en(k) = en−1(k + 1), we can derive

en−1(k + 1) = −λTe(k) + f̃

x(k), υ(k)


− d(k). (12)

Accordingly, combining (11) and (12), we get
e0(k + 1) = e1(k)
...

en−1(k + 1) = −λTe(k) + f̃

x(k), υ(k)


− d(k).

(13)

Rewriting (13) in the vector form, and observing the tracking error
e(k) ∈ Rmn, we can derive (9) and (10). The proof is completed.



X. Yang et al. / Neural Networks 55 (2014) 30–41 33
Remark 1. If there exists a control υa(k) successfully canceling
the term f


x(k), υ(k)


, i.e., f̃


x(k), υ(k)


= 0, and ignores the

disturbance term d(k), i.e., d(k) = 0, then the closed-loop system
becomes a linear system e(k + 1) = Ãe(k). Since λ1, . . . , λn are
constant matrices selected such that

zn + λ1zn−1
+ · · · + λn

 is
stable, it is obvious that Ã can keep the linear system e(k + 1) =

Ãe(k) stable (for short, Ã is a stable matrix). Therefore, letting
υa(k) = f


x(k), υ(k)


and d(k) = 0, υs(k) can make the tracking

error e(k) exponentially converge to zero as time increases. This
shows that the definition of υs(k) in (7) makes sense.

Before continuing our discussion, we provide the Implicit Function
Theorem for vector-valued functions, which plays a significant role
in the subsequent proof.

Lemma 2 (Implicit Function Theorem (Apostol, 1974)). Let f =

(f1, . . . , fn) be a vector-valued function defined on an open set S in
Rm+n with values in Rn. Suppose f ∈ C1 on S. Let (x0, y0) be a point
in S for which f (x0, y0) = 0, and for which the n × n determinant
det


∂f (x0, y0)/∂y0


≠ 0. Then there exists a n-dimensional open

set T0 containing y0 and one, and only one, vector-valued function
g , defined on T0 and having values in Rn, such that (i) y0 =

g(x0); (ii) for ∀ (x0, y0) ∈ T0, f

x0, g(x0)


= 0.

By utilizing (5), we can define

F

x(k), υa(k), υs(k)


= f


x(k), υ(k)


− υa(k)

= f

x(k),

υs(k) − υa(k)
α


− υa(k).

Let F

x(k), υa(k), υs(k)


= 0. Then, we have

F

x(k), υa(k), υs(k)


= f


x(k),

υs(k) − υa(k)
α


− υa(k)

= 0. (14)
From Remark 1, we know that, if ignoring the disturbance term
d(k), then the design of υs(k) is reasonable when there exists
υa(k) = f


x(k), υ(k)


. However, one may doubt whether such a

υa(k) exists or not. In other words, one may doubt whether there
exists υa(k) guaranteeing the validity of (14). In order to deal with
the problem, we develop the following theorem to show that the
controller υa(k) does exist.

Theorem 1. Assume that the following matrix inequality holds:

αθ1Im ≤
∂h


x(k), υ(k)


∂υ(k)

≤ αθ2Im (15)

where 0 < θ1 < θ2 ≤ 2. Then there exists a unique υa(k)
satisfying (14) on a compact set Ω ′

⊆ Ω .

Proof. In order to utilize Lemma 2, the proof is divided into two
parts. First, we show that there exists a solution of (14) (the
solution is written as υ∗

a (k)). Then, we show that det

∂F


x(k),

υs(k), υ∗
a (k)


/∂υ∗

a (k)


≠ 0.
(i) The proof for showing the existence of υ∗

a (k).
In light of the expression of (14), if the conclusion is true, we

have

υ∗

a (k) = f

x(k),

υs(k) − υ∗
a (k)

α


. (16)

That is, υ∗
a (k) is the fixed point of (16). Accordingly, we just need

to prove that f

x(k), ·


is the contracting operator with respect

to υa(k) on a compact set U ⊂ Rm. Since x(k) is defined on
the compact Ω and υ(k) is a continuous function with respect to
x(k), by the knowledge of Functional Analysis (Rudin, 1991), we
derive that υ(Ω) is a compact set on Rm. Hence, we can select
U = υ(Ω).
Notice that∂ f

x(k), υ(k)


∂υa(k)

 =

∂ f

x(k), υ(k)


∂υ(k)

∂υ(k)
∂υa(k)


=




∂h

x(k), υ(k)


∂υ(k)

− αIm


−

Im
α


=

Im −
∂h


x(k), υ(k)


α∂υ(k)

. (17)

By using the matrix inequality (15), we have
Im −

∂h

x(k), υ(k)


α∂υ(k)

≥ (1 − θ2)Im

Im −
∂h


x(k), υ(k)


α∂υ(k)

≤ (1 − θ1)Im.

(18)

Therefore, from (17) and (18), we get∂ f

x(k), υ(k)


∂υa(k)

 ≤ 1. (19)

Noticing that f

x(k), υ(k)


is a continuous function and


x(k), υ(k)


is defined on the compact setΩ×U , we can conclude that f


Ω×U


is a compact set on Rnm

× Rm. Consequently, we can obtain that
f

x(k), ·


is a completely continuous operator (Zeidler, 1985). By

using Schauder’s Fixed-Point Theorem (Zeidler, 1985) and from
(19), we derive that there exists at least a fixed point for the oper-
ator f


x(k), ·


on the compact set U . That is, there exists υ∗

a (k) ∈ U
satisfying (14). Observing the definition of U , therefore, there ex-
ists υ∗

a (k) defined on Ω satisfying (14).
(ii) The proof for det


∂F


x(k), υs(k), υ∗

a (k)

/∂υ∗

a (k)


≠ 0.
Note that

∂F

x(k), υs(k), υa(k)


∂υa(k)


υa(k)=υ∗

a (k)

=

∂

h

x(k), υ(k)


− αυ(k)


∂υ(k)

∂υ(k)
∂υa(k)


υa(k)=υ∗

a (k)
− Im

= −
∂h


x(k), υ(k)


∂υ(k)


υa(k)=υ∗

a (k)
.

From (2), we obtain det

∂F


x(k), υs(k), υ∗

a (k)

/∂υ∗

a (k)


≠ 0.
Therefore, combining (i) and (ii), and using Lemma2,we can obtain
that there exists a unique υa(k) satisfying (14) on a compact set
Ω ′

⊆ Ω . The proof is completed.

Remark 2. From Assumption 2, one shall notice that the matrix
inequality (15) is actually one of the properties of the positive
definite matrix ∂h


x(k), υ(k)


/∂υ(k). This technique was utilized

in both Lewis, Jagannathan, and Yesildirek (1999) and Lewis et al.
(1996). Hence, the assumption about (15) makes sense.

Remark 3. Though, by utilizing Schauder’s Fixed-Point Theorem,
we derive that there exists at least one solution υ∗

a (k) satisfying
(14) on the whole compact set Ω in part (i), it does not impair the
validity of the conclusion, for we just want to show the existence
of υ∗

a (k). In other words, υ∗
a (k) might not be unique on Ω . The

uniqueness of υ∗
a (k) is guaranteed by Implicit Function Theorem

(Lemma 2). Therefore, one shall find the solution of (14) to be
unique for a given local domain Ω ′. This feature satisfies the
nonlinearity of the function F


x(k), υa(k), υs(k)


. Moreover, from

the above analysis, we do not need f

x(k), ·


to be the strictly

contracting operator, which is a more relaxed condition than
Hovakimyan et al. (2002) and Park et al. (2005).
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Remark 4. Since there exists the controller υa(k) satisfying (16),
we can conclude that υa(k) is actually a function with respect
to x(k) and υs(k). Therefore, we can obtain that f


x(k), υ(k)


is the function with respect to x(k) and υs(k). Moreover, from
the definition of ei(k) in (3) and the expression of υs(k) in (7),
f

x(k), υ(k)


can be represented by a function with respect to x(k)

and xd(k). Accordingly, in the remainder of this paper, we denote

f

x(k), xd(k)


= f


x(k), υ(k)


and

f̃

x(k), xd(k)


= f̃


x(k), υ(k)


.

3. Online learning control based on RL

The purpose of this section is to develop an online learning
control by using RL methods. Two subsections are included in this
section. The design of the critic NN is first introduced. Then, the
design of the action NN is presented.

3.1. Critic NN and weight update law

In this subsection, a critic NN is used to approximate the cost
function J(k) defined as in (21). The utility function (Si & Wang,
2001) depending on the tracking error vector e(k) is described by

r(k) =

r1(k), . . . , rm(k)


∈ Rm (20)

with

ri(k) =


0, if

ẽi(k) ≤ ϵ

1, if
ẽi(k) > ϵ

i = 1, . . . ,m,

where ẽ(k) = λTe(k) ∈ Rm, ẽi(k) is the ith element of the vector
ẽ(k), and ϵ > 0 is a prescribed threshold. The utility function r(k)
is considered as the performance index: ri(k) = 0 and ri(k) = 1
stand for the good and poor tracking performances, respectively.
The cost function J(k) ∈ Rm (He & Jagannathan, 2005) is given by

J(k) = τN r(k + 1) + τN−1r(k + 2) + · · · + τ k+1r(N) (21)

with 0 < τ ≤ 1 a design parameter, andN the final instant of time.
From (21), we can derive

J(k) = τ J(k − 1) − τN+1r(k)

which is the Bellman equation. Hence, the prediction error for the
critic NN can be described by

ec(k) = Ĵ(k) − τ Ĵ(k − 1) + τN+1r(k) (22)

where Ĵ(k) is the output of the critic NN, and it is also an approxi-
mation of J(k).

The critic NN is implemented by a single-hidden layer feedfor-
ward NN. The critic NN output is given by

Ĵ(k) = ŵT
c (k)σ


ϑT
c x(k)


= ŵT

c (k)σc

x(k)


(23)

where ϑc ∈ Rnm×s1 is the weight vector for the input layer to
the hidden layer of the critic NN, ŵc(k) ∈ Rs1×m is the estimated
weight vector for the hidden layer to the output layer of the critic
NN, s1 is the number of nodes in the hidden layer. Since the hid-
den layer weights are initialized randomly and kept constant, the
activation function σ(ϑT

c x(k)) is written as σc(x(k)) for short.
The objective function to be minimized by the critic NN is

defined as

Ec(k) =
1
2
eTc (k)ec(k). (24)
The weight update law for the critic NN is a gradient-based
adaptation, which is given by

ŵc(k + 1) = ŵc(k) + ∆ŵc(k) (25)

where

∆ŵc(k) = lc


−

∂Ec(k)
∂ŵc(k)


= lc


−

∂Ec(k)
∂ec(k)

∂ec(k)

∂ Ĵ(k)

∂ Ĵ(k)
∂ŵc(k)


and 0 < lc < 1 is the learning rate of the critic NN.

From (22) to (25), we can derive the weight update law for the
critic NN as

ŵc(k + 1) = ŵc(k) − lcσc

x(k)


eTc (k)

= ŵc(k) − lcσc(x(k))

ŵT

c (k)σc

x(k)


+ τN+1r(k) − τŵT

c (k − 1)σc

x(k − 1)

T

. (26)

3.2. Action NN and weight update law

In this subsection, an action NN is employed to generate the
input signal and approximate the unknown nonlinear function
f

x(k), υ(k)


. Due to the controller design described by (7), the

error for the action NN should consist of the functional approxi-
mation error f̃


x(k), υ(k)


and the error between the nominal pre-

scribed cost function Jd(k) ∈ Rm and the critic NN output Ĵ(k) ∈

Rm. Noting that f̃

x(k), xd(k)


= f̃


x(k), υ(k)


, the prediction er-

ror for the action NN is proposed by

ea(k) = Ĵ(k) − Jd(k) + f̃

x(k), xd(k)


. (27)

The prescribed cost function Jd(k) is generally considered to be
zero, i.e., Jd(k) = 0, which represents that the system state can
track the reference signal well (Si & Wang, 2001). Therefore, the
prediction error given by (27) becomes

ea(k) = Ĵ(k) + f̃

x(k), xd(k)


. (28)

The action NN is also implemented by a single-hidden layer feed-
forward NN. The action NN output is given by

f̂ (k) = ŵT
a (k)σ


ϑT
a z(k)


= ŵT

a (k)σa

z(k)


(29)

where f̂ (k) stands for f̂

x(k), xd(k)


, ϑa ∈ R(n+1)m×s2 is the weight

vector for the input layer to the hidden layer of the action NN,
ŵa(k) ∈ Rs2×m is the estimated weight vector for the hidden layer
to the output layer of the actionNN, s2 is the number of nodes in the
hidden layer, and z(k) =


xT(k) xTd(k)

T
∈ R(n+1)m. Since the hid-

den layer weights are initialized randomly and kept constant, for
briefly, the activation function σ


ϑT
a z(k)


is written as σa(z(k)).

Remark 5. From (7), we shall find that the output of the action NN
is actually the controller υa(k). Meanwhile, we have that z(k) =
xT(k) xTnd(k) + eT(k)λ

T
∈ R(n+1)m.

According to the universal approximation property of NNs (Igelnik
& Pao, 1995), f (k) can accurately be represented as

f (k) = wT
aσa


z(k)


+ ε(k) (30)

where f (k) denotes f

x(k), xd(k)


, wa ∈ Rs2×m is the ideal weight

vector for the hidden layer to the output layer of the action NN, and
ε(k) is the action NN approximation error.
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Fig. 1. The developed control algorithm for nonaffine nonlinear DT systems.
Define the weight approximation error of the action NN as

w̃a(k) = ŵa(k) − wa. (31)

It is significant to note that, in this paper, the relationship be-
tween w̃c(k) and ŵc(k) is defined as the same as in (31). From (8)
and (29)–(31), the function approximation error f̃ (k) can be repre-
sented as

f̃ (k) = w̃T
a (k)σa


z(k)


− ε(k). (32)

The objective function to beminimized by the action NN is defined
as a quadratic function of error as

Ea(k) =
1
2
eTa(k)ea(k). (33)

The weight update law for the action NN is given by

ŵa(k + 1) = ŵa(k) + ∆ŵa(k) (34)

where

∆ŵa(k) = la


−

∂Ea(k)
∂ŵa(k)


= la


−

∂Ea(k)
∂ea(k)

∂ea(k)

∂ f̃ (k)

∂ f̃ (k)
∂ŵa(k)


and 0 < la < 1 is the learning rate for the action NN.

From (28)–(34), we get theweight update law for the action NN
as

ŵa(k + 1) = ŵa(k) − laσa

z(k)


eTa(k)

= ŵa(k) − laσa

z(k)


ŵT

c (k)σc

x(k)


+ w̃T

a (k)σa

z(k)


− ε(k)

T

. (35)

By using (9) and Remark 4, we have

f̃ (k) = B̃T

e(k + 1) − Ãe(k)


+ d(k). (36)

By utilizing (32) and (36), (35) can be written as

ŵa(k + 1) = ŵa(k) − laσa

z(k)


ŵT

c (k)σc

x(k)


+ B̃T


e(k + 1) − Ãe(k)


+ d(k)

T

. (37)

However, d(k) is typically unavailable. Consequently, the ideal case
of d(k) is generally considered, i.e., d(k) = 0 (He & Jagannathan,
2005; Yang & Jagannathan, 2012; Yang et al., 2009). Then, the
weight update rule (37) is represented as

ŵa(k + 1) = ŵa(k) − laσa(z(k))

ŵT

c (k)σc(x(k))

+ B̃T

e(k + 1) − Ãe(k)

T

. (38)
A general schematic programming of the proposed control
algorithm is presented in Fig. 1.

4. Stability analysis and performance of the closed-loop system

The purpose of this section is to establish our main results by
using Lyapunov’s directmethod. Before engaging in demonstrating
themain theorem,we need to develop somemild assumptions and
facts as follows:

Assumption 4. Let ideal output layer weights wa and wc be
bounded over the compact setΩ by known positive constantswaM
and wcM , respectively. That is,

∥wa∥ ≤ waM , ∥wc∥ ≤ wcM .

Assumption 5. Let the NN approximation error ε(k) be bounded
by a known positive constant εM over the compact set Ω . That is,
∥ε(k)∥ ≤ εM .

Fact 1. The activation functions for the action NN and the critic NN
are bounded by known positive constants over the compact set Ω .
That is, there exist σaM > 0 and σcM > 0 such that

∥σa

z(k)


∥ ≤ σaM , ∥σc


x(k)


∥ ≤ σcM . (39)

Fact 2. From Remark 1, we know that Ã is a stable matrix. Hence,
there exists a positive definite matrix P ∈ Rmn×mn satisfying the
Lyapunov equation

ÃTPÃ − P = −βImn (40)

where β is a positive constant.

Fact 3. By the same technique used in Lewis et al. (1999), there
exist two known positive constants ϱ and ρ (ϱ < ρ) such that

ϱIm ≤ B̃TPB̃ ≤ ρIm. (41)

Remark 6. From the definition of B̃ in (10), we derive that B̃ ∈

Rmn×m and rank(B̃) = m. Noting that P ∈ Rmn×mn is positive
definite, by using the corollary developed in Matrix Analysis (Horn
& Johnson, 1985, p. 399), we obtain that B̃TPB̃ ∈ Rm×m is positive
definite. Then, by utilizing the property of the positive definite
matrixwhich has been used in Lewis et al. (1999),we can get Fact 3.

Next, several lemmas are developed to lay bases for deriving our
main theorem.
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Lemma 3. Let Assumptions 1–5 hold. Taking the control input as (5),
and combining (9), (32), (40), (41), we can derive that the first
difference of

L1(k) = γ1eT(k)Pe(k)

as

∆L1(k) ≤ 2γ1(ρ + η)∥ε(k) + d(k)∥2

+ 2γ1(ρ + η)∥ξa(k)∥2
− γ1(β − 1)∥e(k)∥2 (42)

where η = ∥ÃTPB̃∥2, ξa(k) = w̃T
a (k)σa


z(k)


, and γ1 > 0 is a design

parameter.

Proof. The first difference of L1(k) is

∆L1(k) = γ1

eT(k + 1)Pe(k + 1) − eT(k)Pe(k)


.

Define Q (k) = ξa(k)−

ε(k)+ d(k)


. Combining (9), (32), (40) and

(41), we obtain

∆L1(k) = γ1

Ãe(k) + B̃Q (k)

T
P

Ãe(k) + B̃Q (k)


− γ1eT(k)Pe(k)

= γ1eT(k)

ÃTPÃ − P


e(k) + 2γ1eT(k)

× ÃTPB̃Q (k) + γ1Q T(k)

B̃TPB̃


Q (k)

≤ −γ1β∥e(k)∥2
+ 2γ1eT(k)ÃTPB̃Q (k) + γ1ρ∥Q (k)∥2

≤ γ1

ρ + ∥ÃTPB̃∥2

∥Q (k)∥2
− γ1(β − 1)∥e(k)∥2. (43)

Applying the Cauchy–Schwarz inequality ∥x + y∥2
≤ 2∥x∥2

+

2∥y∥2 to ∥Q (k)∥2 and using (43), we can obtain (42). The proof is
completed.

Lemma 4. Given that Assumptions 1–5 hold. Take the control input
as (5), and the utility function as defined in (20). Combining (23) and
(26), we can obtain the first difference of

L2(k) =
γ2

lc
tr


w̃T

c (k)w̃c(k)


as

∆L2(k) ≤ −γ2∥ξc(k)∥2
− γ2


1 − lc

σc

x(k)

2


×
ξc(k) + wT

c σc

x(k)


+ τN+1r(k)

− τŵT
c (k − 1)σc


x(k − 1)

2

+2τ 2γ2∥ξc(k − 1)∥2
+ 2γ2

wT
c σc


x(k)


+ τN+1r(k) − τwT

c σc

x(k − 1)

2
(44)

where ξc(k) = w̃T
c (k)σc


x(k)


and γ2 > 0 is a design parameter.

Proof. The first difference of L2(k) is

∆L2(k) =
γ2

lc
tr


w̃T

c (k + 1)w̃c(k + 1) − w̃T
c (k)w̃c(k)


. (45)

Observing that w̃c(k) = ŵc(k) − wc and using (26), we have

w̃c(k + 1) =


Is1 − lcσc


x(k)


σ T
c


x(k)


w̃c(k)

− lcσc

x(k)


wT

c σc

x(k)


+ τN+1r(k)

− τŵT
c (k − 1)σc


x(k − 1)

T

. (46)

Combining (45) and (46), we obtain

∆L2(k) =
γ2

lc
tr


R1(k) + R2(k) + R3(k)


(47)
where

R1(k) =


Is1 − lcσc


x(k)


σ T
c


x(k)


w̃c(k)

T

×


Is1 − lcσc


x(k)


σ T
c


x(k)


w̃c(k)


− w̃T

c (k)w̃c(k)

= −lc

1 − lc

σc(x(k))
2


ξc(k)ξ T

c (k) − lcξc(k)ξ T
c (k)

R2(k) = −2w̃T
c (k)


Is1 − lcσc


x(k)


σ T
c


x(k)


× lcσc


x(k)


wT

c σc

x(k)


+ τN+1r(k)

− τŵT
c (k − 1)σc


x(k − 1)

T

= −2lcξc(k)

1 − lc

σc(x(k))
2


×


wT

c σc

x(k)


+ τN+1r(k)

− τŵT
c (k − 1)σc


x(k − 1)

T

and

R3(k) = l2c

wT

c σc

x(k)


+ τN+1r(k)

− τŵT
c (k − 1)σc


x(k − 1)


σ T
c


x(k)


× σc


x(k)


wT

c σc

x(k)


+ τN+1r(k)

− τŵT
c (k − 1)σc


x(k − 1)

T

= l2c
σc(x(k))

2

wT

c σc

x(k)


+ τN+1r(k)

− τŵT
c (k − 1)σc


x(k − 1)


wT

c σc

x(k)


+ τN+1r(k) − τŵT

c (k − 1)σc

x(k − 1)

T

.

Define

M(k) = wT
c σc


x(k)


+ τN+1r(k) − τŵT

c (k − 1)σc

x(k − 1)


. (48)

From (47), we derive

∆L2(k) = γ2tr

−


1 − lc

σc

x(k)

2

ξc(k)ξ T

c (k)

− 2ξc(k)

1 − lc

σc

x(k)

2

MT(k)

+ lc
σc


x(k)

2
M(k)MT(k) − ξc(k)ξ T

c (k)


= −γ2ξ
T
c (k)ξc(k) −


1 − lc

σc

x(k)

2


× γ2


ξ T
c (k)ξc(k) + 2ξ T

c (k)M(k)


+ γ2lc
σc


x(k)

2
MT(k)M(k)

= −γ2∥ξc(k)∥2
−


1 − lc

σc

x(k)

2


× γ2∥ξc(k) + M(k)∥2
+ γ2∥M(k)∥2. (49)

Observe that (48) can be rewritten as

M(k) = wT
c σc


x(k)


+ τN+1r(k)

− τwT
c σc


x(k − 1)


− τξc


x(k − 1)


. (50)

Applying the Cauchy–Schwarz inequality ∥x+y∥2
≤ 2∥x∥2

+2∥y∥2

to ∥M(k)∥2, and combining (49) and (50), we can derive (44). The
proof is completed.



X. Yang et al. / Neural Networks 55 (2014) 30–41 37
Lemma 5. Suppose that Assumptions 1–5 hold. Take the control
input as (5), and the utility function as defined in (20). Combining (23)
and (38), we can derive the first difference of

L3(k) =
γ3

la
tr


w̃T

a (k)w̃a(k)


as

∆L3(k) ≤ 2γ3
wT

c σc

x(k)


− ε(k) − d(k)

2

+ 2γ3∥ξc(k)∥2
− γ3∥ξa(k)∥2

− γ3


1 − la

σa(z(k))
2

ŵT
c (k)σc


x(k)


+ ξa(k) − ε(k) − d(k)

2
(51)

where ξa(k) = w̃T
a (k)σa


z(k)


and γ3 > 0 is a design parameter.

Proof. The first difference of L3(k) is

∆L3(k) =
γ3

la
tr


w̃T

a (k + 1)w̃a(k + 1) − w̃T
a (k)w̃a(k)


. (52)

Combining (9), (31) and (38), we obtain

w̃a(k + 1) = w̃a(k) − laσa

z(k)


ŵT

c (k)σc

x(k)


+ ξa(k) − ε(k) − d(k)

T

. (53)

Define

N(k) = ŵT
c (k)σc


x(k)


+ ξa(k) − ε(k) − d(k).

From (52) and (53), we have

∆L3(k) =
γ3

la
tr


−law̃T

a (k)σa

z(k)


NT(k) − laN(k)

× σ T
a


z(k)


w̃a(k) − laσa


z(k)


NT(k)


= −γ3tr


ξa(k)NT(k) + N(k)

×


ξ T
a (k) − la

σa

z(k)

2
NT(k)


= laγ3

σa

z(k)

2
NT(k)N(k) − 2γ3ξ

T
a (k)N(k)

= laγ3
σa


z(k)

2
∥N(k)∥2

+ γ3∥ξa(k) − N(k)∥2
− γ3∥N(k)∥2

− γ3∥ξa(k)∥2. (54)

Notice that N(k) can be rewritten as

N(k) = wT
c σc


x(k)


+ ξa(k) − ε(k) − d(k) + ξc(k). (55)

Applying the Cauchy–Schwarz inequality ∥x+y∥2
≤ 2∥x∥2

+2∥y∥2

to ∥ξa(k) − N(k)∥2 and using (54) and (55), we can get (51). The
proof is completed.

With the aid of Assumptions 1–5 and Facts 1–3, our main theorem
is established.

Theorem 2. Consider the nonaffine nonlinear system described by
(1). Let Assumptions 1–5 hold. Take the control input for sys-
tem (1) as (5) with (7) and the critic NN (23), as well as the action
NN (29). Moreover, let the weight update law for the critic NN and
the action NN be (26) and (38), respectively. Then, the tracking error
vector e(k), the weights of estimation error for the action NN w̃a(k),
and the weights of estimation error for the critic NN w̃c(k) are UUB by
positive constants D1, D2 and D3, respectively, which are given by

D1 =


B2

M

γ1(β − 1)

D2 =
1

σaM


B2

M

γ3 − 2γ1(ρ + η)

D3 =
1

σcM


B2

M

(1 − 2τ 2)γ2 − 2γ3

provided that the following conditions hold:

(a) β > 1

(b) 0 < lc
σc


x(k)

2
< 1

(c) 0 < la
σa


z(k)

2
< 1

(d) 0 < τ <

√
2
2

.

(56)

Proof. Consider the Lyapunov function candidate

L(k) = L1(k) + L2(k) + L3(k) + L4(k)

where

L1(k) = γ1eT(k)Pe(k)

L2(k) =
γ2

lc
tr


w̃T

c (k)w̃c(k)


L3(k) =
γ3

la
tr


w̃T

a (k)w̃a(k)


L4(k) = γ4∥ξc(k − 1)∥2.

The first difference of the Lyapunov function candidate is

∆L(k) = ∆L1(k) + ∆L2(k) + ∆L3(k) + ∆L4(k). (57)

For convenience, we denote

P(k) = wT
c σc


z(k)


+ τN+1r(k) − τwT

c σc

x(k − 1)


.

By employing Lemmas 3–5 and utilizing (57), we derive

∆L(k) ≤ −γ1(β − 1)∥e(k)∥2
+ B2(k)

−

γ2 − 2γ3 − γ4


∥ξc(k)∥2

−

γ4 − 2τ 2γ2


∥ξc(k − 1)∥2

−

γ3 − 2γ1(ρ + η)


∥ξa(k)∥2

− γ2


1 − lc

σc

x(k)

2

∥ξc(k) + M(k)∥2

− γ3


1 − la∥σa


z(k)


∥
2

∥N(k)∥2 (58)

where

B2(k) = 2γ2∥P(k)∥2
+ 2γ3

wT
c σc(k) − ε(k) − d(k)

2

+ 2γ1(ρ + η)∥ε(k) + d(k)∥2.

By using Assumptions 4–5 and the Cauchy–Schwarz inequality, we
obtain

B2(k) ≤ (12γ2 + 6γ3)w
2
cMσ 2

cM + 6γ2r2M
+


6γ3 + 4γ1(ρ + η)


ε2
M + d2M


, B2

M (59)

where rM is an upper bound of ∥r(k)∥, i.e., ∥r(k)∥ ≤ rM .
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The parameters ri (i = 1, 2, 3) are selected to satisfy that

γ1 <
γ3

2(ρ + η)
, γ2 =

γ4

2τ 2
, and γ2 >

2γ3

1 − 2τ 2
. (60)

Therefore, by using (56) and (60), we can conclude that (58) and
(59) yield ∆L(k) < 0 as long as one of the following conditions
holds:

∥e(k)∥ >


B2

M

γ1(β − 1)

or

∥ξa(k)∥ >


B2

M

γ3 − 2γ1(ρ + η)
(61)

or

∥ξc(k)∥ >


B2

M

(1 − 2τ 2)γ2 − 2γ3
(62)

where ri > 0 (i = 1, 2, 3) are design parameters, β, ρ, and η are
defined as in (40)–(42), respectively.

Note ∥ξa(k)∥ ≤ σaM∥w̃a(k)∥, ∥ξc(k)∥ ≤ σcM∥w̃c(k)∥. Then, by
using (61) and (62), we can derive

∥w̃a(k)∥ >
1

σaM


B2

M

γ3 − 2γ1(ρ + η)

∥w̃c(k)∥ >
1

σcM


B2

M

(1 − 2τ 2)γ2 − 2γ3
,

where σaM and σcM defined as in (39). By using the standard
Lyapunov extension theorem (Lewis et al., 1999), we can draw the
conclusion that the tracking error vector e(k), the weights of esti-
mation error for the actionNN w̃a(k), and theweights of estimation
error for the critic NN w̃c(k) are all UUB. The proof is completed.

5. Numerical examples

In order to verify our theoretical results, two examples are
provided for numerical experiments.

5.1. Example 1

Our first example is selected from Zhang, Ge, and Lee (2002).
We consider nonaffine nonlinear DT systems described by

x1(k + 1) = x2(k)

x2(k + 1) =
x1(k)x2(k)


x1(k) + 2.5


1 + x21(k) + x22(k)

+ u(k) + 0.1u3(k) + d(k)

y(k) = x1(k) (63)

where d(k) is a bounded external disturbance, and has the form

d(k) = 0.1 cos(0.001k).

The control objective is to control the system output y(k) to track
the prescribed trajectory yd(k) = 0.6 sin(πk/265). From (63), we
can obtain

∂h

x(k), u(k)


/∂u(k) = 1 + 0.3u2(k).

Obviously, det

∂h


x(k), u(k)


/∂u(k)


≠ 0. Select Ω = [−1, 1] ×

[−1, 1]. Since u(x(k)) is a continuous function with respect to
x(k), we can conclude that u(x(k)) is bounded on Ω . Hence,
∂h(x(k), u(k))/∂u(k) is bounded on Ω .
The initial state is chosen to be x0 = [0.5, −0.5]T. Let λ1 =

1, λ2 = 0.25 (i.e., z2 + λ1z + λ2 is stable). Meanwhile, we select
α = 2, β = 2, τ = 0.7, and the prescribed threshold ϵ = 8×10−3.
The learning rates of the action NN and the critic NN are selected
as la = 0.01 and lc = 0.001, respectively. Define

∆(k) = υa(k) − f

x(k), υ(k)


(64)

where f (x(k), υ(k)) is defined as in (4). In fact, ∆(k) is the NN
approximation error, which is utilized to show the performance of
the approximation of the action NN canceling the nonlinearity of
system (63).

Both the action NN and the critic NN are implemented by a
single-hidden layer feedforwardNN.Without loss of generality, the
initial weights for the input layer to the hidden layer are selected
randomly within an interval of [0, 1] and held as constants.
Meanwhile, the initial weights for the output layer are selected
randomly within an interval of [−0.5, 0.5]. There are 8 nodes in
the hidden-layer of the action NN, i.e., the structure of the action
NN is 3–8–1. Meanwhile, the structure of the critic NN is chosen
to be 2–8–1. It is worth pointing out that selecting the structure of
an NN is more of an art than science (Padhi, Unnikrishnan, Wang,
& Balakrishnan, 2006). In this example, the number of neurons
is derived by computer simulations, and we find that choosing 8
neurons for the hidden layer can lead to satisfactory simulation
results.

The computer simulation results are shown by Figs. 2–5. Fig. 2
shows the trajectories of y(k) and yd(k). Fig. 3 presents the
tracking error e(k). Fig. 4 illustrates the control input u(k). Fig. 5
indicates the NN approximation error ∆(k). From Figs. 2–5, it
is observed that the developed controller can make the system
output y(k) track the desired trajectory yd(k) verywell.Meanwhile,
the tracking error can converge to a small neighborhood of zero. It
is also observed that the approximation of the actionNN can cancel
the nonlinearity of system (63) well except for several peaks, and
all signals involved in the closed-loop system are bounded. Due
to the property of NNs, one shall find that the peaks of the NN
approximation error have a close connectionwith the performance
of system dynamics. If h


x(k), u(k)


is smooth enough, the peaks

of the NN approximation error can be alleviated. In addition, from
Fig. 2, we find that it costs about 10 time steps for the system
output y(k) to track the desired trajectory yd(k), which is faster
than themethod proposed in Zhang et al. (2002). Meanwhile, from
Fig. 3, we find that the peak of the tracking error becomes smaller
as time increases. Compared with Zhang et al. (2002), in our case,
the tracking performance is much better.

5.2. Example 2

The purpose of this section is to further examine our method.
Consider an MIMO nonaffine nonlinear DT system described by

x11(k + 1) = x21(k)
x12(k + 1) = x22(k)
x21(k + 1) = 0.4x22(k) − 0.3 cos(x21(k))

+ 0.2u1(k) − 0.1 tanh(u2(k)) + d1(k)
x22(k + 1) = 0.1x11(k) + 0.2u2(k)

− 0.3 sin2x22(k)u1(k) + d2(k)
y1(k) = x11(k)
y2(k) = x12(k) (65)

where x1(k) = [x11(k), x12(k)]T, x2(k) = [x21(k), x22(k)]T, u(k) =

[u1(k), u2(k)]T, y(k) = [y1(k), y2(k)]T and d(k) = [d1(k), d2(k)]T,
di(k) = 0.01 sin(k), i = 1, 2.

The control objective is to control the system output y(k) to
track the desired trajectory yd(k) which is given by yd(k) =

[2.6 sin(kπ/200), 3 cos(kπ/180)]T.
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Fig. 2. Trajectories of y(k) and yd(k) in Example 1.

Fig. 3. Tracking error e(k) in Example 1.

Fig. 4. Control input u(k) in Example 1.

From (65), we can derive

∂h

x(k), u(k)


/∂u(k)

=


0.2 −0.4/(ex + e−x)2

−0.3 sin2x22(k) 0.2


.

Fig. 5. NN approximation error ∆(k) in Example 1.

Fig. 6. Trajectories of y1(k) and y1d(k) in Example 2.

Then, one can easily find that ∂h

x(k), u(k)


/∂u(k) is a positive

definite matrix. Meanwhile, one can also get

0.01I2 ≤ ∂h

x(k), u(k)


/∂u(k) ≤ 0.04I2.

Choose Ω = [−3, 3] × [−3, 3], and the initial state is selected to
be x0 = [1, 0.31, 1, 0.31]T. The design parameters are chosen to
be the same as in Example 1. A single-hidden layer NN is applied
to both the action NN and the critic NN, and the initial weights are
selected in the same way as in Example 1. The structures of the
action NN and the critic NN are designed as 6-30-2 and 4-24-2,
respectively. In this example, the number of neurons in the hidden
layers for both the action NN and the critic NN is obtained by
computer simulations, and we find that it can lead to satisfactory
simulation results.

The computer simulation results are presented in Figs. 6–10.
Figs. 6 and 7 show the trajectories of y1(k) and y1d(k), and y2(k)
and y2d(k), respectively. Fig. 8 describes tracking errors e0(k) and
e1(k), which are the components of the tracking error vector e(k).
Fig. 9 indicates the control input ui(k) (i = 1, 2), which consist
of the control vector u(k). Fig. 10 describes the NN approximation
error∆i(k) (i = 1, 2), which consist of theNN approximation error
vector ∆(k) defined as in (64). From the simulation results, it is
observed that the system output y(k) tracks the desired trajectory
yd(k) very well, and the tracking errors converge to a small
neighborhood of zero. It is also observed that the approximation of
action NN can cancel the nonlinearity of system (65) rather well.
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Fig. 7. Trajectories of y2(k) and y2d(k) in Example 2.

Fig. 8. Tracking errors e0(k) and e1(k) in Example 2.

Fig. 9. Control input u(k) in Example 2.

Moreover, we can find that all signals involved in the closed-loop
system are bounded.
Fig. 10. NN approximation errors ∆1(k) and ∆2(k) in Example 2.

6. Conclusion

In this paper, we have developed an RL-based direct adaptive
control law, which delivers a desired tracking performance for a
class of unknown nonaffine nonlinear DT systems with unknown
bounded disturbances. In order to utilize feedback linearization
methods, the controller is divided into two parts: the first part of
the controller is the feedback controller designed to stabilize lin-
earized dynamics; the second part of the controller is the feedfor-
ward controller designed to cancel the nonlinearity of nonaffine
nonlinear DT systems. The actor–critic architecture is employed
in the controller design. Based on the presented architecture, the
action NN and the critic NN are tuned online. By using Lyapunov’s
direct method, the uniform ultimate boundedness of both the
closed-loop tracking errors and theNNweight estimates is demon-
strated. The computer simulation results indicate that the devel-
oped online controller can perform control successfully and attain
the desired performance. A limitation of the practical applicability
of the presented method is that the full states of nonaffine nonlin-
ear DT systems are required to be available. In addition, it should
be mentioned that, in this paper, the system is unknown implying
that the knowledge of the nonaffine nonlinear function in the sys-
tem is unavailable. In our future work, we shall focus on relaxing
this condition.

References

Al-Tamimi, A., Lewis, F. L., & Abu-Khalaf, M. (2008). Discrete-time nonlinear
HJB solution using approximate dynamic programming: convergence proof.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 38(4),
943–949.

Apostol, T. M. (1974). Mathematical analysis (2nd ed.). Cambridge, MA: Addison-
Wesley.

Bellman, R. E. (1957). Dynamic programming. Princeton, New Jersey: Princeton
University Press.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-dynamic programming. Cambridge,
MA: Athena Scientific.

Bhasin, S., Kamalapurkar, R., Johnson, M., Vamvoudakis, K. G., Lewis, F. L., &
Dixon,W. E. (2013). A novel actor-critic-identifier architecture for approximate
optimal control of uncertain nonlinear systems. Automatica, 49(1), 82–92.

Chemachema, M. (2012). Output feedback direct adaptive neural network control
for uncertain SISO nonlinear systems using a fuzzy estimator of the control
error. Neural Networks, 36, 25–34.

Chen, F. C., & Khalil, H. K. (1995). Adaptive control of a class of nonlinear discrete-
time systems using neural networks. IEEE Transactions on Automatic Control,
40(5), 791–801.

Deng, H., Li, H. X., & Wu, Y. H. (2008). Feedback-linearization-based neural
adaptive control for unknown nonaffine nonlinear discrete-time systems. IEEE
Transactions on Neural Networks, 19(9), 1615–1625.

Ge, S. S., Hang, C. C., & Zhang, T. (1999). Adaptive neural network control of
nonlinear systems by state and output feedback. IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, 29(6), 818–828.

http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref1
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref2
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref3
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref4
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref5
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref6
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref7
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref8
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref9


X. Yang et al. / Neural Networks 55 (2014) 30–41 41
Haykin, S. (2008). Neural networks and learning machines (3rd ed.). New Jersey:
Prentice Hall.

He, P., & Jagannathan, S. (2005). Reinforcement learning-based output feedback
control of nonlinear systems with input constraints. IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, 35(1), 150–154.

Horn, R. A., & Johnson, C. R. (1985).Matrix analysis. NewYork: CambridgeUniversity
Press.

Hovakimyan, N., Nardi, F., Calise, A., & Kim, N. (2002). Adaptive output feedback
control of uncertain nonlinear systems using single-hidden-layer neural
networks. IEEE Transactions on Neural Networks, 13(6), 1420–1431.

Igelnik, B., & Pao, Y. H. (1995). Stochastic choice of basis functions in adaptive
function approximation and the function-link net. IEEE Transactions on Neural
Networks, 6(6), 1320–1329.

Lewis, F. L., Jagannathan, S., & Yesildirek, A. (1999). Neural network control of robot
manipulators and nonlinear systems. London: Taylor & Francis.

Lewis, F. L., Lendaris, G., & Liu, D. (2008). Special issue on approximate
dynamic programming and reinforcement learning for feedback control. IEEE
Transactions on Systems, Man, Cybernetics, Part B, Cybernetics, 38(4), 896–897.

Lewis, F. L., & Vamvoudakis, K. G. (2011). Reinforcement learning for partially ob-
servable dynamic processes: adaptive dynamic programming using measured
output data. IEEE Transactions on Systems, Man, Cybernetics, Part B, Cybernetics,
41(1), 14–25.

Lewis, F. L., Vrabie, D., & Vamvoudakis, K. G. (2012). Reinforcement learning and
feedback control: using natural decision methods to design optimal adaptive
controllers. IEEE Control Systems, 32(6), 76–105.

Lewis, F. L., Yesildirek, A., & Liu, K. (1996). Multilayer neural-net robot controller
with guaranteed tracking performance. IEEE Transactions on Neural Networks,
7(2), 388–399.

Liu, W., Venayagamoorthy, G. K., & Wunsch, D. C., II (2003). Design of an adaptive
neural network based power system stabilizer. Neural Networks, 16(5–6),
891–898.

Liu, D., Wang, D., & Yang, X. (2013). An iterative adaptive dynamic programming
algorithm for optimal control of unknown discrete-time nonlinear systems
with constrained inputs. Information Sciences, 220(20), 331–342.

Liu, D., & Wei, Q. (2013). Finite-approximation-error-based optimal control
approach for discrete-time nonlinear systems. IEEE Transactions on Cybernetics,
43(2), 779–789.

Liu, D., Yang, X., & Li, H. (2013). Adaptive optimal control for a class of continuous-
time affine nonlinear systems with unknown internal dynamics. Neural
Computing and Applications, 23(7–8), 1843–1850.

Liu, D., Zhang, Y., & Zhang, H. (2005). A self-learning call admission control
scheme for CDMA cellular networks. IEEE Transactions on Neural Networks,
16(5), 1219–1228.

Murray, J. J., Cox, C. J., Lendaris, G. G., & Saeks, R. (2002). Adaptive dynamic
programming. IEEE Transactions on Systems, Man and Cybernetics, Part C:
Applications and Reviews, 32(2), 140–153.

Nakanishi, J., & Schaal, S. (2004). Feedback error learning and nonlinear adaptive
control. Neural Networks, 17(10), 1453–1465.

Narendra, K. S., & Mukhopadhyay, S. (1994). Adaptive control of nonlinear
multivariable systems using neural networks. Neural Networks, 7(5), 737–752.

Noriega, J. R., & Wang, H. (1998). A direct adaptive neural-network control for
unknown nonlinear systems and its applications. IEEE Transactions on Neural
Networks, 9(1), 27–34.

Padhi, R., Unnikrishnan, N., Wang, X., & Balakrishnan, S. N. (2006). A single network
adaptive critic (SNAC) architecture for optimal control synthesis for a class of
nonlinear systems. Neural Networks, 19(10), 1648–1660.

Park, J. H., Huh, S. H., Kim, S. H., Seo, S. J., & Park, G. T. (2005). Direct
adaptive controller for nonaffine nonlinear systems using self-structuring
neural networks. IEEE Transactions on Neural Networks, 16(2), 414–422.
Prokhorov, D. V., & Wunsch, D. C. (1997). Adaptive critic designs. IEEE Transactions
on Neural Networks, 8(5), 997–1007.

Rudin, W. (1991). Functional analysis (2nd ed.). Singapore: McGraw-Hill, Inc.
Si, J., & Wang, Y. T. (2001). On-line learning control by association and

reinforcement. IEEE Transactions on Neural Networks, 12(2), 264–276.
Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning—an introduction.

Cambridge, MA: MIT Press.
Vamvoudakis, K. G., & Lewis, F. L. (2010). Online actor-critic algorithm to solve the

continuous-time infinite horizon optimal control problem. Automatica, 46(5),
878–888.

Vamvoudakis, K. G., & Lewis, F. L. (2011). Multi-player non-zero-sum games: online
adaptive learning solution of coupled Hamilton–Jacobi equations. Automatica,
47(8), 1556–1569.

Wang, D., Liu, D., & Wei, Q. (2012). Finite-horizon neuro-optimal tracking
control for a class of discrete-time nonlinear systems using adaptive dynamic
programming approach. Neurocomputing , 78(1), 14–22.

Wang, D., Liu, D., Wei, Q., Zhao, D., & Jin, N. (2012). Optimal control of
unknown nonaffine nonlinear discrete-time systems based on adaptive
dynamic programming. Automatica, 48(8), 1825–1832.

Wang, F. Y., Zhang, H., & Liu, D. (2009). Adaptive dynamic programming: an
introduction. IEEE Computational Intelligence Magazine, 4(2), 39–47.

Wei, Q., & Liu, D. (2012). An iterative ε-optimal control scheme for a class of
discrete-time nonlinear systems with unfixed initial state. Neural Networks, 32,
236–244.

Werbos, P. J. (1991). A menu of designs for reinforcement learning over time.
In W. T. Miller, R. S. Sutton, & P. J. Werbos (Eds.), Neural networks for control
(pp. 67–95). Cambridge, MA: MIT Press.

Werbos, P. J. (1992). Approximate dynamic programming for real-time control and
neural modeling. In D. A. White, & D. A. Sofge (Eds.), Handbook of intelligent
control (pp. 493–525). New York: Van Nostrand Reinhold.

Werbos, P.J. (2007). Using ADP to understand and replicate brain intelligence: the
next level design. In Proceedings of the IEEE symposium on approximate dynamic
programming and reinforcement learning (pp. 209–216). Honolulu, HI, April.

Werbos, P. J. (2008). ADP: the key direction for future research in intelligent
control andunderstanding brain intelligence. IEEE Transactions on Systems,Man,
Cybernetics, Part B, Cybernetics, 38(4), 898–900.

Yang, Q., & Jagannathan, S. (2012). Reinforcement learning controller design for
affine nonlinear discrete-time systems using approximators. IEEE Transactions
on Systems, Man, and Cybernetics, Part B: Cybernetics, 42(2), 377–390.

Yang, X., Liu, D., & Huang, Y. (2013). Neural-network-based online optimal control
for uncertain non-linear continuous-time systems with control constraints. IET
Control Theory & Applications, 7(17), 2037–2047.

Yang, L., Si, J., Tsakalis, K. S., & Rodriguez, A. A. (2009). Direct heuristic dynamic
programming for nonlinear tracking control with filtered tracking error.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 19(6),
1617–1622.

Yang, Q., Vance, J. B., & Jagannathan, S. (2008). Control of nonaffine nonlinear
discrete-time systems using reiforcement-learning-based linearly parameter-
ized neural networks. IEEE Transactions on Systems, Man, Cybernetics, Part B, Cy-
bernetics, 38(4), 994–1001.

Yu, W. (2009). Recent advances in intelligent control systems. London: Springer-
Verlag.

Zeidler, E. (1985).Nonlinear functional analysis and its applications: part 1: fixed-point
theorems. New York: Springer-Verlag.

Zhang, J., Ge, S.S., & Lee, T.H. (2002). Direct RBF neural network control of a class of
discrete-time nonaffine nonlinear systems. In Proceeding of the American control
conference (pp. 424–429). Anchorage, AK, May.

Zhang, H., Wei, Q., & Liu, D. (2011). An iterative adaptive dynamic programming
method for solving a class of nonlinear zero-sum differential games.
Automatica, 47(1), 207–214.

http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref10
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref11
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref12
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref13
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref14
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref15
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref16
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref17
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref18
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref19
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref20
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref21
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref22
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref23
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref24
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref25
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref26
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref27
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref28
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref29
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref30
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref31
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref32
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref33
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref34
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref35
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref36
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref37
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref38
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref39
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref40
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref41
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref42
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref44
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref45
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref46
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref47
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref48
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref49
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref50
http://refhub.elsevier.com/S0893-6080(14)00071-9/sbref52

	Discrete-time online learning control for a class of unknown nonaffine nonlinear systems using reinforcement learning
	Introduction
	Problem statement and preliminaries
	Dynamics of nonaffine nonlinear DT systems
	A basic controller design approach

	Online learning control based on RL
	Critic NN and weight update law
	Action NN and weight update law

	Stability analysis and performance of the closed-loop system
	Numerical examples
	Example 1
	Example 2

	Conclusion
	References


