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In this paper, the adaptive dynamic programming (ADP) approach is employed for
designing an optimal controller of unknown discrete-time nonlinear systems with control
constraints. A neural network is constructed for identifying the unknown dynamical
system with stability proof. Then, the iterative ADP algorithm is developed to solve the
optimal control problem with convergence analysis. Two other neural networks are
introduced for approximating the cost function and its derivatives and the control law,
under the framework of globalized dual heuristic programming technique. Furthermore,
two simulation examples are included to verify the theoretical results.
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1. Introduction

The nonlinear optimal control has been the focus of control fields for many decades [8,16]. It often needs to solve the non-
linear Hamilton–Jacobi–Bellman (HJB) equation. For instance, the discrete-time HJB (DTHJB) equation is more difficult to
work with than the Riccati equation because it involves solving nonlinear partial difference equations. Although dynamic
programming has been a useful technique in handling optimal control problems for many years, it is often computationally
untenable to perform it to obtain the optimal solutions [4].

Effective techniques have been employed to construct learning systems [22,20,37,19,35,3,12,11]. Characterized by strong
abilities of self-learning and adaptivity, artificial neural networks (ANN or NN) are also a functional tool to implement learn-
ing control [33,15,13,34]. Additionally, they are often used to carry out universal function approximation in adaptive/approx-
imate dynamic programming (ADP) algorithms. The ADP method was proposed by Werbos [33,34] to deal with optimal
control problems forward-in-time. There were several synonyms used for ADP, including ‘‘adaptive critic designs’’ [21],
‘‘adaptive dynamic programming’’ [30,17], ‘‘approximate dynamic programming’’ [34,24,2], ‘‘neuro-dynamic programming’’
[5], ‘‘neural dynamic programming’’ [23], and ‘‘reinforcement learning’’ [6].

In recent years, ADP and related research have gained much attention from researchers [1,2,5,6,9,10,14,17,18,21,23–
32,34,36]. According to [21] and [34], ADP approaches were classified into several main schemes: heuristic dynamic pro-
gramming (HDP), action-dependent HDP (ADHDP), also known as Q-learning, dual heuristic dynamic programming
(DHP), ADDHP, globalized DHP (GDHP), and ADGDHP. Al-Tamimi et al. [2] proposed a greedy HDP iteration algorithm to
. All rights reserved.
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solve the DTHJB equation of optimal control of discrete-time affine nonlinear systems. Abu-Khalaf and Lewis [1], Vrabie and
Lewis [27], and Vamvoudakis and Lewis [25] investigated the continuous-time nonlinear optimal control problems based on
the idea of ADP.

With the increasing complexity of industry processes, the data-based method has achieved great interest among control
engineers. It does not need to build accurate mathematical models of controlled plants and thus has significant practical
value. Kim and Lewis [14] presented a model-free H1 control design scheme for unknown linear discrete-time systems
via Q-learning, which was expressed in the form of linear matrix inequality. Campi and Savaresi [7] proposed a virtual ref-
erence feedback tuning approach which was in fact a data-based method. In this paper, we solve the constrained optimal
control problem of unknown discrete-time nonlinear systems based on the iterative ADP algorithm via GDHP technique
(i.e., iterative GDHP algorithm). An NN model is constructed as an identifier to learn the unknown controlled plant. Then,
the iterative ADP algorithm is introduced to solve the DTHJB equation with convergence proof. Next, the optimal controller
can be designed by employing the GDHP technique.

This paper is organized as follows: In Section 2, the optimal control problem and the DTHJB equation are recalled for
discrete-time nonlinear systems. In Section 3, we first design an NN identifier for unknown controlled system with stability
proof. Then, the optimal control scheme based on the iterative ADP algorithm is developed with convergence analysis. In
Section 4, the implementation of iterative ADP algorithm is presented through NN-based GDHP technique. In Section 5,
two numerical examples are given to demonstrate the effectiveness of the proposed optimal control scheme. In Section 6,
concluding remarks are given.
2. Preliminaries

In this paper, we study the nonlinear discrete-time systems described by
xkþ1 ¼ Fðxk;ukÞ; k ¼ 0;1;2; . . . ð1Þ
where xk 2 Rn is the state vector and uk ¼ uðxkÞ 2 Rm is the control vector. Let the initial state be denoted by x0. The system
function F(xk, uk) is continuous for "xk,uk and F(0,0) = 0. Hence, x = 0 is an equilibrium state of system (1) under control u = 0.
We define Xu ¼ fukjuk ¼ ½u1k;u2k; . . . umk�T 2 Rm; juikj 6 �ui; i ¼ 1;2; . . . mg, where �ui is the saturating bound for the ith actuator.
Let U ¼ diagf�u1; �u2; . . . �umg be a constant diagonal matrix.

The objective for general optimal control problems is to find the control law u(x) which minimizes the infinite horizon
cost function given by
JðxkÞ ¼
X1
i¼k

Uðxi;uiÞ;
where U is the utility function, U(0, 0) = 0, and U(xi, ui) P 0 for "xi, ui. According to Bellman’s optimality principle, the opti-
mal cost function
J�ðxkÞ ¼ min
uk ;ukþ1 ;...u1

X1
i¼k

Uðxi;uiÞ
can be rewritten as
J�ðxkÞ ¼min
uk

Uðxk;ukÞ þ min
ukþ1 ;...u1

X1
i¼kþ1

Uðxi;uiÞ
( )

:

In other words, J⁄(xk) satisfies the DTHJB equation
J�ðxkÞ ¼min
uk

fUðxk;ukÞ þ J�ðxkþ1Þg: ð2Þ
The corresponding optimal control u⁄ is
u�ðxkÞ ¼ arg min
uk

fUðxk;ukÞ þ J�ðxkþ1Þg: ð3Þ
In many literatures [2,9,28], the utility function is chosen as
Uðxi;uiÞ ¼ xT
i Qxi þ uT

i Rui; ð4Þ
where Q and R are positive definite matrices with suitable dimensions. However, when dealing with constrained optimal
control problems, it is not the case any more. Inspired by the work of [1,36], we can employ a generalized non-quadratic
functional
YðuiÞ ¼ 2
Z ui

0
w�TðU�1sÞURds ð5Þ
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to substitute the quadratic term of ui in (4). Note that in (5), w�1(ui) = [/�1(u1i), /�1(u2i), . . ., /�1(umi)]T, R is positive definite
and assumed to be diagonal for simplicity of analysis, s 2 Rm;w 2 Rm;w�T denotes (w�1)T, and /(�) is a bounded one-to-one
function satisfying j/(�)j 6 1 and belonging to Cp(p P 1) and L2(X). Moreover, it is a monotonic odd function with its first
derivative bounded by a constant M. The well-known hyperbolic tangent function /(�) = tanh (�) is one example of such func-
tion. Besides, it is important to note that Y(ui) is positive definite since /�1(�) is a monotonic odd function and R is positive
definite.

In this sense, the utility function becomes Uðxi;uiÞ ¼ xT
i Qxi þ YðuiÞ. Accordingly, (2) and (3) becomes
J�ðxkÞ ¼min
uk

xT
kQxk þ 2

Z uk

0
w�TðU�1sÞURdsþ J�ðxkþ1Þ

� �

and
u�ðxkÞ ¼ argmin
uk

xT
kQxk þ 2

Z uk

0
w�TðU�1sÞURdsþ J�ðxkþ1Þ

� �
;

respectively.
3. Neural optimal control scheme based on the iterative ADP algorithm

In this section, we present the neural optimal control scheme for unknown controlled system using the iterative ADP
algorithm. Three subsections are embodied, including the NN identification of the unknown controlled plant, the derivation
of the iterative ADP algorithm, and the convergence proof of the iterative algorithm.

3.1. Identification of the unknown controlled system using NN

In this section, a three-layer feedforward NN is constructed to identify the unknown system dynamics. Let the number of
hidden layer neurons be denoted by l, the ideal weight matrix between the input layer and hidden layer be denoted by m�m,
and the ideal weight matrix between the hidden layer and output layer be denoted by x�m. According to the universal
approximation property [13] of NN, the system dynamics (1) has an NN representation on a compact set S, which can be
written as
xkþ1 ¼ x�Tm r m�Tm zk

� �
þ ek: ð6Þ
In (6), zk ¼ ½xT
kuT

k �
T is the NN input, ek is the bounded NN functional approximation error, and ½rðnÞ�i ¼ ðeni � e�ni Þ=

ðeni þ e�ni Þ; i ¼ 1;2; . . . l are the activation functions. Let �zk ¼ m�Tm zk;�zk 2 Rl. The selected activation functions are bounded such
that krð�zkÞk 6 rM for a constant rM.

In this paper, we define the NN system identification scheme as
x̂kþ1 ¼ xT
mðkÞrð�zkÞ � rk; ð7Þ
where x̂k is the estimated system state vector, rk is the robust term, and xm(k) is the estimation of the constant ideal weight
matrix.

Denote ~xk ¼ x̂k � xk as the system identification error. Then, combining (6) with (7), we obtain the identification error
dynamics
~xkþ1 ¼ ~xT
mðkÞrð�zkÞ � rk � ek; ð8Þ
where ~xmðkÞ ¼ xmðkÞ �x�m. Inspired by the work of [9], we define the robust term as a function of the identification error ~xk

and an additional tunable parameter bðkÞ 2 R, i.e., rk ¼ bðkÞ~xk= ~xT
k
~xk þ C

� �
; where C > 0 is a constant. Denote b⁄ as the constant

ideal value of the parameter b(k). Besides, let ~bðkÞ ¼ bðkÞ � b�;wk ¼ ~xT
mðkÞrð�zkÞ, and uk ¼ ~bðkÞ~xk= ~xT

k
~xk þ C

� �
. Then, the system

dynamics (8) can be rewritten as
~xkþ1 ¼ wk �uk �
b�~xk

~x T
k

~xk þ C
� ek: ð9Þ
The parameters in the system identification process are updated to minimize the following performance measure:
Ekþ1 ¼ 0:5~xT

kþ1
~xkþ1. Using the gradient-based adaptation rule, the NN weight and tunable parameter can be updated by
xmðkþ 1Þ ¼ xmðkÞ � am
@Ekþ1

@xmðkÞ

� �
¼ xmðkÞ � amrð�zkÞ~xT

kþ1; ð10Þ

bðkþ 1Þ ¼ bðkÞ � ar
@Ekþ1

@bðkÞ

� �
¼ bðkÞ þ ar

~xT
kþ1

~xk

~xT
k
~xk þ C

; ð11Þ
where am > 0 and ar > 0 are the learning rates.
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Before presenting the stability proof of the error dynamics, we give the following assumption, which has been used in
[13,9].

Assumption 1. The NN approximation error term ek is assumed to be upper bounded by a function of the state estimation
error ~xk, i.e.,
eT
kek 6 eMk ¼ d~xT

k
~xk; ð12Þ
where d is a bounded constant value such that kdk 6 dM.
Theorem 1. Let the identification scheme (7) be used to identify the nonlinear system (1), and let the parameter update law given
in (10) and (11) be used for tuning the NN weights and the robust term, respectively. Then, the state estimation error ~xk is asymp-
totically stable while the parameter estimation error ~xmðkÞ and ~bðkÞ are bounded.
Proof. Consider the positive definite Lyapunov function candidate defined as
Lk ¼ L1k þ L2k þ L3k; ð13Þ

where
L1k ¼ ~xT
k
~xk; L2k ¼

~b2ðkÞ
ar

; L3k ¼
1
am

tr ~xT
mðkÞ ~xmðkÞ

� 	
:

In the following, we denote Ck ¼ ~xT
k
~xk þ C for brief. By taking the first difference of the Lyapunov function (13) and substi-

tuting the identification error dynamics (9) and the parameter update law (10) and (11), we can derive that
DL1k ¼ ~xT
kþ1~xkþ1 � ~xT

k
~xk ¼ wT

kwk þuT
kuk þ eT

kek � ~xT
k
~xk � 2wT

kuk � 2wT
kek þ 2uT

kek

� 2b�wT
k
~xk

Ck
þ 2b�uT

k
~xk

Ck
þ 2b�eT

k
~xk

Ck
þ b�2~xT

k
~xk

C2
k

;

DL2k ¼
~b2ðkþ 1Þ � ~b2ðkÞ

ar
¼ 2 wT

k �uT
k �

b�~xT
k

Ck
� eT

k


 �
uk þ ar

~xT
kþ1

~xk

Ck


 �2

:

For DL3k, we apply the Cauchy–Schwarz inequality, and then obtain
DL3k ¼
1
am

tr ~xT
mðkþ 1Þ ~xmðkþ 1Þ � ~xT

mðkÞ ~xmðkÞ
� 	

6 �2wT
k
~xkþ1 þ 4amrTð�zkÞrð�zkÞ wT

kwk þuT
kuk þ eT

kek þ
b�2~xT

k
~xk

C2
k

 !
:

Noting that DLk = D1k + DL2k + D3k and considering krð�zkÞk 6 rM and (12), we can find that
DLk 6 � 1� 4amr2
M � 4ar

� �
ðkwkk

2 þ kukk
2Þ � 1� 2dM � 2d2

M � 4amdMr2
M � 4amd2

Mr2
M � 4ardM � 4ard

2
M

� �
k~xkk2

þ 2kwkkkukk: ð14Þ
Then, we define h1
�wk ¼ wk; h2 �uk ¼ uk, where h1 and h2 are constants. After selecting the parameters as amr2

M ¼ ar ; h1h2 ¼
q;8amr2

M 6 h2
1, and applying the Cauchy–Schwarz inequality, (14) becomes
DLk 6 � 1� h2
1 �

q
h2

1

 !
kwkk

2 � 1� h2
1 �

h2
1

q

 !
kukk

2 � 1� 2dM � 2d2
M � dMh2

1 � d2
Mh2

1

� �
k~xkk2

¼ � 1� h2
1 �

q
h2

1

 !
~xT

mðkÞrð�zkÞ
�� ��2 � 1� h2

1 �
h2

1

q

 !
~bðkÞ
�� ��2 ~xk

Ck

���� ����2

� 1� 2dM � 2d2
M � dMh2

1 � d2
Mh2

1

� �
k~xkk2

: ð15Þ
From (15), we can conclude that DLk 6 0 if 0 < dM 6
ffiffiffi
3
p
� 1

� �
=2;0 < q < 1=4, and s1 < h1 < min{s2, s3, s4}, whereffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffis ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffis
s1 ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4q

p
2

; s2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2dM � 2d2

M

dM þ d2
M

s
; s3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
q

1þ q

r
; s4 ¼

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4q

p
2

:

As long as the parameters are selected as above, DLk 6 0 in (15), which shows the stability of error dynamics in the sense
of Lyapunov. Therefore, ~xk, ~xmðkÞ, and ~bðkÞ are bounded, provided ~x0; ~xmð0Þ, and ~bð0Þ are bounded in the compact set S. Fur-
thermore, by summing both sides of (15) to infinity and taking the absolute value, we can obtain
X1

k¼0

1� h2
1 �

q
h2

1

 !
~xT

mðkÞrð�zkÞ
�� ��2 þ 1� h2

1 �
h2

1

q

 !
k~bðkÞk2 ~xk

Ck

���� ����2

þ 1� 2dM � 2d2
M � dMh2

1 � d2
Mh2

1

� �
k~xkk2

( )

6

X1
k¼0

DLk

�����
����� ¼ jlimk!1

Lk � L0j <1: ð16Þ
From (16), we can conclude that k~xkk ! 0 as k ?1. h
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According to Theorem 1, after a sufficient learning process, the NN system identification error converges to zero and the
robust term approaches zero as well, i.e., we have
xkþ1 ¼ xT
mðkÞrð�zkÞ: ð17Þ
Then, we can further derive that
@xkþ1

@uk
¼
@ xT

mðkÞrð�zkÞ
� �

@uk
¼ xT

mðkÞr0ð�zkÞm�Tm H; ð18Þ
where
r0ð�zkÞ ¼
@rð�zkÞ
@�zk

;H ¼ @zk

@uk
¼ 0n�m

Im
and Im is an m �m identity matrix.
Since it is difficult to get @xk+1/@uk otherwise, we can use (18) instead when solving the optimal control via (3). Next, this

result will be used in the derivation and implementation of the iterative ADP algorithm.

3.2. Derivation of the iterative algorithm

The iterative ADP algorithm is performed as follows. First, we start with the initial cost function V0(�) = 0 and solve
v0ðxkÞ ¼ argminuk
fUðxk; ukÞ þ V0ðxkþ1Þg ¼ argminuk

fUðxk;ukÞ þ V0ðFðxk;ukÞÞg: ð19Þ
Then, we update the cost function by
V1ðxkÞ ¼ min
uk

fUðxk;ukÞ þ V0ðxkþ1Þg ¼ Uðxk;v0ðxkÞÞ þ V0ðFðxk;v0ðxkÞÞÞ: ð20Þ
Next, for i = 1, 2, . . ., the algorithm iterates between
v iðxkÞ ¼ argminuk
fUðxk; ukÞ þ Viðxkþ1Þg ¼ argminuk

fUðxk;ukÞ þ ViðFðxk;ukÞÞg ð21Þ

and
Viþ1ðxkÞ ¼min
uk

fUðxk; ukÞ þ Viðxkþ1Þg ¼ Uðxk;v iðxkÞÞ þ ViðFðxk;v iðxkÞÞÞ: ð22Þ
In the following, we will present the convergence proof of the iteration (19)–(22) with the cost function Vi ? J⁄ and the
control law vi ? u⁄ as i ?1.

3.3. Convergence analysis of the iterative algorithm

Lemma 1. Let {vi} be the control laws defined as in (21) and {li} be any arbitrary sequence of control laws. Define Vi as in (22) and
Ki as
Kiþ1ðxkÞ ¼ Uðxk;liðxkÞÞ þKiðxkþ1Þ: ð23Þ
If V0(�) = K0(�) = 0, then Vi+1(x) 6Ki+1(x), "i.
Proof. Since V0(�) = K0(�) = 0, we have
V1ðxkÞ ¼ min
uk

fUðxk;ukÞg 6 Uðxk;l0ðxkÞÞ ¼ K1ðxkÞ: ð24Þ
It reveals that V1(x) 6K1(x) since (24) is true for any xk. Next, we assume that Vi(x) 6Ki(x). Then, we have
Vi(xk+1) 6Ki(xk+1). According to (22) and (23), we can obtain that
Viþ1ðxkÞ 6 min
uk

fUðxk;ukÞ þKiðxkþ1Þg 6 Kiþ1ðxkÞ: ð25Þ
It implies Vi+1(x) 6Ki+1(x) because (25) is true for any xk. Thus, we complete the proof by mathematical induction. h
Lemma 2. Let the sequence {Vi} be defined as in (22). If the system is controllable, then there is an upper bound Y such that
0 6 Vi(xk) 6 Y, "i.
Proof. Let g(xk) be any admissible control input. Let Vi be updated as in (22) and Zi be updated by Zi+1(xk) = U(xk,
g(xk)) + Zi(xk+1), where V0(�) = Z0(�) = 0. Clearly, Z1(xk) = U(xk, g(xk)). By observing
Ziþ1ðxkÞ � ZiðxkÞ ¼ Ziðxkþ1Þ � Zi�1ðxkþ1Þ ¼ Zi�1ðxkþ2Þ � Zi�2ðxkþ2Þ ¼ Zi�2ðxkþ3Þ � Zi�3ðxkþ3Þ . . . ¼ Z1ðxkþiÞ � Z0ðxkþiÞ
¼ Z1ðxkþiÞ;
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we have
Ziþ1ðxkÞ ¼ Z1ðxkþiÞ þ ZiðxkÞ ¼ Z1ðxkþiÞ þ Z1ðxkþi�1Þ þ Zi�1ðxkÞ ¼ Z1ðxkþiÞ þ Z1ðxkþi�1Þ þ Z1ðxkþi�2Þ þ Zi�2ðxkÞ
¼ Z1ðxkþiÞ þ Z1ðxkþi�1Þ þ Z1ðxkþi�2Þ þ � � � þ Z1ðxkþ1Þ þ Z1ðxkÞ:
Therefore, we obtain
Ziþ1ðxkÞ ¼
Xi

j¼0

Z1ðxkþjÞ ¼
Xi

j¼0

Uðxkþj;gðxkþjÞÞ:
Since g(xk) is an admissible control input, we have
Ziþ1ðxkÞ 6
X1
j¼0

Uðxkþj;gðxkþjÞÞ 6 Y;8i:
By using Lemma 1, we can obtain Vi+1(xk) 6 Zi+1(xk) 6 Y, "i, and thus complete the proof. h

Based on Lemmas 1 and 2, we now present our main results.

Theorem 2. Define the sequence {Vi} as in (22) with V0(�) = 0, and the control law sequence {vi} as in (21). Then, {Vi} is a
nondecreasing sequence satisfying Vi 6 Vi+1,"i.
Proof. Define a new sequence Ui+1(xk) = U(xk, vi+1(xk)) + Ui(xk+1) with U0(�) = V0(�) = 0. Next, we prove that Ui(xk) 6 Vi+1(xk) by
mathematical induction.

First, we prove that it holds for i = 0. Since V1(xk) �U0(xk) = U(xk,v0(xk)) P 0, we have U0(xk) 6 V1(xk). Second, we assume
that it holds for i � 1, i.e., Ui�1(xk) 6 Vi(xk), "xk. Then, for i, by noticing Vi+1(xk) = U(xk, vi(xk)) + Vi(xk+1) and Ui(xk) = U(xk,
vi(xk)) + Ui�1(xk+1), we can get Vi+1(xk) �Ui(xk) = Vi(xk+1) �Ui�1(xk+1) P 0, i.e., Ui(xk) 6 Vi+1(xk). Thus, we complete the proof
by mathematical induction. Furthermore, from Lemma 1, we know that Vi(xk) 6Ui(xk). Therefore, we have
ViðxkÞ 6 UiðxkÞ 6 Viþ1ðxkÞ ð26Þ
and also complete the proof. h

In light of Lemma 2 and Theorem 2, the limit of the cost function sequence {Vi} exists when i ?1. The same is true for the
sequence {vi} according to (3) and (21). Here, we denote V1(xk) = limi?1Vi(xk) and v1(xk) = limi?1vi(xk), respectively. Next,
we give the following theorem.

Theorem 3. Let the cost function sequence {Vi} be defined as in (22) and V1(xk) be its limit. Then, we have
V1ðxkÞ ¼min
uk

fUðxk; ukÞ þ V1ðxkþ1Þg: ð27Þ
Proof. On one hand, for any uk and i, according to (22), we can derive

ViðxkÞ 6 Uðxk;ukÞ þ Vi�1ðxkþ1Þ: ð28Þ
Combining (28) with
ViðxkÞ 6 V1ðxkÞ;8i; ð29Þ
which is obtained from (26), we have Vi(xk) 6 U(xk, uk) + V1(xk+1),"i. By letting i ?1, we obtain
V1ðxkÞ 6 Uðxk;ukÞ þ V1ðxkþ1Þ: ð30Þ
Since uk is chosen arbitrarily in (30), we have
V1ðxkÞ 6 min
uk

fUðxk;ukÞ þ V1ðxkþ1Þg: ð31Þ
On the other hand, since the cost function sequence satisfies ViðxkÞ ¼minuk
fUðxk;ukÞ þ Vi�1ðxkþ1Þg for any i, considering

(29), we have V1ðxkÞP minuk
fUðxk;ukÞ þ Vi�1ðxkþ1Þg;8i. By letting i ?1, we can get
V1ðxkÞP min
uk

fUðxk;ukÞ þ V1ðxkþ1Þg: ð32Þ
Based on (31) and (32), we can conclude that (27) is true. h

By observing (2) and (27), we obtain V1 = J⁄, which implies that the cost function sequence converges to the optimal cost
function of the DTHJB equation. Additionally, the control law related to V1 can be formulated by
v1ðxkÞ ¼ argminuk
fUðxk;ukÞ þ V1ðxkþ1Þg: ð33Þ
By making a comparison between (3) and (33), we can further derive that v1 = u⁄. Therefore, we acquire the main conclusion
Vi ? J⁄ and vi ? u⁄ as i ?1.
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4. Implementation of the iterative ADP algorithm via GDHP technique

In this section, we implement the iterative ADP algorithm described by (19)–(22) via GDHP technique. The idea is to take
the function approximation structure, such as NN, to approximate both Vi(xk) and vi(xk).

4.1. The iterative GDHP algorithm

In the iterative GDHP algorithm, there are three NNs, which are model network, critic network, and action network. In this
paper, all the NNs are chosen as three-layer feedforward ones. It is important to note that the critic network of GDHP tech-
nique outputs both the cost function J(xk) and its derivative @J(xk)/@xk [21], which is schematically depicted in Fig. 1. Similar
to the critic network, the input of action network is also xk. However, the input of model network consists of xk and v̂ i�1ðxkÞ.
The whole structural diagram of the iterative GDHP algorithm is shown in Fig. 2, where
DER ¼ @x̂kþ1

@xk
þ @x̂kþ1

@v̂ i�1ðxkÞ
@v̂ i�1ðxkÞ
@xk


 �T

:

According to Fig. 2, we observe that the outputs of critic network of the iterative GDHP algorithm contain not only the
cost function but also its derivatives. This is a significant property of the iterative GDHP algorithm since the information
associated with the cost function is as useful as the knowledge of its derivatives. Therefore, when training the critic network
of the iterative GDHP algorithm, we should utilize an error measure which is a combination of the error measures of HDP and
DHP. Consequently, the resulting behavior is expected to be superior to simple ADP methods.

4.2. The training process

The training of model network is completed after the system identification process and its weights are kept unchanged.
Then, according to Theorem 1, when given xk and v̂ i�1ðxkÞ, we can compute x̂kþ1 by (7). As a result, we avoid the requirement
of knowing F(xk, uk) during the implementation of the iterative GDHP algorithm.

Next, the learned NN model will be used in the training process of critic network and action network.
We define ki(xk) = @Vi(xk)/@xk during the training process. Hence, the critic network is used to approximate both Vi(xk) and

ki(xk). The output of critic network is expressed as
bV iðxkÞ
k̂iðxkÞ

" #
¼

x1T
ci

x2T
ci

" #
r mT

cixk
� �

¼ xT
cir mT

cixk
� �

;

where xci ¼ x1
ci x2

ci

� �
. Accordingly, we have bV iðxkÞ ¼ x1T

ci r mT
cixk

� �
and k̂iðxkÞ ¼ x2T

ci r mT
cixk

� �
. The target function can be written

as
ViðxkÞ ¼ Uðxk; v̂ i�1ðxkÞÞ þ bV i�1ðx̂kþ1Þ
and
kiðxkÞ ¼
@Uðxk; v̂ i�1ðxkÞÞ

@xk
þ @

bV i�1ðx̂kþ1Þ
@xk

¼ 2Qxk þ 2
@v̂ i�1ðxkÞ
@xk


 �T

Rv̂ i�1ðxkÞ þ
@x̂kþ1

@xk
þ @x̂kþ1

@v̂ i�1ðxkÞ
@v̂ i�1ðxkÞ
@xk


 �T

k̂i�1ðx̂kþ1Þ:
Then, we define the error function of critic network as e1
cik ¼ bV iðxkÞ � ViðxkÞ and e2

cik ¼ k̂iðxkÞ � kiðxkÞ. The objective function
to be minimized in the critic network is Ecik ¼ ð1� gÞE1

cik þ gE2
cik, where E1

cik ¼ 0:5e1T
cike1

cik and E2
cik ¼ 0:5e2T

cike2
cik. The weight up-

date rule for training critic network is also gradient-based adaptation which is given by
xciðjþ 1Þ ¼ xciðjÞ � ac ð1� gÞ @E1
cik

@xciðjÞ
þ g

@E2
cik

@xciðjÞ

" #
;

mciðjþ 1Þ ¼ mciðjÞ � ac ð1� gÞ @E1
cik

@mciðjÞ
þ g

@E2
cik

@mciðjÞ

" #
;

where ac > 0 is the learning rate of critic network, j is the inner-loop iteration step for updating weight parameters, and
0 6 g 6 1 is a parameter that adjusts how HDP and DHP are combined in GDHP.
Fig. 1. The critic network of GDHP technique.



Fig. 2. The structural diagram of the iterative GDHP algorithm.
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In the action network, the state xk is used as input to obtain the approximated optimal control as output of the network,
which is formulated as v̂ i�1ðxkÞ ¼ xT

aði�1Þr mT
aði�1Þxk

� �
. The target control input is given by
v i�1ðxkÞ ¼ argminuk
fUðxk;ukÞ þ bV i�1ðx̂kþ1Þg:
The error function of action network can be defined as eaði�1Þk ¼ v̂ i�1ðxkÞ � v i�1ðxkÞ. The weights of action network are up-
dated to minimize Eaði�1Þk ¼ 0:5eT

aði�1Þkeaði�1Þk. Similarly, the weight update algorithm is
xaði�1Þðjþ 1Þ ¼ xaði�1ÞðjÞ � aa
@Eaði�1Þk

@xaði�1ÞðjÞ

� �
;

maði�1Þðjþ 1Þ ¼ maði�1ÞðjÞ � aa
@Eaði�1Þk

@maði�1ÞðjÞ

� �
;

where aa > 0 is the learning rate of action network, and j is the inner-loop iteration step for updating weight parameters.

Remark 1. According to Lemma 2 and Theorems 2 and 3, Vi ? J⁄ as i ?1. Since ki(xk) = @Vi(xk)/@xk, we can conclude that the
sequence {ki} is also convergent with ki ? k⁄ as i ?1.

Note that some parameters, like the number of neurons, are difficult to determine in terms of theory. Thus, at the present
stage, these parameters in the algorithm are mainly chosen according to experience. Meanwhile, one of our main efforts is to
investigate how the parameters affect the control performances and when the best results can be derived.
5. Numerical examples

In this section, two numerical examples are provided to demonstrate the effectiveness of the control scheme derived by
the iterative GDHP algorithm.

Example 1. This example is chosen from [31] with some modifications. Considering the following nonlinear system:
xkþ1 ¼ 1:2xk þ sinð0:1x2
k þ ukÞ; ð34Þ
where xk 2 R;uk 2 R; k ¼ 1;2; . . .. Clearly, xk = 0 is an equilibrium state of system (34). However, the system is unstable at this
equilibrium, since (@ xk+1/@xk)j(0,0) = 1.2 > 1. It is desired to control the system with control constraint of juj 6 1. The cost func-
tion is chosen as
JðxkÞ ¼
X1
i¼k

xT
i Qxi þ 2

Z ui

0
tanh�TðU�1sÞURds

� �
; ð35Þ
where Q and R are identity matrices with suitable dimensions.
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Fig. 3. (a) The system identification error. (b) The convergence process of the cost function and its derivative.
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We choose three-layer feedforward NNs as model network, critic network, and action network with structures 2–8–1, 1–
8–2, and 1–8–1, respectively. In the system identification process, the initial weights between input layer and hidden layer,
and between hidden layer and output layer are chosen randomly in [�0.5,0.5] and [�0.1, 0.1], respectively. We apply the NN
identification scheme for 100 time steps under the learning rate am = 0.05 and obtain the result shown in Fig. 3a. We observe
that the NN identifier successfully learns the unknown controlled system. Then, we finish the training of the model network
and keep its weights unchanged.

Let the initial state x0 = 1.5. Besides, the initial weights of the critic network and action network are all set to be random in
[�0.1, 0.1]. Then, letting the adjusting parameter g = 0.5 and the learning rate ac = aa = 0.05, we train the critic network and
action network for 115 iterations with each iteration of 2000 training epochs. The changing process of the cost function and its
derivative of the iterative GDHP algorithm is shown in Fig. 3b, for k = 0, which displays the convergence of the two sequences.

For the purpose of making a comparison with the controller derived without considering the actuator saturation, we
apply the controllers related to the two cases to system (34) for 20 time steps, respectively. The obtained simulation results
are shown in Fig. 4. We can see that the restriction of actuator saturation has been overcome successfully. The excellent
control performance verifies the effectiveness of the iterative GDHP algorithm.
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Fig. 4. Simulation results of Example 1. (a) The state trajectory x. (b) The control input u. (c) The state trajectory x without considering the control
constraint. (d) The control input u without considering the control constraint.
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Example 2. The following nonlinear system is a modification of the nonlinear equation in [15]:
Fig. 6.
constra
xkþ1 ¼
x1k þ sinð4uk � 2x2kÞ

x2k � 2uk

� �
; ð36Þ
where xk ¼ ½x1kx2k�T 2 R2;uk 2 R; k ¼ 1;2; . . .. We can see that xk = [0 0]T is an equilibrium state of system (36). However, the
system (36) is marginally stable at this equilibrium, since the eigenvalues of
@xkþ1

@xk

����
ð0;0Þ
¼

1 �2
0 1

� �

are all 1. It is desired to control the system with control constraint of juj 6 0.5. The cost function is chosen the same as in (35).
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Fig. 5. (a) The convergence process of the cost function. (b) The convergence process of the derivatives of the cost function.
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In this example, the three NNs are chosen with structures 3–8–2, 2–8–3, and 2–8–1, respectively. Here, we train the critic
network and action network for 26 iterations, while setting other parameters the same as in Example 1. When k = 0, the
convergence process of the cost function and its derivatives is depicted in Fig. 5.

Next, for given initial state [x10x20]T = [0.5 �1]T, we apply the optimal control laws designed by the iterative GDHP
algorithm, with and without considering the actuator saturation, to system (36) for 20 time steps, respectively. The
simulation results are shown in Fig. 6, which also exhibits excellent control effects of the iterative GDHP algorithm.
6. Conclusion

An iterative ADP algorithm is developed in this paper for near optimal control of unknown discrete-time nonlinear sys-
tems with control constraints. The GDHP technique is employed to perform the algorithm, with three NNs constructed to
approximate the cost function and its derivatives, the control law, and the unknown controlled system, respectively. The
numerical examples demonstrate the validity of the control scheme.

Since the tracking problem is another important topic of control engineering, it is necessary to expand the developed ap-
proach to solve the optimal tracking control problem in the future. Additionally, considering the fact that existing results
about tracking control mainly aim at affine nonlinear systems, our future work will focus on dealing with the nonaffine case.
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