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a b s t r a c t

In this paper, we solve the zero-sum game problems for discrete-time affine nonlinear systems with

known dynamics via iterative adaptive dynamic programming algorithm. First, a greedy heuristic

dynamic programming iteration algorithm is developed to solve the zero-sum game problems, which

can be used to solve the Hamilton–Jacobi–Isaacs equation associated with H1 optimal regulation

facilitate the implementation of the algorithm, three neural networks are used to approximate the

control policy, the disturbance policy, and the value function, respectively. Then, we extend the

algorithm to H1 optimal tracking control problems through system transformation. Finally, two

simulation examples are presented to demonstrate the effectiveness of the proposed scheme.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

During the last decades, adaptive dynamic programming (ADP)
[1–5] has received much attention as an intelligent scheme for
solving the optimal control problems. ADP algorithms can solve
the optimal control problems by an online data-based procedure
while the exact knowledge of the system dynamics is not
required. Existing ADP approaches can be classified into several
main schemes [6]: heuristic dynamic programming (HDP), dual
heuristic dynamic programming (DHP), globalized dual heuristic
dynamic programming (GDHP), and their action-dependent (AD)
versions, ADHDP, ADDHP, and ADGDHP. The optimal state feed-
back control policy for nonlinear systems can be found by solving
the Hamilton–Jacobi–Bellman (HJB) [7] equation, while it reduces
to Riccati equation for linear quadratic regulator problem. How-
ever, the analytical solution of the HJB equation is difficult to
obtain due to its inherently nonlinear nature. Many efforts using
ADP have been made to solve the HJB equation [8–11]. Reinforce-
ment learning (RL) [12] is a machine learning method for an agent
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or controller to learn the optimal control policies based on the
observed responses from the environment or system. In recent
years, RL has been applied to feedback control [13–17]. The main
algorithms of RL, i.e., policy iteration (PI) and value iteration (VI)
have been developed to solve the HJB equation of the optimal
control problems. PI algorithms contain policy evaluation and
policy improvement [18–21], where an initial stabilizing control
law is required. VI algorithms solve the optimal control problems
without requirement of an initial stabilizing control law [22–29].
However, most of the previous researches on ADP/RL algorithms
provide an online or offline approach to the solution of optimal
control problems assuming that the system is not affected by
disturbance. Since disturbances widely exist in reality and affect
the control performance, the ADP algorithm considering the
disturbance is the main interest of the present paper.

As a kind of robust optimal control methods, the H1 optimal
control seeks to not only minimize a cost function but also
attenuate a worst-case disturbance [30]. The H1 control problem
was converted into an L2-gain optimal control problem [31] using
the concept of dissipative system [32]. It relies on solving the
Hamilton–Jacobi–Isaacs (HJI) equation which reduces to the game
algebraic Riccati equation (GARE). The HJI equation is more
difficult to solve than the HJB equation for the nonlinear dyna-
mical systems. Furthermore, the H1 control has a strong connec-
tion to zero-sum games [33,34], where the controller is a
minimizing player and the disturbance is a maximizing player.
For Nash equilibrium, any player cannot improve its outcome by
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unilaterally changing its strategy. The Nash equilibrium solution
is usually obtained by means of offline iterative computation, and
the exact knowledge of the system dynamics is required.

ADP algorithms have been applied to the zero-sum game
problems. In [35], an iterative algorithm to solve algebraic Riccati
equations (AREs) with an indefinite quadratic term which was
replaced by a sequence AREs with a negative semidefinite quad-
ratic term was proposed. In [36], Vrabie et al. presented an ADP
algorithm for determining online the Nash equilibrium solution
for the two-player zero-sum differential game with linear
continuous-time dynamics. In this case, only one of the players
is learning and optimizing his behavior strategy while the other is
passive and playing based on fixed policies. In [37], integral
reinforcement learning was used to solve the same problem. In
[38], the authors derived a PI algorithm to solve the stochastic
optimal control problem in the presence of both additive and
multiplicative noise.

For continuous-time nonlinear systems, Abu-Khalaf et al.
[39,40] derived an H1 suboptimal state feedback controller for
constrained input systems, and the two-player policy iteration
scheme generated equations that are easier to solve compared to
the original HJI equation of the corresponding constrained input
zero-sum game. This method was offline and it contained two
iteration loops. In [41], the authors extended the algorithms in
[35] to nonlinear control systems including an inter iteration and
an outer iteration. An initial stabilizing control law was not
required and a local quadratic rate of convergence was given.
The algorithm is supposed to have a higher accuracy and
numerical stability than existing algorithms to solve HJI equa-
tions. In [42], Zhang et al. used four action networks and two
critic networks to obtain the saddle point solution of the game,
and the full knowledge of the system dynamics was required. If
the saddle point did not exist, the mixed optimal control pair was
obtained to make the performance index function reach the
mixed optimum. The initial stabilizing control pair was required
and it contained only one policy iteration loop.

In [43], Toussaint et al. designed a state feedback tracking
control law using the H1 optimal control theory which produced
a locally exponentially stable closed-loop system. In [44], Vam-
voudakis et al. presented an online adaptive learning algorithm
based on PI to solve the continuous-time two-player zero-sum
game with infinite horizon cost for nonlinear systems with known
dynamics. The adaptive algorithm was implemented as an actor/
critic/disturbance structure that involved simultaneously
continuous-time adaptation of critic, actor, and disturbance
neural networks (NNs). In [45], Dierks et al. solved the HJI
equation online and forward-in-time using a novel single online
approximator-based scheme to achieve optimal regulation and
tracking control of affine nonlinear continuous-time systems,
while the optimal control input and worst disturbance input
were calculated using the parameters of the approximator. The
approximation errors resulting from NN were considered, the
system dynamics were assumed to be known, and an initial
stabilizing control was not required.

For discrete-time systems, Al-Tamimi et al. solved online the
linear zero-sum game using HDP and DHP [46] and solved the
GARE using a model-free Q-learning iterative algorithm [47]. In
[48], Kim et al. developed a model-free H1 control design
algorithm which was expressed in the form of linear matrix
inequalities (LMI) for unknown linear discrete-time systems by
using Q-learning. In [49], Wei et al. proposed an iterative adaptive
critic design algorithm to solve a class of discrete-time two-
person zero-sum games for Roesser type 2-D system. In [50], a
novel data-based adaptive critic design using output feedback
was proposed for discrete-time zero-sum games. In [51], Mehra-
een et al. developed an iterative approach to solve offline the
approximate HJI equation by using the Taylor series expansion of
the value function and derived a sufficient condition for the
convergence to saddle point.

In this paper, we solve the zero-sum game problems for
discrete-time affine nonlinear systems with known dynamics
via iterative ADP algorithm. First, a greedy HDP iteration algo-
rithm is derived to solve the HJI equation associated with H1
optimal regulation control problems. The method in [51] have
two iterative loops, i.e., the control and disturbance policies are
asynchronously updated. In our scheme, only one iterative loop is
used, and the initial stabilizing control policy is not required. The
convergence in terms of value function and control policy is
proved based on the work of [52–54]. To facilitate the imple-
mentation of the algorithm, three NNs are used to approximate
the control policy, the disturbance policy, and the value function,
respectively. Then, we extend this algorithm to H1 optimal
tracking control problems for discrete-time nonlinear systems.
Through system transformation, the tracking control problem is
converted into a regulation problem. Finally, two simulation
examples are presented to demonstrate the effectiveness of the
proposed scheme.

The rest of the paper is organized as follows. Section 2
provides the problem formulation and discrete-time HJI equation
for nonlinear systems. In Section 3, we derive a greedy HDP
iteration algorithm, give the convergence analysis, and discuss the
NN implementation of the iterative ADP algorithm. In Section 4,
we solve the optimal tracking control problem for discrete-time
nonlinear systems. Section 5 presents two simulation examples to
demonstrate the effectiveness of the proposed algorithm and is
followed by concluding remarks in Section 6.
2. Problem statement

Consider the discrete-time affine nonlinear dynamical systems
described by

xkþ1 ¼ f ðxkÞþgðxkÞukþhðxkÞwk, ð1Þ

where xkAODRn is the state vector, uk ¼ uðxkÞARm is the control
input, and wk ¼wðxkÞARq is the disturbance input. f ðxkÞARn,
gðxkÞARn�m and hðxkÞARn�q are smooth and differentiable func-
tions. We assume that the following assumptions hold through-
out the paper.

Assumption 1. f ð0Þ ¼ 0, and xk¼0 is an equilibrium state of the
system.

Assumption 2. f þguþhw is Lipschitz continuous on a compact
set ODRn containing the origin.

Assumption 3. The system (1) is controllable in the sense that
there exists a continuous control policy on O that asymptotically
stabilizes the system.

In this paper, we define the infinite horizon cost function as
follows:

Jðx0Þ ¼
X1
k ¼ 0

fxT
k QxkþuT

k Ruk�g2wT
k wkg ¼

X1
k ¼ 0

Uðxk,uk,wkÞ, ð2Þ

where Q and R are positive definite matrices, g is a prescribed
positive constant. Note that the control policy uðxkÞmust not only
stabilize the system on O but also guarantee that (2) is finite, i.e.,
the control policy must be admissible [10].

Definition 1 (Admissible Control Policy). A control policy u(x) is
said to be admissible with respect to (2) on O, denoted by
uðxÞACðOÞ, if u(x) is continuous on a compact set ODRn,
uð0Þ ¼ 0, u(x) stabilizes (1) on O and for 8x0AO, Jðx0Þ is finite.
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For the admissible control policy uðxkÞ and disturbance policy
wðxkÞ, define the value function as

Vðxk,uk,wkÞ ¼
X1
i ¼ k

fxT
i QxiþuT

i Rui�g2wT
i wig: ð3Þ

The Hamilton function can be defined as

Hðxk,uk,wkÞ ¼ Vðf þgukþhwk,uk,wkÞ�Vðxk,uk,wkÞ

þxT
k QxkþuT

k Ruk�g2wT
k wk: ð4Þ

According to [33,34], this control problem can be referred to a
two-player zero-sum differential game, where the infinite-
horizon value function is to be minimized by the control policy
player uðxkÞ and maximized by the disturbance policy player
wðxkÞ. Our goal is to find the feedback saddle point solution
ðun

k ,wn

kÞ or the Nash equilibrium such that

Vn
ðx0Þ ¼min

uk

max
wk

fVðx0,uk,wkÞg ð5Þ

or Vðx0,un

k ,wkÞrVðx0,un

k ,wn

kÞrVðx0,uk,wn

kÞ for all uk and wk. The
sufficient condition for the existence of a saddle point is

min
uk

max
wk

fVðx0,uk,wkÞg ¼max
wk

min
uk

fVðx0,uk,wkÞg: ð6Þ

According to Bellman’s optimality principle, the optimal value
function Vn

ðxkÞ satisfies the discrete-time HJI equation [33,46]

Vn
ðxkÞ ¼min

uk

max
wk

fUðxk,uk,wkÞþVn
ðxkþ1Þg: ð7Þ

The optimal control policy unðxkÞ and the worst case disturbance
wnðxkÞ should satisfy @Hðxk,uk,wkÞ=@uk ¼ 0 and @Hðxk,uk,wkÞ=@wk ¼

0. Therefore, we obtain

unðxkÞ ¼�
1

2
R�1gT ðxkÞ

@Vn
ðxkþ1Þ

@xkþ1
ð8Þ

and

wnðxkÞ ¼
1

2
g�2hT

ðxkÞ
@Vn
ðxkþ1Þ

@xkþ1
: ð9Þ

Then, the discrete-time HJI equation becomes

Vn
ðxkÞ ¼ xT

k QxkþunT
k Run

k�g
2wnT

k wn

kþVn
ðxkþ1Þ: ð10Þ

This equation reduces to GARE in the zero-sum linear quadratic
case. However, in the general nonlinear case, the value function of
the optimal control problem cannot be obtained.

For the problem of disturbance attenuation, we need the
definition of L2-gain for discrete-time nonlinear system.

Definition 2. (L2-gain) The nonlinear system (1) with state feed-
back control policy uk and disturbance wkAL2 is said to have an
L2-gain less than or equal to g if

X1
k ¼ 0

fxT
k QxkþuT

k Rukgr
X1
k ¼ 0

g2wT
k wk: ð11Þ

The disturbance of wk is locally attenuated by a real value g40 if
there exists a neighborhood around the origin such that 8wkAL2

for which the trajectories of the closed-loop system (1) starting
from the origin remain in the same neighborhood.
3. Adaptive dynamic programming for zero-sum game

This section consists of three subsections. The greedy HDP
iteration algorithm is developed to solve the H1 optimal regula-
tion control problems for discrete-time nonlinear systems in the
first subsection. The corresponding convergence proof in terms of
value function and control policy is presented in the second
subsection, and the NN implementation of the algorithm is given
in the third subsection.

3.1. Derivation of ADP algorithm for zero-sum game

Since direct solution of the HJI equation for nonlinear systems
is computationally intensive, we present a greedy HDP iteration
algorithm based on Bellman’s principle of optimality.

First, we start with an initial value function V0 which is not
necessarily optimal, and set g40. Then, we find V1ðxkÞ by solving
(12) with i¼0

Viþ1ðxkÞ ¼min
uk

max
wk

fxT
k QxkþuT

k Ruk�g2wT
k wk

þViðf ðxkÞþgðxkÞukþhðxkÞwkÞg: ð12Þ

The greedy policies uiðxkÞ and wiðxkÞ are updated by

uiðxkÞ ¼�
1

2
R�1gT ðxkÞ

@Viðxkþ1Þ

@xkþ1
ð13Þ

and

wiðxkÞ ¼
1

2
g�2hT

ðxkÞ
@Viðxkþ1Þ

@xkþ1
: ð14Þ

Therefore, V1ðxkÞ is calculated by (15) with i¼0

Viþ1ðxkÞ ¼ xT
k QxkþuT

i ðxkÞRuiðxkÞ�g2wT
i ðxkÞwiðxkÞ

þViðf ðxkÞþgðxkÞuiðxkÞþhðxkÞwiðxkÞÞ: ð15Þ

After V1ðxkÞ is found, we repeat the same value iteration process
for i¼ 1,2, . . . : Furthermore, it should be satisfied that Við0Þ ¼ 0,
8iZ0. Note that i is the iteration index and k is the time index. As
a value iteration algorithm, this iterative ADP algorithm does not
require any initial stabilizing controller. In the next subsection we
will prove the convergence of the algorithm, i.e., Vi-Vn, ui-un

and wi-wn as i-1.

3.2. Convergence analysis of the iterative ADP algorithm for zero-

sum game
Theorem 1 (Monotonicity property). Define the control policy

sequence fuig as in (13), the disturbance sequence fwig as in (14),
and the value function sequence fVig as in (15) with an initial value

function V0. If V1ðxkÞZV0ðxkÞ holds 8xk, the value function sequence

fVig is a monotonically non-decreasing sequence, i.e., Viþ1ZVi,
8iZ0. If V1ðxkÞrV0ðxkÞ holds 8xk, the value function sequence fVig

is a monotonically non-increasing sequence, i.e., Viþ1rVi, 8iZ0.

Proof. If V1ðxkÞZV0ðxkÞ holds 8xk, assume that ViðxkÞZVi�1ðxkÞ, 8i
and xk. Then,

Viþ1ðxkÞ ¼min
uk

max
wk

fxT
k QxkþuT

k Ruk�g2wT
k wk

þViðf ðxkÞþgðxkÞukþhðxkÞwkÞg

Zmin
uk

max
wk

fxT
k QxkþuT

k Ruk�g2wT
k wk

þVi�1ðf ðxkÞþgðxkÞukþhðxkÞwkÞg

¼ ViðxkÞ: ð16Þ

Therefore, the value function sequence fVig is a monotonically
non-decreasing sequence by mathematical induction. The other
part can be proved in the same way. &

Remark 1. From Theorem 1, we can see that the monotonicity
property of the value function Vi is determined by the relationship
between V0 and V1, i.e., V0ZV1 or V0rV1, 8xk. If we set V0ð�Þ ¼ 0,
we can easily find that V1ZV0, i.e., the value function sequence
fVig is a monotonically non-decreasing sequence. Besides, the
monotonicity property is still valid if we can find that ViZViþ1 or
VirViþ1 for any xk and some i.
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Next, we will demonstrate the convergence of the iterative
ADP algorithm according to the work of [52–54].

Theorem 2 (Convergence property). Suppose the condition

0rVn
ðf ðxÞþgðxÞuðxÞþhðxÞwðxÞÞryUðx,u,wÞ holds uniformly for

some 0oyo1 and that 0raVnrV0rbVn, 0rar1 and

1rbo1. The control policy sequence fuig, the disturbance sequence

fwig and the value function sequence fVig are iteratively updated by

(13)–(15). Then the value function Vi approaches Vn according to the

following inequalities:

1þ
a�1

ð1þy�1
Þ
i

" #
Vn
ðxÞrViðxÞr 1þ

b�1

ð1þy�1
Þ
i

" #
Vn
ðxÞ: ð17Þ

Define V1ðxkÞ ¼ limi-1ViðxkÞ, then

V1ðxkÞ ¼ Vn
ðxkÞ: ð18Þ

Proof. First, we will demonstrate that the system defined in this
paper satisfies the conditions of Theorem 2. According to
Assumption 2, f þguþhw is Lipschitz continuous, and the system
state cannot jump to infinity by any one step of finite control
input, i.e., f ðxÞþgðxÞuðxÞþhðxÞwðxÞ is finite. Considering that
Vn
ðxk,u,wÞ is finite for any finite state and control, there exists

some 0oyo1 that makes 0rVn
ðf ðxÞþgðxÞuðxÞþhðxÞwðxÞÞr

yUðx,u,wÞ hold uniformly. In addition, for any finite initial value
function V0, there exist a and b such that 0raVnrV0rbVn is
satisfied, where 0rar1 and 1rbo1.

Next, we will demonstrate the left hand side of the inequality

(17) by mathematical induction, i.e.,

1þ
a�1

ð1þy�1
Þ
i

" #
Vn
ðxÞrViðxÞ: ð19Þ

When i¼1, since

a�1

1þy
ðyUðxk,uðxkÞ,wðxkÞÞ�Vn

ðxkþ1ÞÞr0, 0rar1 ð20Þ

and aVnrV0, 8xk, we have

V1ðxkÞ ¼min
uk

max
wk

fUðxk,uk,wkÞþV0ðxkþ1Þg

Zmin
uk

max
wk

fUðxk,uk,wkÞþaVn
ðxkþ1Þg

Zmin
uk

max
wk

1þy
a�1

1þy

� �
Uðxk,uk,wkÞ

�
þ a� a�1

1þy

� �
Vn
ðxkþ1Þ

�

¼ 1þ
a�1

1þy�1

� �
min

uk

max
wk

fUðxk,uk,wkÞþVn
ðxkþ1Þg

¼ 1þ
a�1

1þy�1

� �
Vn
ðxkÞ: ð21Þ

Assume that the inequality (19) holds for i�1. Then, we have

ViðxkÞ ¼min
uk

max
wk

fUðxk,uk,wkÞþVi�1ðxkþ1Þg

Zmin
uk

max
wk

Uðxk,uk,wkÞ
�

þ 1þ
a�1

ð1þy�1
Þ
i�1

" #
Vn
ðxkþ1Þ

)

Zmin
uk

max
wk

1þ
ða�1Þyi

ðyþ1Þi

" #
Uðxk,uk,wkÞ

(

þ 1þ
a�1

ð1þy�1
Þ
i�1
�
ða�1Þyi�1

ðyþ1Þi

" #
Vn
ðxkþ1Þ

)

¼ 1þ
ða�1Þyi

ðyþ1Þi

" #
min

uk

max
wk

fUðxk,uk,wkÞþVn
ðxkþ1Þg

¼ 1þ
a�1

ð1þy�1
Þ
i

" #
Vn
ðxkÞ: ð22Þ

Thus, the left-hand side of inequality (17) is proved and the right-

hand side can be shown in the same way.
Lastly, we will demonstrate the convergence of value function

as the iteration index i goes to infinity. When i-1, for 0oyo1,

we have

lim
i-1

1þ
a�1

ð1þy�1
Þ
i

" #
Vn
ðxkÞ ¼ Vn

ðxkÞ ð23Þ

and

lim
i-1

1þ
b�1

ð1þy�1
Þ
i

" #
Vn
ðxkÞ ¼ Vn

ðxkÞ: ð24Þ

Therefore, we can get

V1ðxkÞ ¼ Vn
ðxkÞ: ð25Þ

The proof is completed. &

Remark 2. From the above demonstration, we see that we can
find upper and lower bounds for every iterative value function
based on the optimal value function. As the iterative index i

increases, the upper bound will exponentially approach the lower
bound. When the iterative index i goes to infinity, the upper
bound will be nearly equal to the lower bound, which is just the
optimal value function. According to the inequality (17), smaller y
will lead to faster convergence speed of the value function.
Moreover, it should be mentioned that conditions in Theorem 2
can be satisfied according to Assumptions 1–3, which are some
mild assumptions for general control problems.

Specially, when V0 ¼ 0, we can have a¼ 0, b¼ 1. From the

inequality (17), we have

1�
1

ð1þy�1
Þ
i

" #
Vn
ðxÞrViðxÞrVn

ðxÞ: ð26Þ

According to the results of Theorem 2, we can derive the
following theorem.

Theorem 3. Define the control policy sequence fuig as in (13), the

disturbance sequence fwig as in (14), and the value function sequence

fVig as in (15). If the system state xk is controllable, then the control

pair (ui,wi) converges to (un,wn) as i-1.

Proof. According to Theorem 2, we have proved that
limi-1ViðxkÞ ¼ V1ðxkÞ ¼ Vn

ðxkÞ, so

V1ðxkÞ ¼min
uk

max
wk

fUðxk,uk,wkÞþV1ðxkþ1Þg: ð27Þ

That is to say the value function sequence fVig converges to the
optimal value function of the discrete-time HJI equation. Con-
sidering (8) and (13), (9) and (14), the corresponding control pair
(ui,wi) converges to the saddle point (un,wn) as i-1. &

3.3. NN implementation of the iterative ADP algorithm

The structure diagram of the HDP algorithm is given in Fig. 1.
The critic network approximates the value function, the action
network approximates the control policy, and the disturbance
network approximates the disturbance policy.

We choose the three-layer feed-forward NN as our function
approximation scheme. The output of the action network can be
formulated as

~uiðxkÞ ¼oT
aðiÞsðn

T
aðiÞxkÞ: ð28Þ

The target of control input is calculated in (13). The error function
of the action network can be defined as

eaðiÞðxkÞ ¼ ~uiðxkÞ�uiðxkÞ: ð29Þ



Fig. 1. The structure diagram of HDP algorithm.
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The weights of the action network are updated to minimize the
following objective function:

EaðiÞðxkÞ ¼
1
2eT

aðiÞðxkÞeaðiÞðxkÞ: ð30Þ

The output of the disturbance network can be formulated as

~wiðxkÞ ¼oT
dðiÞsðn

T
dðiÞxkÞ: ð31Þ

The target of disturbance input is calculated in (14). The error
function of the disturbance network can be defined as

edðiÞðxkÞ ¼ ~wiðxkÞ�wiðxkÞ: ð32Þ

The weights of the disturbance network are updated to minimize
the following objective function:

EdðiÞðxkÞ ¼
1
2eT

dðiÞðxkÞedðiÞðxkÞ: ð33Þ

The output of the critic network is denoted as

~V iþ1ðxkÞ ¼oT
cðiþ1Þsðn

T
cðiþ1ÞxkÞ: ð34Þ

The target value function is given in (15), where
Viðxkþ1Þ ¼oT

cðiÞsðn
T
cðiÞxkþ1Þ. Then, the error function for training

critic network is defined as

ecðiþ1ÞðxkÞ ¼
~V iþ1ðxkÞ�Viþ1ðxkÞ, ð35Þ

and the objective function to be minimized is defined as

Ecðiþ1ÞðxkÞ ¼
1
2eT

cðiþ1ÞðxkÞecðiþ1ÞðxkÞ: ð36Þ

With these objective functions, many methods like gradient
descent and Levenberg–Marquardt (LM) algorithm can be used
to tune the weights of NN.

Finally, a summary of this algorithm is given as follows:
1
 Initialize the parameters ja
max, jd

max, jc
max, ea, ed, ec , imax, x, g, Q, R,

and the weights of NNs.

2
 Set the iterative index i¼0 and V0 ¼ 0.

3
 Choose randomly an array of p state vector ½x1

k ,x2
k , . . . ,xp

k �.
Compute the target of the action network ½uiðx

1
k Þ,uiðx

2
k Þ, . . . ,

uiðx
p
kÞ� by (13), and train the action network until the given

accuracy ea or the maximum number of iterations ja
max is

reached. Compute the target of the disturbance network
½wiðx

1
k Þ,wiðx

2
k Þ, . . . ,wiðx

p
kÞ� by (14), and train the disturbance

network until the given accuracy ed or the maximum number
of iterations jd

max is reached.
4.
 Compute the output of the action network ½ ~uiðx
1
k Þ, ~uiðx

2
k Þ, . . . ,

~uiðx
p
kÞ�, the output of the disturbance network ½ ~wiðx

1
k Þ, ~wiðx

2
k Þ,

. . . , ~wiðx
p
kÞ�, and the output of the critic network ½ ~V iðx

1
kþ1Þ,

~V iðx
2
kþ1Þ, . . . ,

~V iðx
p
kþ1Þ�. Then compute the target of the critic

network ½Viþ1ðx
1
k Þ,Viþ1ðx

2
k Þ, . . . ,Viþ1ðx

p
kÞ� by (15). Train the

critic network until the given accuracy ec or the maximum
number of iterations jc

max is reached.

5.
 If i4 imax or JViþ1ðx

s
kÞ�Viðx

s
kÞJ

2rx,s¼ 1,2, . . . ,p, go to step (6);
otherwise, set the iterative index i¼ iþ1 and go to step (3).
6.
 The final near optimal control policy is obtained, and stop.

4. Adaptive dynamic programming for H1 optimal tracking
control

In this section, we will study the H1 optimal tracking control
problem for nonlinear discrete-time systems based on the
method developed in the previous section. The objective for
optimal tracking control problem is to design an optimal con-
troller to make the nonlinear system (1) track a reference
trajectory xdk in an optimal manner. Except for the assumptions
given in Section 2, we assume that gðxkÞ ¼ G in (1) is an invertible
input transformation matrix, and hðxkÞ ¼H in (1) is a constant
matrix. The dynamics of the reference trajectory is defined as

xdkþ1 ¼ f ðxdkÞþGudk, ð37Þ

where xdkARn, and f ð�Þ is the same as in (1). Based on the work of
[17,43], we define the desired control input udk corresponding to
the reference trajectory xdk as

udk ¼ G�1
ðxdkþ1�f ðxdkÞÞ, ð38Þ

where G�1 is the inverse matrix of input transformation matrix G.
Then, we define the state tracking error as

ek ¼ xk�xdk: ð39Þ

By using (1) and (37)–(39), the tracking error dynamics is defined
as

ekþ1 ¼ f ekþGuekþHwek, ð40Þ

where f ek ¼ f ðekþxdkÞ�f ðxdkÞ, uek ¼ uk�udk is the control input to
the new system (40), and wek ¼wk. It should be mentioned that
ek¼0 is an equilibrium point of (40). In this sense, the nonlinear
tracking problem is converted into a regulation problem.
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To track the reference trajectory in an optimal manner, our
goal is to design an optimal control policy uek which minimizes
the infinite horizon cost function

Jeðx0Þ ¼
X1
k ¼ 0

feT
k QeekþuT

ekReuek�g2
e wT

ekwekg ¼
X1
k ¼ 0

Uðek,uek,wekÞ,

ð41Þ

where Qe and Re are positive definite matrices, ge is a prescribed
positive constant. For the admissible control policy uek and
disturbance policy wek, we define the value function as

Veðek,uek,wekÞ ¼
X1
i ¼ k

feT
k QeekþuT

ekReuek�g2
e wT

ekwekg: ð42Þ

Therefore, we obtain

un

ek ¼�
1

2
R�1

e GT @Vn
ðekþ1Þ

@ekþ1
ð43Þ

and

wn

ek ¼
1

2
g�2

e HT @Vn
ðekþ1Þ

@ekþ1
: ð44Þ

Then, the discrete-time HJI equation becomes

Vn

e ðekÞ ¼ eT
k QeekþunT

ek Reun

ek�g
2
e wnT

ek wn

ekþVn

e ðekþ1Þ: ð45Þ

Thus we can solve the H1 optimal tracking problem using the
iterative ADP algorithm developed in Section 3.
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5. Simulation study

In this section, two simulation examples are provided to
illustrate the applicability of the present results.
0 50 100 150 200 250 300 350 400 450 500
0

Time steps

Fig. 3. The state trajectories.
5.1. Example 1

We use an F-16 aircraft autopilot as the simulation example
which is taken from [46]. The discrete-time plant model of this
aircraft dynamics is xkþ1 ¼ AxkþGukþHwk, where

A¼

0:906488 0:0816012 �0:0005

0:0741349 0:90121 �0:000708383

0 0 0:132655

2
64

3
75,

G¼

�0:00150808

�0:0096

0:867345

2
64

3
75,

H¼

�0:00951892

0:00038373

0

2
64

3
75:

The system states are x¼ ½x1 x2 x3�
T , where x1 is the angle of

attack, x2 is the pitch rate, and x3 is the elevator deflection angle.
The operation region of the system is selected as �1rx1r1,
�1rx2r1, and �1rx3r1. The weight matrices Q and R are
chosen as identity matrices, and the disturbance attenuation is
g¼ 1. The structures of action network, disturbance network, and
critic network are all chosen as 3–5–1. We use LM algorithm to
tune the weights of three NNs. After iterating for 200 times, the
convergence of the value function at x0 ¼ ½0:5 0:5 0:5�T is given in
Fig. 2. We apply the obtained control policy to the system for 500
time steps. The corresponding state trajectories are given in Fig. 3,
and the control input is shown in Fig. 4.
5.2. Example 2

Example 2 is obtained from [24] with some modifications. The
discrete-time plant model is xkþ1 ¼ f ðxkÞþgðxkÞukþhðxkÞwk, where

f ðxkÞ ¼
0:2x1kex2

2k

0:3x3
2k

" #
,

gðxkÞ ¼
�0:5 0

0 �0:5

� �
,

hðxkÞ ¼
0:1 0

0 0:1

� �
:

The system states are xk ¼ ½x1kx2k�
T . The operation region of the

system is selected as �1rx1r1, �1rx2r1. The weight
matrices Q and R are chosen as identity matrices, and the
disturbance attenuation is g¼ 5. The structures of action network,
disturbance network, and critic network are chosen as 2–8–2,
2–8–2, and 2–8–1, respectively. The activation function of hidden
layer is chosen as tanhð�Þ and the activation function of output
layer is chosen as linear function. We use LM algorithm to tune
the weights of three NNs. After iterating for 10 times, the
convergence of the value function at x0 ¼ ½0:5�0:5�T is given
in Fig. 5. Then, we apply the obtained nearly optimal control
policy to the system for 30 time steps. A disturbance
wk ¼ ½0:5e�0:2k 0:5e�0:2k�T is introduced into the system at k¼0.
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Fig. 4. The control input.
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0 5 10 15 20 25 30
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

r(
k)

Time steps

Fig. 8. The performance metric.

0 20 40 60 80 100
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Th
e 

st
at

e 
tra

je
ct

or
y 

an
d 

th
e 

re
fe

re
nc

e 
tra

je
ct

or
y

Time steps

x1d

x1

Fig. 9. The state tracking trajectory of x1.
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The corresponding state trajectories are given in Fig. 6, and the
control inputs are shown in Fig. 7. To evaluate the performance of
the system, a performance metric is defined as [51]
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Fig. 10. The state tracking trajectory of x2.
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Fig. 11. The tracking control inputs.
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rðkÞ ¼

Pk
i ¼ 0ðx

T
i QxiþuT

i RuiÞPk
i ¼ 0 g2wT

i wi

: ð46Þ

We can see that r(k) converges to 0.021 from Fig. 8.
It is clear from the simulation results that the iterative ADP

algorithm proposed in this paper is very effective in solving H1
optimal regulation problem.

To implement the H1 optimal tracking control, the parameters
are kept constant, and the reference trajectory is selected as

xdk ¼
0:25 sin ð0:1kÞ

0:25sin ð0:1kÞ

" #
:

After convergence, we apply the obtained nearly optimal tracking
controller to the system for 100 time steps. The disturbance wk is
also introduced into the system at k¼0. The corresponding state
tracking trajectories are given in Figs. 9 and 10, and the tracking
control inputs are shown in Fig. 11.

These simulation results verify the excellent performance of
the tracking controller developed by the iterative ADP algorithm
considering the disturbance.
6. Conclusion

A greedy iterative HDP algorithm is developed in this paper to
solve the zero-sum game problems for discrete-time affine non-
linear systems. The convergence analysis in terms of value
function and control policy is proved. Three NNs are used to
approximate the control policy, the disturbance policy, and the
value function, respectively. This algorithm is also extended to H1
optimal tracking control problems. The simulation examples
confirmed the validity the proposed scheme.
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