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Abstract In this paper, an optimal control scheme of a

class of unknown discrete-time nonlinear systems with

dead-zone control constraints is developed using adaptive

dynamic programming (ADP). First, the discrete-time

Hamilton–Jacobi–Bellman (DTHJB) equation is derived.

Then, an improved iterative ADP algorithm is constructed

which can solve the DTHJB equation approximately.

Combining with Riemann integral, detailed proofs of

existence and uniqueness of the solution are also presented.

It is emphasized that this algorithm allows the implemen-

tation of optimal control without knowing internal system

dynamics. Moreover, the approach removes the require-

ments of precise parameters of the dead-zone. Finally,

simulation studies are given to demonstrate the perfor-

mance of the present approach using neural networks.

Keywords Nonlinear affine system �Dead-zone �DTHJB �
Neural networks � Riemann integral

1 Introduction

Dead-zone, backlash, saturation, hysteresis and actuator

nonlinearities are very common in most practical industrial

control systems. Because of the nonanalytical nature of

these actuator nonlinearities and the fact that their accurate

nonlinear mathematical functions are difficult to know,

such systems present a challenge for practitioners. Thus,

there have been many discussions on this subject. For

example, backlash, hysteresis and saturation nonlinearities

were considered in Tao and Kokotovic (1995a, b, 1996),

Zhang et al. (2009), Bernstein (1995), Saberi et al. (1996)

and Sussmann et al. (1994), respectively.

Dead-zone is one of the most important nonlinearities in

many industrial processes, which can severely affect the

system’s performance. The study of control systems with

dead-zone nonlinearities has been the focus of researchers

for many years. Several solutions for deriving control laws

considering the dead-zone phenomena can be found in Tao

and Kokotovic (1994, 1995c), Gao and Rastko (2006),

Recker et al. (1991), Selmic and Lewis (2000), Lewis et al.

(1999), Xu et al. (2005), Wang et al. (2004), Ma and Yang

(2010) and Zhang and Ge (2007, 2008). In Xu et al. (2005),

affine nonlinear systems with dead-zone input were first

investigated. The study of adaptive control for systems with

unknown dead-zone was initiated by Recker et al. (1991),

where an adaptive scheme was proposed for the case of full

state measurement. In recent years, there are some works of

handling dead-zone nonlinearities from the perspective of

adaptive control (Tao and Kokotovic 1994, 1995c; Wang

et al. 2004; Ma and Yang 2010; Zhang and Ge 2007, 2008).

In fact the exact solution of the Hamilton–Jacobi–Bellman

(HJB) equation is generally impossible to obtain for non-

linear systems especially with dead-zone constraints. To

overcome the difficulty, recursive methods are employed to

obtain the solution of HJB equation indirectly, such as the

iterative adaptive dynamic programming (ADP).

ADP is a very useful tool in solving optimization and

optimal control problems by employing the principle of
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optimality, which is expressed as ‘‘An optimal policy has

the property that whatever the initial state and initial

decision are, the remaining decisions must constitute an

optimal policy with regard to the state resulting from the

first decision’’ (Bellman 1957). In recent years, ADP using

universal function approximators has received much

attention from many researchers in order to obtain

approximate solutions of the HJB equation (Abu-Khalaf

and Lewis 2005; Balakrishnan et al. 2008; Al-Tamimi

et al. 2007; Al-Tamimi and Lewis 2008; Liu et al. 2001,

2005; Wei et al. 2009). Typically, these methods use fuzzy

logic systems or neural networks (NNs) to parameterize the

unknown nonlinearities.

According to Werbos (1992) and Prokhorov and

Wunsch (1997), ADP approaches were classified into

several main schemes: heuristic dynamic programming

(HDP), action-dependent HDP (ADHDP), dual heuristic

dynamic programming (DHP), ADDHP, globalized DHP

(GDHP), and ADGDHP. In Seiffertt et al. (2001), HJB

equations were motivated and proven on time scales. The

authors coupled the calculus of time scales with stochastic

control via ADP algorithm and pointed out three significant

directions for the investigation of ADP on time scales.

In the present paper, we study this problem through

ADP in order to solve the discrete-time HJB (DTHJB)

equations and then the optimal control problems for gen-

eral affine nonlinear discrete-time systems with dead-zone

control constraints.

In summary, the main contributions of this paper are as

follows.

1. Present a framework for optimal control of nonlinear

systems with unknown dead-zone constraints.

2. Develop a novel nonquadratic functional to deal with

dead-zone control constraints of nonlinear discrete-

time systems and derive the corresponding DTHJB

equation.

3. Utilize two NNs to approximate the dead-zone and the

corresponding nonlinear control system, respectively,

and thus solve the corresponding unknown model

problems.

4. The two simulation examples demonstrate that the

iterative value function sequence converges to the

optimal value function, and show the validity of the

proposed algorithm.

Specifically, we use a model network to approximate the

nonlinear system dynamics, which renders the iterative

ADP algorithm suitable to unknown plants. In addition, the

dead-zone nonlinearity will be approximated using NN. It

is the first time to use HDP technique to solve the optimal

control problem with dead-zone constraints.

2 Problem statement and preliminaries

Consider a class of affine nonlinear discrete-time system

Rðf ; gÞ with dead-zone control inputs described by

xkþ1 ¼ f ðxkÞ þ gðxkÞuk; ð1Þ

uik ¼ UðvikÞ ¼
UrðvikÞ vik > br

0 bl\vik\br

UlðvikÞ vik 6 bl;

8
<

:
ð2Þ

where xk ¼ xðkÞ 2 R
n is the state vector, and f :Rn !

R
n; g:Rn ! R

n�m are differentiable with respect to their

arguments with f(0) = 0. In addition, uik ¼ UðvikÞ is the

output of dead-zone where Uð�Þ is an abstract mathematical

description of the dead-zone, vik = vi(xk) is the input vector to

dead-zone, UrðvikÞ and UlðvikÞ are unknown nonlinear func-

tions for vik [ [br, ??) and for vik [ (-?, bl], respectively.

We denote Xu ¼ fukjuk ¼ ½u1k; u2k; . . .; umk�T 2 R
m; uik ¼

UðvikÞ; i ¼ 1; . . .;mg:
As stated in Tao and Kokotovic (1994), the simplest

linear symmetric dead-zone model is only a static simpli-

fication of diverse physical phenomena with negligible fast

dynamics. Actually, in many industrial processes the dead-

zone parameters are unknown, but its model is monotonic.

Thus the dead-zone inverse function exists.

The key features of the control problems investigated in

this paper are:

1. We have the input/output data of the dead-zone,

namely prior knowledge of the dead-zone control.

2. Assume that f ? gu is Lipschitz continuous on a set

X � R
n containing the origin, and that the system

Rðf ; gÞ is controllable in the sense that there exists at

least a continuous control law on X that asymptotically

stabilizes the system. This assures not only the

existence of solution of the DTHJB equation but also

the corresponding optimal control.

3. The dead-zone and the system models cannot be

acquired exactly.

4. The dead-zone is continuous monotonic.

Definition 1 (cf. Zhang et al. 2009) Stabilizable system: a

nonlinear dynamical system is said to be stabilizable on a

compact set X � R
n; if for all initial conditions x0 2 X;

there is a control input uk 2 R
m; such that the state xk? 0

as k? ??.

It is desired to find the optimal control action uk for the

system Rðf ; gÞ which minimizes the infinite-horizon value

function given by

VðxkÞ ¼
X1

i¼k

ci�kUðxi; uiÞ; ð3Þ

350 D. Zhang et al.

123



where U(xi, ui) is the utility function and is positive

definite, i.e., U(0, 0) = 0 for xi = 0, ui = 0, and U(xi,

ui) [ 0 for Vxi = 0, ui = 0. c is the discount factor with 0

\ c 6 1. The utility function usually can be expressed as

Uðxi; uiÞ ¼ xT
i Qxi þWðuiÞ; ð4Þ

where Q and W(ui) are positive definite as above, and for

unconstrained control inputs, a common choice for W(ui) is

W(ui) = ui
TRui, where R [ 0;R 2 R

m�m:

But for constrained control inputs, inspired by Abu-

Khalaf and Lewis (2005) and Lyshevski (1998) who

introduced a generalized nonquadratic function when

dealing with bounded controls, we can define

WðuiÞ ¼ 2

Zui

0

U�TðviÞRdvi;

UðviÞ ¼ ½/ðv1iÞ;/ðv2iÞ; . . .;/ðvmiÞ�T ;

ð5Þ

where Uð�Þ is a constrained and continuous monotonic

function, and R is positive definite and assumed to be

symmetric for simplicity. Since /(�) is a monotonic odd

function and R is positive definite, W(u) is positive definite.

For the general optimal control problems, the controllers

need to be stable and also to guarantee that (3) is finite, i.e.,

the control must be adminissible (Abu-Khalaf and Lewis

2005).

Definition 2 Admissible control: a control uk is said to be

admissible with respect to (3) on X if uk is continuous on a

compact set X � R
n; u0 ¼ 0; uk stabilizes (3) on X; and

8x0 2 X; Vðx0Þ is finite.

Equation (3) can be rewritten as follows:

VðxkÞ ¼
X1

i¼k

ci�k xT
i Qxi þWðuiÞ

� �

¼ xT
k Qxk þWðukÞ

þ c
X1

i¼kþ1

ci�k�1 xT
i Qxi þWðuiÞ

� �

¼ xT
k Qxk þ 2

Zuk

0

U�TðvkÞRdvk þ cVðxkþ1Þ: ð6Þ

According to Bellman’s optimality principle, the

optimal value function V*(xk) satisfies the following

DTHJB equation:

V�ðxkÞ ¼ min
uk

xT
k Qxk þ 2

Zuk

0

U�TðvkÞRdvk þ cV�ðxkþ1Þ

8
<

:

9
=

;
:

ð7Þ

The optimal control uk
* at time k is the uk which achieves

the aforementioned minimum, i.e.,

u�k ¼ arg min
uk

xT
k Qxk þ 2

Zuk

0

U�TðvkÞRdvk þ cV�ðxkþ1Þ

8
<

:

9
=

;
:

ð8Þ

Note that the DTHJB equation develops backward in

time, and uk
* satisfies the first-order necessary condition,

which is given by the gradient of the right-hand side of (7)

with respect to uk as

o

ouk

xT
k Qxk þ 2

Zuk

0

U�TðvkÞRdvk þ cV�ðxkþ1Þ

0

@

1

A ¼ 0: ð9Þ

Therefore, we have

u�k ¼ U � c
2

R�1 oxkþ1

ouk

� �T
oV�ðxkþ1Þ

oxkþ1

 !

: ð10Þ

By substituting (10) into (7), the DTHJB can be

expressed as

V�ðxkÞ ¼ xT
k Qxk þ 2

Zu�
k

0

U�TðvkÞRdvk þ cV�ðxkþ1Þ; ð11Þ

which is the optimal value function corresponding to the

optimal control policy uk
*.

Equations (10) and (11) are called the best optimized

implementation of dynamic programming problems. In the

general nonlinear dynamic case, the HJB equation cannot

be solved analytically due to the well-known ‘‘curses of the

dimensionality’’. Therefore, in the following sections, we

will present how the HDP algorithm works with the defi-

nition of Riemann integral to solve approximately the

optimal control problem with dead-zone constraints.

3 The approximate solution of the DTHJB equation

for general nonlinear systems

As said above, the DTHJB equation is generally nonana-

litical for nonlinear systems and the iterative ADP algo-

rithm is a good method to solve it. Therefore, in order to

overcome the difficulty in solving the DTHJB equation, we

employ recursive ADP method combined with Riemann

integral to obtain its approximate solution. Also we dem-

onstrate the existence and uniqueness proofs of the solution

in this section.

3.1 The iterative ADP algorithm

In this subsection, we develop the iterative ADP algorithm,

based on the Bellman’s principle of optimality, the Rie-

mann integral, and the greedy HDP algorithm. This
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improved algorithm can avoid using the complex mathe-

matical analysis method and ensure the calculating accu-

racy of the DTHJB Eq. (7). The algorithm can be

performed as follows.

For any xk 2 R
n at time k, the first step is to assign an

arbitrary nonnegative constant to the initial value function

V0(xk), e.g., V0(�) = 0, then we can search the corre-

sponding control vector uk
0, which optimizes the value

function V1(xk):

u0
k ¼ arg min

uk

fV1ðxkÞg

¼ arg min
uk

xT
k Qxk þ 2

Zuk

0

U�TðvkÞRdvk þ cV0ðxkþ1Þ

8
<

:

9
=

;
:

ð12Þ

Once we find the corresponding optimal control vector

uk
0, the value function in the next step V1(xk) can be updated

as follows

V1ðxkÞ ¼ min
uk

xT
k Qxk þ 2

Zuk

0

U�TðvkÞRdvk þ cV0ðxkþ1Þ

8
<

:

9
=

;

¼ xT
k Qxk þ 2

Zu0
k

0

U�TðvkÞRdvk: ð13Þ

In this way, for the iteration index i ¼ 1; 2; . . .; the

algorithm can be executed between

ui
k ¼ arg min

uk

fViþ1ðxkÞg

¼ arg min
uk

xT
k Qxk þ 2

Zuk

0

U�TðvkÞRdvk þ cViðxkþ1Þ

8
<

:

9
=

;

ð14Þ

and

Viþ1ðxkÞ ¼ min
uk

xT
k Qxk þ 2

Zuk

0

U�TðvkÞRdvk þ cViðxkþ1Þ

8
<

:

9
=

;

¼ xT
k Qxk þ 2

Zui
k

0

U�TðvkÞRdvk þ cViðxkþ1Þ

ð15Þ

until both the value function and the corresponding control

law converge to their respective optimal values.

Note that the integral term in the iterative algorithm

cannot be solved for the unknown dead-zone nonlinear

model. To get around such difficulty, we introduce the

Riemann integral. Based on the Jordan measure, the Rie-

mann integral is defined by taking the limit of the Riemann

sum. Thus, the integral term in the above DTHJB equation

can easily be solved when expressed as the following form

Zuk

0

U�TðvkÞRdvk ¼ lim
maxðMv‘Þ!0

Xn
�

‘¼1

ðU�Tðv‘kÞRMv‘Þ; ð16Þ

where vk
0 is an arbitrary point in the interval Dv‘, and the sub-

interval Dv‘ = uk/n
*. The value max(Dv‘) is called the maxi-

mum of a partition of the interval [0, uk] into subintervals Dv‘.

So far, the DTHJB equation has been solved through the

improved iterative ADP algorithm and the Riemann inte-

gral. In the next subsection, we will prove the solution’s

existence and uniqueness

3.2 Existence and uniqueness of the solution

of the DTHJB equation

Theorem 1 Consider the iterative value function sequence

{Vi(xk)} in (15) and its corresponding controls {uk
i } in (14),

respectively. If the nonlinear system is stabilizable on a

compact set X and there is an admissible control sequence

{uk
i }, then the derived DTHJB Eq. (7) has a unique solution

and it can be obtained through the iteration between (14) and

(15), i.e., V1ðxkÞ ¼ V�ðxkÞ; u1k ¼ u�k :

Proof

1. Existence

For any admissible control input nk
i , the corresponding

value function CiðxkÞ is updated by

Ciþ1ðxkÞ ¼ xT
k Qxk þWðni

kÞ þ cCiðxkþ1Þ: ð17Þ

Let C0ð�Þ ¼ V0ð�Þ be any nonnegative constant. For

convenience, let the constant be zero. So

Ciþ1ðxkÞ � CiðxkÞ ¼ c Ciðxkþ1Þ � Ci�1ðxkþ1Þ
� �

¼ c2 Ci�1ðxkþ2Þ � Ci�2ðxkþ2Þ
� �

¼ c3 Ci�2ðxkþ3Þ � Ci�3ðxkþ3Þ
� �

..

.

¼ ci C1ðxkþiÞ � C0ðxkþiÞ
� �

¼ ciC1ðxkþiÞ: ð18Þ

Thus, Ciþ1ðxkÞ can be rewritten as the following form

Ciþ1ðxkÞ ¼ CiðxkÞ þ ciC1ðxkþiÞ
¼ Ci�1ðxkÞ þ ci�1C1ðxkþi�1Þ þ ciC1ðxkþiÞ
¼ C1ðxkÞ þ cC1ðxkþ1Þ þ � � �
þ ci�1C1ðxkþi�1Þ þ ciC1ðxkþiÞ

¼
Xi

j¼0

cjC1ðxkþjÞ: ð19Þ
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Combining with CiðkÞ > 0; we can further get

Ciþ1ðxkÞ ¼
Xi

j¼0

cj xT
kþjQxkþj þWðnkþjÞ

� �

6

X1

j¼0

cj xT
kþjQxkþj þWðnkþjÞ

� �
: ð20Þ

Since the nonlinear system is stabilizable, that is, the

state xk? 0 as k!1; we have

Ciþ1ðxkÞ 6
X1

j¼0

cj xT
kþjQxkþj þWðnkþjÞ

� �
6 C; 8i;

ð21Þ

where C is a nonnegative constant. On the other hand,

Vi ? 1(xk) is the minimum of the right hand side of (15)

with respect to the corresponding control input uk.

Thus,

Viþ1ðxkÞ 6 Ciþ1ðxkÞ 6 C; 8i: ð22Þ

In conclusion, the limit of the value function

sequence {Vi} exists.

2. Uniqueness

First, we will prove that {Vi(xk)} is a nondecreasing

sequence. Define a new value function at uk
i ? 1

Wiþ1ðxkÞ ¼ xT
k Qxk þWðuiþ1

k Þ þ cWiðxkþ1Þ; ð23Þ

with the initial value W0ð�Þ ¼ V0ð�Þ:
For i = 0, V1ðxkÞ ¼ xT

k Qxk þWðu0
kÞ þW0ðxkÞ >

W0ðxkÞ:
We assume that ViðxkÞ > Wi�1ðxkÞ for i - 1. Then for

i, we have Viþ1ðxkÞ ¼ xT
k Qxk þWðui

kÞ þ cViðxkþ1Þ >
xT

k Qxk þWðui
kÞ þ cWi�1ðxkþ1Þ ¼ WiðxkÞ: Combining with

(22), we get

Viþ1ðxkÞ > WiðxkÞ > ViðxkÞ: ð24Þ

Next we will present how to prove the uniqueness of the

solution using the above property.

According to (15),

ViðxkÞ 6 xT
k Qxk þWðukÞ þ cVi�1ðxkþ1Þ

6 xT
k Qxk þWðukÞ þ cV1ðxkþ1Þ:

When i!1;

V1ðxkÞ 6 xT
k Qxk þWðukÞ þ cV1ðxkþ1Þ; 8uk;

which suggests that

V1ðxkÞ 6 min
uk

fxT
k Qxk þWðukÞ þ cV1ðxkþ1Þg: ð25Þ

On the other hand,

V1ðxkÞ > ViðxkÞ
¼ min

uk

fxT
k Qxk þWðukÞ þ cVi�1ðxkþ1Þg; 8i:

Similarly, when i!1;

V1ðxkÞ > min
uk

fxT
k Qxk þWðukÞ þ cV1ðxkþ1Þg: ð26Þ

Combining (25) with (26), we can conclude that

V1ðxkÞ ¼ min
uk

fxT
k Qxk þWðukÞ þ cV1ðxkþ1Þg: ð27Þ

Given the above, we have proved the existence and

uniqueness of the solution of the DTHJB equation. The

solution can be obtained through the iterative algorithm.

Remark 1 As we all know, the optimal control of non-

linear discrete time systems is often reduced to solving the

nonlinear DTHJB equation. From above, we can see that

V1ðxkÞ is the unique solution of the DTHJB equation,

which indicates that both the value function and the cor-

responding control law sequence converge to the optimal

values, respectively, i.e. V1ðxkÞ ¼ V�ðxkÞ; u1k ¼ u�k :

4 NN implementation

It is well known that NNs can be employed to approximate any

continuous function on prescribed compact sets (Liu et al.

2010; Zhang et al. 2010), so it is natural to use NNs to

approximate the nonlinear system and dead-zone model. Here,

we use the multi-layeredback-propagation (BP) NNs.Figure 1

shows the structural diagram of the iterative algorithm.

As for (10), we could build an inverse dead-zone NNs

using the prior knowledge of the dead-zone control. Then,

for i ¼ 0; 1; 2; . . .; the iterative algorithm can be imple-

mented between

ui
k ¼ argmin

uk

xT
k Qxk þ 2

Zuk

0

U�TðvÞRdvþ cViðxkþ1Þ

8
<

:

9
=

;

¼ U � c
2

R�1 oxkþ1

oui
k

� �T
oViðxkþ1Þ

oxkþ1

 !

; ð28Þ

and

Viþ1ðxkÞ ¼ minuk
xT

k Qxk þ 2

Zuk

0

U�TðvkÞRdvk þ cViðxkþ1Þ

8
<

:

9
=

;

¼ xT
kQxk þ 2 lim

maxðMv‘Þ!0

Xn�

‘¼1

U�Tðv‘kÞRMv‘
� �

þ cViðxkþ1Þ;

ð29Þ

where D v‘ = uk/n
*.
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In the above iterative algorithm, i is the iterative index

of the value function and the control law, while k is the

time index. The value function and the control law are

updated until they both converge to their respective optimal

values. In the above flowchart, the critic network estimates

the optimal value function V�ðxkÞ; and is trained forward in

time. While the action network is used to approximate the

optimal control input.

To approximate the nonlinear value function and non-

linear dynamic system, we choose backpropagation algo-

rithm to train artificial neural networks and mean square

error is used as a measure of how well the neural network

has learnt. The nonlinear activation function in the critic

network is chosen as logistic function which can make its

output a positive number, while in the model network and

the action network we adopt tansig function. For the

structure and other parameters of our NNs, we will present

them in the next two specific examples.

5 Simulation studies

In this section, the effectiveness of the proposed iterative

algorithm is demonstrated for nonlinear affine systems with

unknown dead-zone control input by using two examples.

Example 1 (Nonlinear affine system) First of all the

present algorithm is implemented for the example identical

to the one in Chen and Jagannathan (2008) except the dead-

zone control. We consider the following system:

x1; kþ1

x2; kþ1

� 	

¼ 0:05x2k þ x1k

�0:0005x1k � 0:0335x3
1k þ x2k

� 	

þ 0

0:05

� 	

uk; ð30Þ

uk ¼ UðvkÞ ¼
vk � 0:1 vk > 0:1

0 �0:1\vk\0:1
vk þ 0:1 vk 6 �0:1:

8
<

:
ð31Þ

We choose three-layer three-layer BP NNs as model

network, dead-zone network, critic network, and action

network with the structures 3–12–2, 1–12–1, 2–8–1, and

2–8–1, respectively. The initial weights of the four

networks are all set to be random in [ -1,1]. It should be

noted that the model identification of the dead-zone and the

dynamic system is implemented first under the learning

rate lm = 0.05, and then their weights are kept unchanged.

After that, we use the trained model network and the dead-

zone network to train the critic network and the action

network with the learning rates lc = la = 0.05, for i = 50

iteration steps, where n* = 1,000. The discount factor is

chosen as c = 0.35. Enough iteration steps should be

implemented to guarantee the solution accuracy of the

DTHJB equation. The value function is defined as (4),

where Q ¼ 1 0

0 1

� 	

and R = 0.05.

Then for the given initial state x0 = [1, - 1]T, we

apply the iterative algorithm to the controlled nonlinear

system and obtain the iterative value function as in Fig. 2

which verified the presented theory. From Figs. 3 and 4, we

can see that the system states, the value function and the

corresponding control sequence converge to their respec-

tive optimal values quickly.

Example 2 (The pendulum) The second example studied

here is the pendulum swinging up and balancing control

problem with dead-zone constraints. This example is cho-

sen from Si and Wang (2001) with some modifications.

Here we consider the following nonlinear affine discrete-

time system:

x1; kþ1

x2; kþ1

� 	

¼ 0:1x2k þ x1k

�0:49 sinðx1kÞ þ 0:8x2k

� 	

þ 0

0:1

� 	

uk: ð32Þ

The dead-zone nonlinear model is as follows

uk ¼ UðvkÞ

¼
ð1� 0:3 sinðvkÞÞðvk � 0:2Þ vk > 0:2

0 �0:2\vk\0:2
ð0:8� 0:2 cosðvkÞÞðvk þ 0:2Þ vk 6 �0:2:

8
<

:

ð33Þ

We choose NNs as above and apply the algorithm to the

plant with the initial state [1; -1]. The simulation

parameters and value function are defined the same as in

γ+ +

−

Fig. 1 Flowchart of the proposed iterative algorithm with dead-zone
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Example 1. Then we can obtain the following simulation

results. Figure 5 shows the value function with successive

approximation whereas Fig. 6 demonstrates the value

function with the updating time step. From Fig. 7 we can

see that the state trajectories converge to the equilibrium

point quickly. Figures 8 and 9 display the dead-zone input

and its output with the time step iterations.

From the results, we can see that the algorithm has been

proven to be effective. The value function and the control

converge to their optimal values and the system states also

achieve the static equilibrium quickly. Note that the

method is independent on the mathematical models of

nonlinear system and dead-zone. The models in the paper

act as the role of providing data of the plant.

6 Conclusions

Based on ADP technique and Rimann integral, we derived

the DTHJB equation and solved approximately the equa-

tion through the improved iterative algorithm. We also

demonstrated proofs of the existence and the uniqueness of

the solution. Inspired by the fact that NNs can approximate

arbitrary nonlinear functions, we established dead-zone

network and the model network, and thus obtained the

approximate solution for the optimal control problem of
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nonlinear affine system with dead-zone constraints. The

correctness and validity of the theoretical analysis and the

algorithm were demonstrated by simulation results.
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