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In this paper, the adaptive dynamic programming (ADP) approach is utilized to design a neural-network-
based optimal controller for a class of unknown discrete-time nonlinear systems with quadratic cost
function. To begin with, a neural network identifier is constructed to learn the unknown dynamic system
with stability proof. Then, the iterative ADP algorithm is developed to handle the nonlinear optimal

programming (SN-DHP) technique, which eliminates the use of action network, is introduced to
implement the iterative ADP algorithm. Finally, two simulation examples are included to illustrate the
effectiveness of the present approach.
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1. Introduction

The researches of nonlinear systems have been the focus of
control field for many decades and various topics are concerned,
such as nonlinear adaptive control [1–3], nonlinear optimal control
[4–7], etc. Among that, the nonlinear optimal control problem
often requires solving the nonlinear Hamilton–Jacobi–Bellman
(HJB) equation [4–7]. However, the discrete-time HJB (DTHJB)
equation is more difficult to deal with than the Riccati equation
because it involves solving nonlinear partial difference equations.
Though dynamic programming (DP) has been an useful computa-
tional technique in solving optimal control problems for many
years, it is often computationally untenable to run it to obtain the
optimal solution, due to the well-known “curse of dimensionality”
[8]. What is worse, the backward direction of the search process
precludes the use of DP in practical control tasks.

In Ref. [9], Poggio and Girosi indicated that the problem of
learning between input and output spaces is equivalent to that of
synthesizing an associative memory that retrieves appropriate
output when the input is presented and generalizes when a new
input is applied. With strong capabilities of self-learning and
ll rights reserved.
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adaptivity, artificial neural networks (ANN or NN) have become
an effective tool to implement intelligent control [10–13]. Accord-
ingly, they are always used for universal function approximation in
adaptive/approximate dynamic programming (ADP) algorithms,
which were proposed in [11–13] as a method to solve optimal
control problem forward-in-time. There are several synonyms
used for ADP, including “approximate dynamic programming”
[12], “neuro-dynamic programming” [14], “adaptive critic design”
[15], “neural dynamic programming” [16], “adaptive dynamic
programming” [17,18], and “reinforcement learning” [19].

As an emerging and promising intelligent control method, in
recent years, ADP and the related research have gained much
attention from researchers [12–37]. According to [12,15], ADP
approaches were classified into several main schemes: heuristic
dynamic programming (HDP), action-dependent HDP (ADHDP),
also known as Q-learning [22], dual heuristic dynamic program-
ming (DHP), ADDHP, globalized DHP (GDHP), and ADGDHP. Padhi
et al. [23] presented the single network adaptive critic (SNAC)
architecture, by eliminating the use of one NN, which results in a
simpler architecture, less computational load and elimination
of the approximation error associated with the eliminated NN.
Liu and Jin [27] developed an ε�ADP algorithm for finite horizon
discrete-time nonlinear systems. Al-Tamimi et al. [30] proposed a
greedy iterative HDP algorithm to solve the DTHJB equation of the
optimal control problem for discrete-time nonlinear systems.
Zhang et al. [31] studied the near-optimal control for a class of
discrete-time affine nonlinear systems with control constraints
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using DHP scheme. Abu-Khalaf and Lewis [32] and Vrabie and
Lewis [33] studied the continuous-time optimal control problem
using ADP approach. Additionally, in order to control the unknown
system, Kim and Lewis [37] gave a model-free H∞ control design
scheme for unknown linear discrete-time system via Q-learning,
which was expressed in the form of linear matrix inequality.
Campi and Savaresi [38] proposed a virtual reference feedback
tuning approach which was in fact a data-based method.

Note that in most existing structures of iterative ADP algorithm,
like DHP [31] and GDHP [36], up to three networks have to be
built. The complicated architecture inevitability leads to the
increase of computational burden. The SNAC technique is simple
to implement, but it is not combined with the iterative ADP
algorithm, not to mention that the system dynamics is required
when applying it to design optimal controller. To summarize, there
is no result on optimal control of nonlinear system with unknown
dynamics using iterative ADP algorithm and SNAC technique.
Therefore, in this paper, we study the model-free optimal control
of a class of unknown nonlinear systems by using single network
DHP (SN-DHP) technique. First of all, an NN model is constructed
as an identifier to learn the unknown nonlinear system. Then,
based on the identification results, the iterative ADP algorithm is
introduced to solve the DTHJB equation with convergence analysis.
Furthermore, the optimal controller is designed through the
SN-DHP approach.

The main contributions of our work are as follows:
(1)
 We combine the SNAC technique with the iterative ADP
algorithm, and then present the convergence analysis of the
designed optimal controller for affine nonlinear systems. The
SN-DHP technique is established with model network and
critic network. This is different from SNAC, where only critic
network is designed. In addition, it is also different from the
traditional ADP techniques, where model network, critic network
and action network are constructed.
(2)
 By performing identification process, the iterative ADP algorithm,
based on three-layer feedforward NNs and gradient-based adap-
tation rule, is applicable to deal with the optimal control problem
of unknown nonlinear systems. However, the SNAC technique
requires knowing the system dynamics.
The rest of the paper is organized as follows. In Section 2,
preliminaries of the nonlinear optimal control is introduced. In
Section 3, we design an NN identifier for the unknown controlled
system with stability proof. In Section 4, the optimal control
scheme based on the learned system knowledge and iterative
ADP algorithm is developed with convergence analysis. In Section
5, we describe the SN-DHP technique and the implementation
process of the iterative algorithm. In Section 6, two examples are
given to demonstrate the effectiveness of the proposed control
scheme. In Section 7, concluding remarks are given.
2. Background in nonlinear optimal control

In this paper, we consider the nonlinear discrete-time system
described by

xkþ1 ¼ f ðxkÞ þ gðxkÞuðxkÞ ð1Þ

where xk∈Rn is the state vector and uðxkÞ∈Rm is the control vector,
f ð�Þ and gð�Þ are differentiable in their arguments with f(0)¼0.
Assume that f+gu is Lipschitz continuous on a set Ω in Rn

containing the origin, and that the system (1) is controllable in
the sense that there exists a continuous control law on Ω that
asymptotically stabilizes the system.
For infinite horizon optimal control problem, it is desired to
find the control law u(x) which can minimize the cost function
given by

JðxkÞ ¼ ∑
∞

i ¼ k
Uðxi;uiÞ ð2Þ

where U is the utility function, Uð0;0Þ ¼ 0, and Uðxi;uiÞ≥0 for ∀xi;ui.
In this paper, the utility function is chosen as the quadratic form as
Uðxi;uiÞ ¼ xTi Qxi þ uT

i Rui. In addition, the designed feedback control
must not only stabilize the system on Ω but also guarantee that (2)
is finite, i.e., the control must be admissible. Thus, we give the
following definition.

Definition 1. A control u(x) is defined to be admissible with
respect to (2) on Ω if u(x) is continuous on a compact set
Ωu∈Rm, uð0Þ ¼ 0, u stabilizes (1) on Ω, and ∀x0∈Ω, Jðx0Þ is finite.

According to Bellman's optimality principle, the optimal cost
function

JnðxkÞ ¼ min
uk ;ukþ1 ;…;u∞

∑
∞

i ¼ k
Uðxi;uiÞ ð3Þ

can be rewritten as

JnðxkÞ ¼min
uk

Uðxk;ukÞ þ min
ukþ1 ;…;u∞

∑
∞

i ¼ kþ1
Uðxi;uiÞ

( )
: ð4Þ

In other words, JnðxkÞ satisfies the DTHJB equation

JnðxkÞ ¼min
uk

fUðxk;ukÞ þ Jnðxkþ1Þg: ð5Þ

The corresponding optimal control law un is

unðxkÞ ¼ arg min
uk

fUðxk;ukÞ þ Jnðxkþ1Þg: ð6Þ

Unlike the optimal control of linear system, for nonlinear
optimal control problems, the DTHJB equation (5) cannot be solved
exactly. Next, we will study how to handle this problem using the
iterative ADP algorithm.
3. System identification strategy of the controlled plant using
neural networks

In this paper, we assume that stable controls are utilized in the
identification process.

In this section, a three-layer NN is constructed to identify the
unknown system dynamics. Let the number of hidden layer
neurons be denoted by l, the ideal weight matrix between the
input layer and hidden layer be denoted by νnm, and the ideal
weight matrix between the hidden layer and output layer be
denoted by ωn

m. According to the universal approximation property
[10] of NN, the system dynamics (1) has an NN representation on a
compact set S, which can be written as

xkþ1 ¼ ωnT
m sðνnTm zkÞ þ εk: ð7Þ

In (7), zk ¼ ½xTkuT
k �T is the NN input, εk is the bounded NN functional

approximation error, and ½sðξÞ�i ¼ ðeξi−e−ξi Þ=ðeξi þ e−ξi Þ; i¼ 1;2;…; l
are the activation functions. Let zk ¼ νnTm zk, zk∈Rl. In addition, the
NN activation functions are bounded such that ∥sðzkÞ∥≤sM for a
constant sM .

According to [34], we define the NN system identification
scheme as

x̂kþ1 ¼ωT
mðkÞsðzkÞ−rk ð8Þ

where x̂k is the estimated system state vector, rk is the robust term,
and ωmðkÞ is the estimation of the constant ideal weight matrix ωn

m.
We denote ~xk ¼ x̂k−xk as the system identification error. Then,

combining (7) and (8), we can obtain the identification error
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dynamics as

~xkþ1 ¼ ~ωT
mðkÞsðzkÞ−rk−εk ð9Þ

where ~ωmðkÞ ¼ ωmðkÞ−ωn
m. Define the robust term as a function of

the identification error ~xk and an additional tunable parameter
βðkÞ∈R, i.e.,

rk ¼
βðkÞ ~xk
~xTk ~xk þ C

ð10Þ

where C40 is a constant. Denote βn as the constant ideal value of
the parameter βðkÞ and let ~βðkÞ ¼ βðkÞ−βn, ψk ¼ ~ωT

mðkÞsðzkÞ, and
φk ¼ ~βðkÞ ~xk=ð ~xTk ~xk þ CÞ. Then, the system dynamics (9) can be
rewritten as

~xkþ1 ¼ ψk−φk−
βn ~xk

~xTk ~xk þ C
−εk: ð11Þ

The parameters in the system identification process are
updated to minimize the following performance measure:

Ekþ1 ¼ 1
2
~xTkþ1 ~xkþ1: ð12Þ

Using the gradient-based adaptation rule, the NN weight and
tunable parameter can be updated as

ωmðkþ 1Þ ¼ ωmðkÞ−αm
∂Ekþ1

∂ωmðkÞ

� �
¼ ωmðkÞ−αmsðzkÞ ~xTkþ1 ð13Þ

βðkþ 1Þ ¼ βðkÞ−αr
∂Ekþ1

∂βðkÞ

� �
¼ βðkÞ þ αr

~xTkþ1 ~xk
~xTk ~xk þ C

ð14Þ

where αm40 and αr40 are learning rates.
Before presenting the asymptotic stability proof of the state

estimation error ~xk, we now give the following assumption, which
has been used in [10,34] and is considered mild in comparison
with the approximation error being bounded by a known constant.

Assumption 1 (cf. Dierks et al. [34]). The NN approximation error
term εk is assumed to be upper bounded by a function of the state
estimation error ~xk, i.e.,

εTkεk ≤εMk ¼ δ ~xTk ~xk ð15Þ
where δ is a bounded constant value such that ∥δ∥≤δM .

Theorem 1. Let the identification scheme (8) be used to identify the
nonlinear system (1), and let the parameter update law given in (13)
and (14) be used for tuning the NN weights and the robust term,
respectively. Then, the state estimation error ~xk is asymptotically
stable while the parameter estimation error ~ωmðkÞ and ~βðkÞ are
bounded.

Proof. Consider the positive definite Lyapunov function candidate
defined as

Lk ¼ ~xTk ~xk þ
~β
2ðkÞ
αr

þ 1
αm

trf ~ωT
mðkÞ ~ωmðkÞg: ð16Þ

In the following proof process, we denote Ck ¼ ~xTk ~xk þ C for brief.
By taking the first difference of the Lyapunov function (16), and
considering ∥sðzkÞ∥≤sM and (15), we can find that

ΔLk ¼ Lkþ1−Lk ≤−ð1−4αms2M−4αrÞð∥ψk∥
2 þ ∥φk∥

2Þ
−ð1−2δM−2δ2M−4αmδMs2M−4αmδ2Ms2M
−4αrδM−4αrδ2MÞ∥ ~xk∥2 þ 2∥ψk∥∥φk∥: ð17Þ

Then, we define θ1ψ k ¼ ψk, θ2φk ¼ φk, where θ1 and θ2 are
constants. After selecting the parameters as αms2M ¼ αr , θ1θ2 ¼ ρ,
8αms2M ≤θ21, and applying the Cauchy–Schwarz inequality, (17)
becomes

ΔLk ≤− 1−θ21−
ρ

θ21

 !
∥ψk∥

2− 1−θ21−
θ21
ρ

 !
∥φk∥

2

−ð1−2δM−2δ2M−δMθ21−δ2Mθ21Þ∥ ~xk∥2

¼− 1−θ21−
ρ

θ21

 !
∥ ~ωT

mðkÞsðzkÞ∥2

− 1−θ21−
θ21
ρ

 !
∥ ~βðkÞ∥2

��� ~xk
Ck

���2
−ð1−2δM−2δ2M−δMθ21−δ2Mθ21Þ∥ ~xk∥2: ð18Þ

According to (18), we can conclude that ΔLk ≤0 provided that
0oδM ≤ð

ffiffiffi
3

p
−1Þ=2, 0oρo1=4, and τ1oθ1ominfτ2; τ3; τ4g, where

τ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

ffiffiffiffiffiffiffiffiffiffiffiffi
1−4ρ

p
2

s

τ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2δM−2δ2M
δM þ δ2M

s

τ3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ρ

1þ ρ

r

τ4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−4ρ

p
2

s
:

As long as the parameters are selected as above, ΔLk ≤0, which
shows stability in the sense of Lyapunov. Therefore, ~xk, ~ωmðkÞ, and
~βðkÞ are bounded, provided that ~x0, ~ωmð0Þ, and ~βð0Þ are bounded in
the compact set S. Furthermore, by summing both sides of (18) to
infinity and taking the absolute value, we can obtain

∑
∞

k ¼ 0
1−θ21−

ρ

θ21

 !
∥ ~ωT

mðkÞsðzkÞ∥2 þ 1−θ21−
θ21
ρ

 !
∥ ~βðkÞ∥2

��� ~xk
Ck

���2
(

þð1−2δM−2δ2M−δMθ21−δ2Mθ21Þ∥ ~xk∥2
)

≤
��� ∑

∞

k ¼ 0
ΔLk

���¼ ��� lim
k-∞

Lk−L0
���o∞: ð19Þ

From (19), we can conclude that ∥ ~xk∥-0 as k-∞. □

In light of Theorem 1, the NN system identification error can
approach zero after a sufficiently long learning session. Besides,
from (10), the robust term approaches zero as well. Hence, we
have

xkþ1 ¼ ωT
mðkÞsðzkÞ: ð20Þ

Taking the partial derivative of both sides of (20) with respect to
uk, we can obtain the estimate of gðxkÞ as

ĝðxkÞ ¼
∂ðωT

mðkÞsðzkÞÞ
∂uk

¼ ωT
mðkÞs′ðzkÞνnTm Θ ð21Þ

where

s′ðzkÞ ¼
∂sðzkÞ
∂zk

Θ¼ ∂zk
∂uk

¼
0n�m

Im

" #

and Im is an m�m identity matrix.
In nonlinear optimal control problem, in order to avoid the

requirement of knowing the system dynamics, we can replace
gðxkÞ with ωT

mðkÞs′ðzkÞνnTm Θ when we solve (6). Next, this result will
be used in the derivation and implementation of the iterative ADP
algorithm.
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4. Derivation and convergence analysis of the iterative
ADP algorithm

4.1. Derivation of the iterative ADP algorithm

In this section, we introduce the iterative ADP algorithm. First,
we start with the initial cost function V0ð�Þ ¼ 0 and obtain

v0ðxkÞ ¼ arg min
uk

fUðxk;ukÞ þ V0ðxkþ1Þg: ð22Þ

Then, we derive

xkþ1 ¼ f ðxkÞ þ gðxkÞv0ðxkÞ ð23Þ
and

v0ðxkþ1Þ ¼ arg min
ukþ1

fUðxkþ1;ukþ1Þ þ V0ðxkþ2Þg: ð24Þ

Next, we update the cost function as

V1ðxkþ1Þ ¼min
ukþ1

fUðxkþ1;ukþ1Þ þ V0ðxkþ2Þg
¼Uðxkþ1; v0ðxkþ1ÞÞ þ V0ðxkþ2Þ: ð25Þ

Moreover, for i¼ 1;2;… the algorithm iterates between

viðxkþ1Þ ¼ arg min
ukþ1

fUðxkþ1;ukþ1Þ þ Viðxkþ2Þg ð26Þ

and

Viþ1ðxkþ1Þ ¼min
ukþ1

fUðxkþ1;ukþ1Þ þ Viðxkþ2Þg
¼Uðxkþ1; viðxkþ1ÞÞ þ Viðxkþ2Þ: ð27Þ

Incidentally, in the above iteration process, i is the iteration
index, while k is the time index. The cost function and control law
are updated until they converge to the optimal ones. In the
following, we will present the convergence analysis of the iterative
algorithm.

4.2. Convergence analysis of the iterative ADP algorithm
Lemma 1 (cf. Al-Tamimi et al. [30]). Let fμig be an arbitrary
sequence of control laws and fvig be the sequence of control laws
described in (26). Define Vi as in (27) and Λi as

Λiþ1ðxkþ1Þ ¼ Uðxkþ1; μiðxkþ1ÞÞ þ Λiðxkþ2Þ: ð28Þ
If V0ð�Þ ¼ Λ0ð�Þ ¼ 0, then ViðxÞ≤ΛiðxÞ, ∀i.

Lemma 2. Let the sequence of cost functions fVig be defined as in
(27). If the system is controllable, then there is an upper bound Y such
that 0≤ViðxkÞ≤Y , ∀i.

Proof. Let ηðxkþ1Þ be an admissible control input, and let
V0ð�Þ ¼ Z0ð�Þ ¼ 0, where Vi is updated as in (27) and Zi is updated by

Ziþ1ðxkþ1Þ ¼Uðxkþ1; ηðxkþ1ÞÞ þ Ziðxkþ2Þ: ð29Þ
Hence, the following equation is true

Ziþ1ðxkþ1Þ−Ziðxkþ1Þ ¼ Ziðxkþ2Þ−Zi−1ðxkþ2Þ: ð30Þ
When further expanding (30), we can get

Ziþ1ðxkþ1Þ−Ziðxkþ1Þ ¼ Z1ðxkþiþ1Þ−Z0ðxkþiþ1Þ: ð31Þ
Thus, we have

Ziþ1ðxkþ1Þ ¼ Z1ðxkþiþ1Þ þ Ziðxkþ1Þ: ð32Þ
By expanding (32), we can derive that

Ziþ1ðxkþ1Þ ¼ ∑
i

j ¼ 0
Z1ðxkþjþ1Þ ¼ ∑

i

j ¼ 0
Uðxkþjþ1; ηðxkþjþ1ÞÞ: ð33Þ

Since ηðxkþ1Þ is an admissible control input, we have

Ziþ1ðxkþ1Þ≤ ∑
∞

j ¼ 0
Z1ðxkþjþ1Þ≤Y ; ∀i: ð34Þ
By using Lemma 1, we obtain

Viþ1ðxkþ1Þ≤Ziþ1ðxkþ1Þ≤Y ; ∀i: ð35Þ
and the proof is completed. □

Theorem 2. Define the sequence fVig as in (27) with V0ð�Þ ¼ 0, and
the sequence of control laws fvig as in (26). Then, fVig is a
nondecreasing sequence satisfying Vi ≤Viþ1, ∀i.

Proof. Define a new sequence

Φiþ1ðxkþ1Þ ¼Uðxkþ1; viþ1ðxkþ1ÞÞ þΦiðxkþ2Þ ð36Þ
with Φ0ð�Þ ¼ V0ð�Þ ¼ 0. Next, we prove that Φiðxkþ1Þ≤Viþ1ðxkþ1Þ by
mathematical induction.
First, we prove that it holds for i¼0. Since

V1ðxkþ1Þ−Φ0ðxkþ1Þ ¼ Uðxkþ1; v0ðxkþ1ÞÞ≥0; ð37Þ
we have

V1ðxkþ1Þ≥Φ0ðxkþ1Þ: ð38Þ
Second, we assume that it holds for i−1, i.e., Viðxkþ1Þ≥Φi−1ðxkþ1Þ,
∀xkþ1. Then, for i, by noticing

Viþ1ðxkþ1Þ ¼Uðxkþ1; viðxkþ1ÞÞ þ Viðxkþ2Þ ð39Þ

and

Φiðxkþ1Þ ¼ Uðxkþ1; viðxkþ1ÞÞ þ Φi−1ðxkþ2Þ; ð40Þ

we can get

Viþ1ðxkþ1Þ−Φiðxkþ1Þ ¼ Viðxkþ2Þ−Φi−1ðxkþ2Þ≥0 ð41Þ
i.e.,

Viþ1ðxkþ1Þ≥Φiðxkþ1Þ: ð42Þ
Furthermore, from Lemma 1, we know that Viðxkþ1Þ≤Φiðxkþ1Þ.
Therefore, we have

Viþ1ðxkþ1Þ≥Φiðxkþ1Þ≥Viðxkþ1Þ ð43Þ
and the proof is completed. □

Theorem 3. Let the sequence of cost functions fVig be defined as in
(27) and V∞ðxkþ1Þ as its limit. Then,

V∞ðxkþ1Þ ¼min
ukþ1

fUðxkþ1;ukþ1Þ þ V∞ðxkþ2Þg: ð44Þ

Proof. On one hand, for any ukþ1 and i, according to (27), we can
derive

Viðxkþ1Þ≤Uðxkþ1;ukþ1Þ þ Vi−1ðxkþ2Þ: ð45Þ
Combining with

Viðxkþ1Þ≤V∞ðxkþ1Þ; ∀i; ð46Þ
which can be derived from Theorem 2, we have

Viðxkþ1Þ≤Uðxkþ1;ukþ1Þ þ V∞ðxkþ2Þ; ∀i: ð47Þ
Let i-∞, we can obtain

V∞ðxkþ1Þ≤Uðxkþ1;ukþ1Þ þ V∞ðxkþ2Þ: ð48Þ
In (48), ukþ1 is chosen arbitrarily. Therefore, it implies that

V∞ðxkþ1Þ≤min
ukþ1

fUðxkþ1;ukþ1Þ þ V∞ðxkþ2Þg: ð49Þ

On the other hand, since the cost function sequence satisfies

Viðxkþ1Þ ¼min
ukþ1

fUðxkþ1;ukþ1Þ þ Vi−1ðxkþ2Þg ð50Þ

for any i, considering (46), we have

V∞ðxkþ1Þ≥min
ukþ1

fUðxkþ1;ukþ1Þ þ Vi−1ðxkþ2Þg; ∀i: ð51Þ
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Let i-∞, we can get

V∞ðxkþ1Þ≥min
ukþ1

fUðxkþ1;ukþ1Þ þ V∞ðxkþ2Þg: ð52Þ

Based on (49) and (52), we can conclude that (44) is true. □

From the aforementioned results, we derive that the sequence
of cost functions converges to the optimal cost function of the
DTHJB equation, i.e., Vi-Jn as i-∞. Then, according to (6) and (26),
we can conclude that the corresponding sequence of control laws
also converges to the optimal one, i.e., vi-un as i-∞.
Fig. 1. The structure diagram of the SN-DHP-based iterative ADP algorithm.
5. Implementation of the iterative ADP algorithm using
SN-DHP technique

In this section, we carry out the iterative ADP algorithm by
using the SN-DHP technique. Its main difference from the tradi-
tional DHP technique lies in that only a critic network is utilized
when building the actor-critic structure. In other words, we avoid
the requirement of constructing the action network. Note that the
model network is still needed to approximate the controlled plant.

5.1. Derivation of the SN-DHP technique

Now, we introduce the SN-DHP scheme. Define λðxkÞ ¼ ∂JðxkÞ=∂xk
and λnðxkÞ ¼ ∂JnðxkÞ=∂xk. Then,

λnðxkÞ ¼
∂Uðxk;unðxkÞÞ

∂xk
þ ∂Jnðxkþ1Þ

∂xk

¼ ∂Uðxk;unðxkÞÞ
∂xk

þ
�
∂unðxkÞ
∂xk

�T ∂Uðxk;unðxkÞÞ
∂unðxkÞ

�

þ ∂xkþ1

∂unðxkÞ

� �T ∂Jnðxkþ1Þ
∂xkþ1

#
þ
�
∂xkþ1

∂xk

�T ∂Jnðxkþ1Þ
∂xkþ1

¼ 2Qxk þ
∂xkþ1

∂xk

� �T

λnðxkþ1Þ: ð53Þ

In the iteration process, we denote λiðxkÞ ¼ ∂ViðxkÞ=∂xk. Then,
according to (27) and (53), we have

λiþ1ðxkþ1Þ ¼ 2Qxkþ1 þ
�
∂xkþ2

∂xkþ1

�T

λiðxkþ2Þ: ð54Þ

Since the utility function is chosen as the quadratic form, we can
solve the iterative control law from (26) as

viðxkþ1Þ ¼−1
2R

−1ĝ T ðxkþ1Þλiðxkþ2Þ: ð55Þ
Therefore, the iteration between (26) and (27) becomes (54) and
(55).

Next, considering xkþ1 ¼ f ðxkÞ þ gðxkÞuðxkÞ, we denote λ iðxkÞ ¼
λiðxkþ1Þ and therefore, (54) becomes

λ iþ1ðxkÞ ¼ 2Qxkþ1 þ
 
∂xkþ2

∂xkþ1

!T

λ iðxkþ1Þ: ð56Þ

Besides, the corresponding control input is

viðxkÞ ¼ −1
2R

−1ĝ T ðxkÞλ iðxkÞ: ð57Þ
In this sense, the iteration between (54) and (55) becomes (56)
and (57). In addition, it is important to note that we can directly
obtain the iterative control law viðxkÞ after deriving the λ iðxkÞ.

5.2. Training the critic network

In the SN-DHP-based iterative ADP algorithm, both the model
network and critic network are chosen as the three-layer feed
forward NNs. The training of the model network is completed
after the system identification process and its weights are kept
unchanged. Then, according to Theorem 1, when given xk and
viðxkÞ, we can compute xkþ1 by using the model network. Hence,
we avoid the requirement of knowing the system dynamics during
the implementation of iterative ADP algorithm. The structure
diagram of the iterative algorithm is shown in Fig. 1.

The critic network is constructed to approximate λ iðxkÞ and its
output can be formulated as

λ̂ iðxkÞ ¼ωT
cisðνTcixkÞ: ð58Þ

The target function can be written as

~λ iþ1ðxkÞ ¼ 2Qx̂kþ1 þ
 
∂x̂kþ2

∂x̂kþ1

!T

λ̂ iðx̂kþ1Þ: ð59Þ

Then, we define the error function of the critic network as

ecik ¼ λ̂ iðxkÞ− ~λ iþ1ðxkÞ: ð60Þ
The objective function to be minimized in the critic network is

Ecik ¼ 1
2e

T
cikecik: ð61Þ

The weight update rule for training the critic network is gradient-
based adaptation given by

ωciðjþ 1Þ ¼ωciðjÞ−αc
∂Ecik
∂ωciðjÞ

� �
ð62Þ

νciðjþ 1Þ ¼ νciðjÞ−αc
∂Ecik
∂νciðjÞ

� �
ð63Þ

where αc40 is the learning rate of the critic network, and j is the
inner-loop iteration step for updating the weight parameters.

Remark 1. According to Theorem 2, Vi-Jn as i-∞. Since
λiðxkþ1Þ ¼ ∂Viðxkþ1Þ=∂xkþ1 and λ iðxkÞ ¼ λiðxkþ1Þ, we can conclude that
the sequence fλ ig is also convergent as i-∞.

6. Simulation examples

In this section, two numerical examples are provided to
demonstrate the effectiveness of the control scheme derived by
the SN-DHP-based iterative ADP algorithm.

6.1. Example 1

Consider the following linear discrete-time system:

xkþ1 ¼
0 0:1 0
0:3 −1 0
0 0 0:5

2
64

3
75xk þ

0
−1
0:5

2
64

3
75uk ð64Þ

where xk ¼ ½x1k x2k x3k�T∈R3, uk∈R. The open-loop poles are 0.0292,
−1.0292 and 0.5000, so the system (64) is unstable. The utility
function is chosen as Uðxk;ukÞ ¼ xTkQxk þ uT

kRuk, where Q ¼ 2I, R¼ I,
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Fig. 4. The state trajectory x3.
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and I denotes the identity matrix with suitable dimensions. Note
that this is a linear quadratic regulator (LQR) problem. By using the
classical linear optimal control method, we can obtain the optimal
feedback gain is K ¼ ½0:1919 −0:6465 −0:1595�.

Then, we implement the SN-DHP-based iterative ADP algo-
rithm. We choose three-layer feedforward NN as model network
and critic network with the structures 4–9–3 and 3–9–3, respec-
tively. In the system identification process, the initial weights
between the input layer and hidden layer, and the hidden layer
and output layer are chosen randomly in ½−0:5;0:5� and ½−0:1;0:1�,
respectively. We apply the NN identification scheme for 100 steps
under the learning rate αm ¼ 0:05 to make sure that the accuracy
10−8 is reached. After that, we finish the training of the model
network and keep its weights unchanged. The initial weights of
the critic network are set to be random in ½−0:1;0:1�. Then, we
train the critic network for 20 training cycles with each cycle of
2000 steps. In the training process, the learning rate αc ¼ 0:05.

Next, for the given initial state x0 ¼ ½0:5 1 −1�T , we apply the
control laws designed by the iterative ADP algorithm and by
solving the LQR problem to system (64) for 20 time steps,
respectively. The obtained state curves and control input are
shown in Figs. 2–5. From the simulation results, we can see
that the controller acquired by the iterative ADP algorithm can
converge to the optimal controller derived by solving the LQR
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Fig. 2. The state trajectory x1.
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Fig. 3. The state trajectory x2.
problem. These results also illustrate the validity of the proposed
method.

6.2. Example 2

Consider the nonlinear discrete-time system described by

xkþ1 ¼
x1kx2k

x21k− sin x2k

" #
þ 0

1

� �
uk ð65Þ

where xk ¼ ½x1k x2k�T∈R2, uk∈R. The utility function is set the same
as Example 1. It can be seen that xk ¼ ½0 0�T is an equilibrium state
of system (65). However, system (65) is marginally stable at this
equilibrium, since the eigenvalues of

∂xkþ1

∂xk

���
ð0;0Þ

¼ 0 0
0 −1

� �

are 0 and −1.
When carrying out the SN-DHP-based iterative ADP algorithm,

we choose three-layer feedforward NN as model network and
critic network with the structures 3–8–2 and 2–8–2, respectively.
First, we do the system identification process. The initial weights
between the input layer and hidden layer, and the hidden layer
and output layer are chosen randomly in ½−0:5;0:5� and ½−0:1;0:1�,
respectively. Here, we apply the NN identification scheme for 150
steps under the learning rate αm ¼ 0:05 to make sure that the
accuracy 10−8 is reached. After finishing the training process, we
keep the weights of model network unchanged. In addition, we set
the initial weights of the critic network and its learning rate the
same as Example 1. Then, we train the critic network for 36
training cycles with each cycle of 2000 steps, and then get the
optimal control law.

In order to draw a comparison with the DHP [31] and GDHP
[36] techniques, we also design the optimal controllers by using
the DHP and GDHP based iterative ADP algorithms. Then, for the
given initial state x0 ¼ ½0:5 0:5�T , we apply the optimal control laws
obtained by the three techniques to system (65) for 20 time steps,
respectively. The derived state curves and the corresponding
control input are shown in Figs. 6–8. It can be seen that the state
and control trajectories generated by the SN-DHP, DHP, and GDHP
techniques are very close to each other. This signifies that the
SN-DHP technique is as good as the DHP and GDHP techniques in
handling the nonlinear optimal control problem. Nevertheless, for
the same problem, the SN-DHP-based iterative ADP algorithm
takes about 182 s while the DHP and GDHP take greater than 290 s
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before satisfactory results are achieved. Therefore, the fact that
the SN-DHP technique eliminates the use of action network has
indeed reduced the computational complexity. The excellent
control performance verifies the effectiveness of the SN-DHP
technique.
7. Conclusions

A novel SN-DHP-based technique is developed in this paper to
find the near optimal controller for unknown affine nonlinear
discrete-time systems with quadratic cost function. The iterative
ADP algorithm is introduced to solve the cost function of the
DTHJB equation with convergence analysis. Two NNs are used as
parametric structures to approximate at each iteration the cost
function and identify the unknown nonlinear system, respectively.
Simulation studies demonstrated the validity of the control
approach developed in this paper.
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