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Abstract This paper proposes a novel finite-time optimal
control method based on input–output data for unknown non-
linear systems using adaptive dynamic programming (ADP)
algorithm. In this method, the single-hidden layer feed-
forward network (SLFN) with extreme learning machine
(ELM) is used to construct the data-based identifier of the
unknown system dynamics. Based on the data-based iden-
tifier, the finite-time optimal control method is established
by ADP algorithm. Two other SLFNs with ELM are used in
ADP method to facilitate the implementation of the iterative
algorithm, which aim to approximate the performance index
function and the optimal control law at each iteration, respec-
tively. A simulation example is provided to demonstrate the
effectiveness of the proposed control scheme.

Keywords Adaptive dynamic programming ·
Approximate dynamic programming · Unknown nonlinear
systems · Optimal control · Data-based

1 Introduction

The linear optimal control problem with a quadratic cost
function is probably the most well-known control problem
(Duncan et al. 1999; Gabasov et al. 2000), and it can be trans-
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lated into Riccati equation. While the optimal control of non-
linear systems is usually a challenging and difficult problem
(Jin et al. 2012; Zhang et al. 2011e). Furthermore, comparing
with the known system dynamics case, it is more intractable
to solve the optimal control problem of the unknown sys-
tem dynamics. Generally speaking, most actual systems are
nearly far too complex to present the perfect mathemati-
cal models. Whenever no model is available to design the
system controller nor is easy to produce, a standard way is
resorting to data-based techniques (Guardabassi and Savaresi
2000): (1) on the basis of input-output data, the model of the
unknown system dynamics is identified; (2) on the basis of
the estimated model of the system dynamics, the controller
is designed by model-based design techniques.

It is well known that neural network is an effective tool to
implement intelligent identification based on input–output
data, due to the properties of nonlinearity, adaptivity, self-
learning and fault tolerance (Jagannathan 2006; Yu 2009;
Fernández-Navarro et al. 2013; Richert et al. 2013; Maji et
al. 2013). In which, single-hidden-layer feed-forward neural
network (SLFN) is one of the most useful types (Huang et
al. 2006b). Hornik (1991) proved that if the activation func-
tion is continuous, bounded, and non-constant, then continu-
ous mappings can be approximated by SLFNs with additive
hidden nodes over compact input sets. Leshno et al. (1993)
improved the results of Hornik (1991) and proved that SLFNs
with additive hidden nodes and with a non-polynomial acti-
vation function can approximate any continuous target func-
tions. In Huang et al. (2006b) it is proven in theory that SLFNs
with randomly generated additive and a broad type of acti-
vation functions can universally approximate any continu-
ous target functions in any compact subset of the Euclidean
space. For SLFN training, there are three main approaches:
(1) gradient-descent based, for example back-propagation
(BP) method (Zhang et al. 2008); (2) least square based, for
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example extreme learning machine (ELM) method in this
paper; (3) standard optimization method based, for example
support vector machine (SVM). While, the learning speed of
feed-forward neural networks is in general far slower than
required and it has been a major bottleneck in their appli-
cations for past decades (Huang and Siew 2004). Two key
reasons are: (1) the slow gradient-based learning algorithms
are extensively used to train neural networks, (2) all the para-
meters of the networks are tuned iteratively by using such
learning algorithms. Unlike conventional neural network the-
ories, in this paper, the ELM method is used to train SLFN.
Such SLFN can be as the universal approximator, one may
simply randomly choose hidden nodes and then only need
to adjust the output weights linking the hidden layer and the
output layer. For given network architectures, ELM does not
require human-intervened parameters, so ELM has fast con-
vergence and can be easily used.

Based on the SLFN identifier, the finite-time optimal con-
trol method is presented in this paper. It is worth noting that
although dynamic programming is very useful in solving the
optimal control problems (Murray and Cox 2002; Seiffertt
et al. 2008; He and Jagannathan 2007; Zhao et al. 2008), it
is often computationally untenable to run dynamic program-
ming (Bellman 1957). Thus, adaptive/approximate dynamic
programming (ADP) algorithm was proposed in (Werbos
1992, 2008) as an effective intelligent control method and has
played an important role in seeking solutions for the optimal
control problem (Zhang et al. 2011a,b,c,d; Liu and Zhang
2005). Furthermore, most works about ADP adopted feed-
forward neural networks with gradient descent-based meth-
ods to approximate the critic network and action network
(Wei and Liu 2012; Liu and Wei 2013; Song et al. 2010; Song
and Zhang 2013). Moreover, most research results about
ADP focus on infinite-time optimal control problems. But
the system cannot really be stabilized until the time reaches
infinity. While for finite-time control problems, the system
must be stabilized to zero within finite time. The controller
design of finite-time problems still presents a challenge to
control engineers as the lack of methodology and the control
step is difficult to determine. Few results relate to the finite-
time optimal control based on ADP algorithm. As we know
that Wang et al. (2011) solved the finite-horizon optimal con-
trol problem for a class of discrete-time nonlinear systems
using ADP algorithm. But the method in Wang et al. (2011)
adopts the BP networks to obtain the optimal control, which
has slow convergence speed.

In this paper, we will design the finite-time optimal con-
troller based on SLFN with ELM for unknown nonlinear
systems. First, the identifier is established by the input–
output data. Upon the data-based identifier, the optimal con-
trol method is proposed. We prove that the iterative perfor-
mance index function converges to optimum, and the optimal
control is also obtained. Compared to other popular imple-

mentation methods such as BP, the SLFN with ELM has
the fast response speed and is fully automatic. It means that
except for target errors and the allowed maximum number
of hidden nodes, no control parameters need to be manually
tuned by users.

The rest of this paper is organized as follows. In Sect. 2,
the problem formulation is presented. In Sect. 3, the iden-
tifier is developed based on the input–output data. In Sect.
4, the iterative ADP algorithm and the convergence proof
are given. In Sect. 5, an example is given to demonstrate the
effectiveness of the proposed control scheme. In Sect. 6, the
conclusion is drawn.

2 Motivations and problem formulation

Consider the following unknown discrete-time nonlinear sys-
tems

x(k + 1) = F(x(k), u(k)), (1)

where the state x(k) ∈ �n and the control u(k) ∈ �m .
F(x(k), u(k)) is unknown continuous function. Assume that
the state is completely controllable and bounded on Ω , and
F(0, 0) = 0. The finite-time performance index function is
defined as follows:

J (x(k), U (k, K )) =
K∑

i=k

{xT (i)Qx(i) + uT (i)Ru(i)}, (2)

where Q and R are positive definite matrices, K is the
finite positive integer, the control sequence U (k, K ) =
(u(k), u(k + 1), . . . , u(K )) is finite-time admissible (Wang
et al. 2011). The length of U (k, K ) is defined as (K −k +1).

This paper is desired to find the optimal control for system
(1) based on performance index function (2). Since the sys-
tem dynamics is completely unknown, the optimal problem
cannot be solved directly. Therefore, it is desirable to propose
a novel method that does not need the exact system dynamics
but only the input-output data, which can be obtained dur-
ing the operation of the system. In this paper, we propose a
data-based optimal control scheme using SLFN with ELM
and ADP method for general unknown nonlinear systems.
The design of proposed controller is divided into two steps:

1. The unknown nonlinear system dynamics is identified by
SLFN identification scheme.

2. The optimal controller is designed based on the data-
based identifier.

In the following sections, we will discuss the establish-
ment of the data-based identifier and the controller design in
details.

123



Neural-network-based approach to finite-time optimal control 1647

x

( )Lf x

1 n

1 m

1 L

w

L

Fig. 1 The basic SLFN architecture

3 The data-based identifier

In this section, the ELM method is introduced and the data-
based identifier is established. The structure of SLFN is in
Fig. 1.

For N1 arbitrary distinct samples (x̄(i), ȳ(i)), where
x̄(i) ∈ �n1 , ȳ(i) ∈ �m1 , i = 1, . . . , N1. The weight vec-
tors between the input neurons and the j th hidden neuron
are w j ∈ �n2 . The weight vectors between the output neu-
rons and the j th hidden neuron are β̄ j ∈ �m1 , which will
be designed by ELM method (Zhang et al. 2007). The num-
ber of hidden neurons is L . The threshold of the j th hidden
neuron is b j . The hidden layer activation function gL(x̄) is
infinitely differentiable, then the mathematically model of
SLFN is (Huang and Siew 2004)

fL(x̄(i)) =
L∑

j=1

β̄ j gL(wT
j x̄(i) + b j ), i = 1, . . . , N1. (3)

Unlike the traditional popular implementations in SLFN,
in this paper, ELM is used to adjust the output weights. In
theory, Refs.Tamura and Tateishi (1997) and Huang (2003)
show that the input weights and hidden neurons biases of
SLFN do not need be adjusted during training and one
may simply randomly assign values to them. To be con-
venient for explanation, let βL = [β̄1, . . . , β̄L ]T

L×m1
, Ȳ =

[ȳ(1), . . . , ȳ(N1)]T
N1×m1

, and

H = [h(x̄(1)), . . . , h(x̄(N1))]
T

=
⎡

⎢⎣
G(w1, b1, x̄(1)) · · · G(wL , bL , x̄(1))
...

G(w1, b1, x̄(N1)) · · · G(wL , bL , x̄(N1))

⎤

⎥⎦

N1×L

,

where G(w j , b j , x̄(i)) = gL(wT
j x̄(i) + b j ). So we have

HβL = Ȳ . (4)

Based on least-square method, it can be obtained that

βL = H+Ȳ , (5)

where H+ = (H T H)−1 H T .
For SLEN in (3), the output weight βL is the only value

we want to obtain. In the following, a theorem is given to
prove that βL exists, which means that H is invertible.

Theorem 1 If SLFN is defined as in (3), let the hidden neu-
rons number is L. For N1 arbitrary distinct input samples
x̄(i) and any given w j and b j , we have H in (4) is invertible.

Proof As input samples x̄(i) are distinct, for any vector w j

according to any continuous probability distribution, then
with probability one, wT

j x(1), wT
j x(2), . . . , wT

j x(N1) are
different from each other. Define the j th column of H is
c( j) = [gL(wT

j x̄(1) + b j ), gL(wT
j x̄(2) + b j ), . . . , gL(wT

j x̄

(N1) + b j )]T , we can have c( j) does not belong to any sub-
space whose dimension is less than N1 (Huang 2003). It
means that for any given w j and b j , according to any contin-
uous probability distribution, H in (4) can be made full-rank,
i.e., H is invertible.

Therefore, the SLFN with ELM method is summarized as
follows (Huang et al. 2011):

Step 1. Given a training set (x̄(i), ȳ(i)), i = 1, . . . , N1, hid-
den node output function G(w j , b j , x̄(i)) and hidden node
number L .
Step 2. Given arbitrary hidden node parameters (w j , b j ),
j = 1, . . . , L .
Step 3. Calculate the hidden layer output matrix H .
Step 4. According to (5) to calculate βL .

Remark 1 ELM algorithm can work with wide type of activa-
tion functions, such as sigmoidal functions, radial basis, sine,
cosine and exponential functions et al. The feed-forward net-
works with arbitrary input weights and hidden layer biases
can universally approximate any continuous functions on any
compact input sets (Huang et al. 2006a).

Remark 2 It is important to point out that βL in (5) has
the smallest norm among all the least-squares solutions of
HβL = Ȳ . As the input weights and hidden neurons biases
of SLFN are simply randomly assigned values. So training an
SLFN is simply equivalent to finding a least-squares solution
of the linear system HβL = Ȳ . Although almost all learning
algorithms wish to reach the minimum training error, how-
ever, most of them cannot reach it because of local minimum
or infinite training iteration is usually not allowed in appli-
cations (Huang et al. 2006a). Fortunately, the special unique
solution βL in (5) has the smallest norm among all the least
squares solutions.
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4 Derivation of the iterative ADP algorithm with
convergence analysis

For the unknown nonlinear system (1), the data-based iden-
tifier is established. Then we can design the iterative ADP
algorithm to get the solution of the finite-time optimal control
problem.

First, the derivations of the optimal control u∗(k) and
J ∗(x(k)) are given in details. It is known that, for the case of
finite horizon optimization, the optimal performance index
function J ∗(x(k)) satisfies (Wang et al. 2011)

J ∗(x(k)) = inf
U (k)

{J (x(k), U (k, K ))}, (6)

where U (k, K ) stands for a finite-time control sequence. The
length of the control sequence is not assigned.

According to Bellman’s optimality principle, the follow-
ing Hamilton–Jacobi–Bellman (HJB) equation

J ∗(x(k)) = inf
u(k)

{xT (k)Qx(k) + uT (k)Ru(k)

+J ∗(x(k + 1))} (7)

holds.
Define the law of optimal control sequence starting at k

by

U∗(k, K ) = arg inf
U (k,K )

{J (x(k), U (k, K ))}, (8)

and the law of optimal control vector by

u∗(k) = arg inf
u(k)

{xT (k)Qx(k)

+ uT (k)Ru(k) + J ∗(x(k + 1))}. (9)

Therefore, we can have

J ∗(x(k))= xT (k)Qx(k)+u∗T (k)Ru∗(k) + J ∗(x(k+1)).

(10)

Based on the above preparation, the finite-time ADP
method for unknown system is proposed. The iterative pro-
cedure is as follows.

For the iterative step i = 1, the performance index func-
tion is computed as

V [1](x(k))

= inf
u(k)

{xT (k)Qx(k) + uT (k)Ru(k) + V [0](x(k + 1))}
= xT (k)Qx(k) + u[1]T (k)Ru[1](k) + V [0](x(k + 1)),

(11)

where

u[1](x(k)) = arg inf
u(k)

{xT (k)Qx(k) + uT (k)Ru(k) + V [0](x(k + 1))},
(12)

and V [0](x(k + 1)) has two expression forms according to
two different cases.

If for x(k), there exists U (k, K ) = (u(k)), s.t. F(x(k),

u(k)) = 0, then V [0](x(k + 1)) is

V [0](x(k + 1)) = J (x(k + 1), U∗(k + 1, k + 1)) = 0,

∀x(k + 1), (13)

where U∗(k + 1, k + 1) = (0). In this situation, the restrict
term F(x(k), u[1](k)) = 0 for (11) is necessary.

If for x(k), there exists U (k, K̄ )=(u(k), u(k + 1),

. . . , u(K̄ )), s.t. F(x(k), U (k, K̄ )) = 0, then V [0](x(k + 1))

is

V [0](x(k + 1)) = J (x(k + 1), U∗(k + 1, K )), (14)

where U∗(k + 1, K ) = (u∗(k + 1), u∗(k + 1), . . . , u∗(K )).
For the iterative step i > 1, the performance index func-

tion is updated as follows

V [i+1](x(k)) = inf
u(k)

{xT (k)Qx(k) + uT (k)Ru(k)

+V [i](x(k + 1))}
= xT (k)Qx(k) + u[i+1]T (k)Ru[i+1](k)

+V [i](x(k + 1)), (15)

where

u[i+1](x(k)) = arg inf
u(k)

{xT (k)Qx(k) + uT (k)Ru(k)

+V [i](x(k + 1))}. (16)

In the above recurrent iterative procedure, the index i is the
iterative step and k is the time step. The optimal control and
optimal performance index function can be obtained by the
iterative ADP algorithm (11)–(16).

In the following part, we will present the convergence
analysis of the iterative ADP algorithm (11)–(16).

Theorem 2 For an arbitrary state vector x(k), the per-
formance index function V [i+1](x(k)) is obtained by the
iterative ADP algorithm (11)–(16), then {V [i+1](x(k))} is
a monotonically nonincreasing sequence for i ≥ 1, i.e.,
V [i+1](x(k)) ≤ V [i](x(k)),∀i ≥ 1.

Proof The mathematical induction is used to prove the the-
orem.

First, for i = 1, we can have V [1](x(k)) in (11), V [0](x(k+
1)) in (13), and the finite-time admissible control sequence
U∗(k, k + 1) = (u[1](k), U∗(k + 1, k + 1)) = (u[1](k), 0).
For i = 2, we have

V [2](x(k)) = xT (k)Qx(k) + u[2]T (k)Ru[2](k)

+V [1](x(k + 1)). (17)

From (11), we have

V [1](x(k + 1)) = inf
u(k+1)

{xT (k + 1)Qx(k + 1)

+ uT (k + 1)Ru(k + 1)+V [0](x(k + 2))}.
(18)
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So (17) can be expressed as

V [2](x(k)) = inf
u(k)

{xT (k)Qx(k) + uT (k)Ru(k)

+ inf
u(k+1)

{xT (k + 1)Qx(k + 1)

+ uT (k + 1)Ru(k + 1)} + V [0](x(k + 2))}.
(19)

So (19) can be written as

V [2](x(k)) = inf
U (k,k+1)

k+1∑

l=k

{xT (l)Qx(l) + uT (l)Ru(l)}.

(20)

If U (k, k+1) in (20) is defined as U (k, k+1) = (u(k), u(k+
1)) = (u[1](k), 0), then we have

k+1∑

l=k

{xT (l)Qx(l) + uT (l)Ru(l)}

= xT (k)Qx(k) + u[1]T (k)Ru[1](k) = V [1](x(k)). (21)

So according to (20) and (21), we have V [2](x(k)) ≤
V [1](x(k)), for i = 1.

Second, we assume that for i = j − 1, the following
expression

V [ j](x(k)) ≤ V [ j−1](x(k)) (22)

holds.
Then according to (15), for i = j , we have

V [ j+1](x(k)) = inf
u(k)

{xT (k)Qx(k) + uT (k)Ru(k)

+ inf
u(k+1)

{xT (k + 1)Qx(k + 1)

+ uT (k + 1)Ru(k + 1) + · · ·
+ inf

u(k+ j)
{xT (k + j)Qx(k + j)

+ uT (k + j)Ru(k + j)} · · · }}. (23)

So we can obtain

V [ j+1](x(k)) = inf
U (k)

k+ j∑

l=k

{xT (l)Qx(l) + uT (l)Ru(l)}. (24)

If we let U (k, k + j) = (u[ j](k), . . . , u[1](k + j − 1), 0) in
(24), then we can get

k+ j∑

l=k

{xT (l)Qx(l) + uT (l)Ru(l)}

= xT (k)Qx(k) + u[ j]T (k)Ru[ j](k)

+ xT (k + 1)Qx(k + 1) + u[ j−1]T (k + 1)Ru[ j−1](k + 1)

+ · · · + xT (k + j − 1)Qx(k + j − 1)

+ u[1]T (k + j − 1)Ru[1](k + j − 1)

+ xT (k + j)Qx(k + j). (25)

As mentioned in the iterative algorithm, the restrict term
F(x(k), u[1](k)) = 0,∀x(k) for (11) is necessary. So we
can get

x(k + j) = F(x(k + j), u[1](k + j)) = 0. (26)

Thus, we have

k+ j∑

l=k

{xT (l)Qx(l) + uT (l)Ru(l)} = V [ j](x(k)). (27)

Therefore, we obtain

V [ j+1](x(k)) ≤ V [ j](x(k)). (28)

For the situation (14), it can easily be proven accord-
ing to the above method. Therefore, we can conclude that
V [i+1](x(k)) ≤ V [i](x(k)),∀i .

From Theorem 2, it is clear that the iterative performance
index function is convergent. So we can define the limitation
of the sequence {V [i+1](x(k))} is V o(x(k)). In the next theo-
rem, we will prove that V o(x(k)) satisfies the HJB equation.

Theorem 3 Let V o(x(k)) = limi→∞ V [i+1](x(k)), then
V o(x(k)) satisfies

V o(x(k)) = inf
u(k)

{xT (k)Qx(k) + uT (k)Ru(k) + V o(x(k + 1))}.
(29)

Proof According to (15) and (16), for any admissible control
vector η(k), we have

V [i+1](x(k)) ≤ xT (k)Qx(k) + ηT (k)Rη(k) + V [i](x(k + 1)). (30)

From Theorem 2, we can obtain

V o(x(k)) ≤ V [i+1](x(k)). (31)

So it can be obtained that

V o(x(k)) ≤ xT (k)Qx(k) + ηT (k)Rη(k) + V [i](x(k + 1)).

(32)

Let i → ∞, (32) can be written as

V o(x(k)) ≤ xT (k)Qx(k) + ηT (k)Rη(k) + V o(x(k + 1)).

(33)

As η(k) is any admissible control, so we can obtain

V o(x(k))≤ inf
u(k)

{xT (k)Qx(k)+uT (k)Ru(k)+V o(x(k + 1))}. (34)

On the other side, according to the definition V o(x(k)) =
limi→∞ V [i+1](x(k)), there exists a positive integer p and
an arbitrary positive number ε, such that

V [p](x(k)) ≥ V o(x(k)) ≥ V [p](x(k)) − ε. (35)

From (15), we have

V [p](x(k)) = xT (k)Qx(k) + u[p]T (k)Ru[p](k)

+V [p−1](x(k + 1)). (36)
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So according to (35) and (36), we have

V o(x(k)) ≥ xT (k)Qx(k) + u[p]T (k)Ru[p](k)

+V [p−1](x(k + 1)) − ε. (37)

As V [p−1](x(k+1)) ≥ V o(x(k+1)),∀p, then (37) is written
as follows

V o(x(k)) ≥ xT (k)Qx(k) + u[p]T (k)Ru[p](k)

+V o(x(k + 1)) − ε. (38)

Hence we have

V o(x(k)) ≥ inf
u(k)

{xT (k)Qx(k)

+ uT (k)Ru(k) + V o(x(k + 1)) − ε}. (39)

Since ε is arbitrary, we can have

V o(x(k)) ≥ inf
u(k)

{xT (k)Qx(k) + uT (k)Ru(k)

+V o(x(k + 1))}. (40)

Thus from (34) and (40), we have

V o(x(k)) = inf
u(k)

{xT (k)Qx(k) + uT (k)Ru(k)

+V o(x(k + 1))}. (41)

From Theorems 2 and 3, it can be concluded that V o(x(k))

is the optimal performance index function and V o(x(k)) =
J ∗(x(k)). So we can have the following corollary.

Corollary 1 Let the iterative algorithm be expressed as (11)-
(16). Then we have the iterative control u[i](k) converge to
the optimal control u∗(k), as i → ∞, i.e.,

u∗(k) = arg inf
u(k)

{xT (k)Qx(k) + uT (k)Ru(k)

+J ∗(x(k + 1))}. (42)

In this section, the iterative control algorithm is proposed
for data-based unknown systems with convergence analysis.
In next section, the neural network implementation of the
iterative control algorithm will be presented.

4.1 Neural network implementation of the iterative control
algorithm

The input–output data are used to identify the unknown non-
linear system, until the identification error is in the satisfied
precision range. Then the data-based identifier is used for
the controller design. The diagram of the whole structure is
shown in Fig. 2.

In Fig. 2, the SLENs module is the identifier, the action
network module is used to approximate the iterative control
u[i](k), and the critic network module is used to approximate
the iterative performance index function. The SLFNs with
ELM are used in the ADP algorithm, i.e. action network
and critic network. The detailed implementation steps are as
follows.

Step 1. Train the identifier by input–output data.
Step 2. Choose an error bound ε, and choose randomly
an initial state x(0).
Step 3. Calculate the initial finite-time admissible control
sequence for x(0), which isU (0, K )=(u(0), . . . , u(K )).
The corresponding state sequence is (x(0), . . . , x(K +
1)), where x(K + 1) = 0.
Step 4. For the state x(K ), run the iterative ADP algo-
rithm (11)–(13) for i = 1, and (15)–(16) for i > 1. If
|V [i+1](x(K )) − V i (x(K ))| < ε, then stop.
Step 5. For the state x(k), k = K − 1, . . . , 0, run the
iterative ADP algorithm (11)–(12) and (14) for i = 1,
(15)–(16) for i > 1. Until |V [i+1](x(k))−V i (x(k))| < ε.
Step 6. Stop.

5 Simulation study

To evaluate the performance of our iterative ADP algorithm
for the data-based identifier, an example is provided in this
section.

Consider the following nonlinear system (Wang et al.
2011).

Fig. 2 The basic structure of
the proposed control method
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x(k + 1) = x(k) + sin(0.1x2(k) + u(k)), (43)

where the state x(k) ∈ � and the control u(k) ∈ �.
In this paper, 5,000 sampling points are used to train

the SLFN identifier. The number of hidden neurons is
20. The weight vectors between the input neurons and
the j th hidden neuron are selected in (0, 1). The thresh-
old of the hidden neuron is selected in (0, 1). For 50
test points, we get the identification results in Fig. 3. The
dashed line is the test points, the solid line is the output
of the data-based identifier, and the line with sign “×” is
the identification error. From Fig. 3, we can see that the
identifier reconstructs the unknown nonlinear system accu-
rately.

Based on the identification results, the optimal ADP
controller is designed. The initial state for system (43) is
x(0) = 1.5. For implementation the proposed iteration algo-
rithm in this paper, two neural networks which are SLFNs
with ELM are used to approximate the action network and
critic network, respectively. To demonstrate the effective-
ness of the proposed scheme, we implement the iterative
algorithm by neural networks with ELM and BP methods,
respectively. The maximal iteration step is 50 for two kinds
of neural networks. The convergence precision of ELM is
10−6, and the convergence precision of BP is 10−4. We get
the simulation results in Figs. 4, 5, 6, 7, 8, 9. Figures 4 and
5 are trajectories of the iterative performance index func-
tion obtained by ELM and BP, respectively. In Fig. 4, after
5 iterative steps, the iterative performance index function
is convergent. While in Fig. 5, it costs 15 iterative steps.
Figures 6 and 7 are the state trajectories obtained by ELM
method and BP method, respectively. Figures 8 and 9 are
the control trajectories obtained by ELM method and BP
method, respectively. By ELM method, the trajectories of
state and control are convergent after 4 time steps. While
by BP method, it costs 15 time steps. From the figures
we can see that the results of ELM method are faster and
smoother than the results of BP method. It can be con-
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Fig. 3 The train results of the data-based identifier
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Fig. 4 The performance index function obtained by ELM method
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Fig. 5 The performance index function obtained by BP method
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Fig. 6 The state obtained by ELM method

cluded that the learning speed of ELM method is faster
than BP method while obtaining better generalization per-
formance.
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Fig. 7 The state obtained by BP method
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Fig. 8 The control obtained by ELM method
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Fig. 9 The control obtained by BP method

6 Conclusions

This paper studied the ELM method for optimal control of
unknown nonlinear systems. Using the input–output data, a
data-based identifier was established. The finite-time opti-
mal control scheme was proposed based on iterative ADP
algorithm. The results of theorems showed that the proposed
iterative algorithm was convergent. The simulation study
have demonstrated the effectiveness of the proposed control
algorithm.
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