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a b s t r a c t 

Existing video question answering methods answer given questions based on short video snippets. The 

underlying assumption is that the visual content indicating the ground truth answer ubiquitously ex- 

ists in the snippet. It might be problematic for long video applications, since involving large numbers 

of answer-irrelevant snippets will dramatically degenerate the performance. To deal with this issue, we 

focus on a rarely investigated but practically important problem, namely long video QA, by predicting 

answers directly from long videos rather than manually pre-extracted short video snippets. We accord- 

ingly propose a Matching-guided Attention Model (MAM) which jointly extracts question-related video 

snippets and predicts answers in a unified framework. To localize questions accurately and efficiently, 

we calculate corresponding matching scores and boundary regression results for candidate video snippet 

proposals generated by sliding windows of limited granularity. Guided by the matching scores, the model 

pays different attention to the extracted video snippet proposals for each question. Finally, we use the 

attended visual features along with the question to predict the answer in a classification manner. A key 

obstacle to training our model is that publicly available video QA datasets only contain short videos espe- 

cially designed for short video QA. Thus, we generate two new datasets for this task on the top of TACoS 

Multi-level dataset and MSR-VTT dataset by generating QA pairs from the video captions, called TACoS-QA 

and MSR-VTT-QA . Experimental results show the effectiveness of our proposed method on both datasets 

by comparing with two short video QA methods and a baseline method. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Visual question answering (VQA) [1] has drawn much atten-

ion recently, which is a difficult problem due to the joint model-

ng and interaction between vision and language. In this direction,

mage-based QA has been extensively studied and great progress

as been achieved [2–13] . Video-based QA [14–20] is less studied

ven though it has various applications, e.g. , video-based chatting

obot and language-driven video understanding. 

Most of the existing video QA methods deal with just short

ideo snippets rather than original long videos. They usually make

n underlying assumption that the specific snippets related to de-

ired answers are precisely pre-detected which makes them less

pplicable to many real-world tasks, e.g. , video surveillance and

gocentric video analysis, in which long videos commonly ap-

ear and the answer-related video snippets cannot be easily pre-
∗ Corresponding author. 

E-mail addresses: weining.wang@cripac.ia.ac.cn (W. Wang), yhuang@nlpr.ia.ac.cn 

Y. Huang), wangliang@nlpr.ia.ac.cn (L. Wang). 

r  

m  

m  

a  

ttps://doi.org/10.1016/j.patcog.2020.107248 

031-3203/© 2020 Elsevier Ltd. All rights reserved. 
xtracted. When roughly applying them to these tasks, the perfor-

ance would largely degenerate since their used global visual fea-

ures include large numbers of answer-irrelevant contents. 

Different from them, we are interested in a more challenging

nd general problem in terms of long video QA, i.e. , answering

uestions directly from long videos without pre-knowing the loca-

ions of answer-related short snippets. The key of this problem lies

n how to accurately detect target snippets based on given ques-

ions from long videos with varying lengths. It combines multiple

ision sub-problems such as language understanding and action

etection, which can also be regarded as a question-driven video

etection problem. 

To deal with this problem, we explore a Matching-guided

ttention Model (MAM) to jointly extract question-driven answer-

elated video snippets and predict the final answers. We generate

ideo snippet proposals for each long video and then find the most

elevant video snippet for a given question in a matching-based

anner. Although we could densely sample sliding windows at

ultiple scales, it is computationally infeasible for long videos

nd makes the matching task more difficult due to the extremely

https://doi.org/10.1016/j.patcog.2020.107248
http://www.ScienceDirect.com
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large variations of match space. Thus, we narrow down the

match space by generating rough video snippet proposals with

sliding windows in limited granularity. To refine them for more

accurate answer prediction, we add location regression module

on the top of the generated video proposals. After obtaining

matching scores and location regression results of a given ques-

tion, we firstly extract refined video snippets according to the

regression results. Then, we use the matching scores as the

attention weights to calculate a weighted visual feature vector

for each question. Finally, the attended visual feature vector

is combined with the sentence embedding to predict the final

answer. 

To the best of our knowledge, we are probably the first to study

this problem and currently there is no such dataset for model

training. Accordingly, we build two new datasets on the top of two

video caption datasets, namely TACoS Multi-Level dataset and MSR-

TT dataset. TACoS Multi-level is designed for the cooking behavior,

while MSR-VTT focuses on general videos in our life. We use a clas-

sic question generation method [3] to automatically convert the

video captions into pairwise questions and answers. In this way,

we can obtain a large number of QA pairs, as well as their asso-

ciated long videos, as our experimental datasets. We perform ex-

tensive experiments on the extended datasets and demonstrate the

effectiveness of the proposed method. 

The main contributions of this work can be summarized as fol-

lows: 

• We study a rarely investigated but practically important prob-

lem, namely long video QA, which can be suitably applied to

many long video tasks. 
• We propose a Matching-guided Attention Model (MAM) to

deal with the long video QA problem, which jointly extracts

question-related video snippets and predicts the answers based

on attended visual features. 
• We generate two new datasets (a simple one and a complex

one) including long videos, QA pairs and corresponding tempo-

ral boundaries of QA pairs, which can be used for evaluating

the study of the long video QA problem. Experimental results

demonstrate the effectiveness of the proposed method. 

2. Related work 

Visual question answering (VQA). Deep learning has achieved

a big breakthrough in computer vision [21–23] . With the success-

ful applications of deep learning, image based VQA has been ex-

tensively studied in recent years. Some of the early works solve

the VQA problem with Bayesian approaches. Malinowski et al.

[24] set up the problem of VQA as a visual Turing Test. Kafle

and Kanan [25] use a Bayesian framework to predict the answer

type and achieve good performance by combining a discriminative

work. 

Following the successful application of soft attention [26–31] ,

many VQA methods also utilize attention mechanism to selectively

attend to parts of images or questions. Xu and Saenko [32] de-

sign an attention architecture which uses each word embedding to

capture fine-grained alignment between the image and question.

Yang et al. [4] exploit stacked attention networks which iteratively

search for answer-related image regions within multiple steps of

reasoning. Lu et al. [33] propose a bidirectional co-attention mech-

anism that simultaneously utilizes the question guided visual at-

tention and a visual guided attention over the input question. Fang

et al. [34] propose coherent dropout and siamese dropout mech-

anism to improve the performance of a visual spacial attention

model. Liang et al. [11] introduce an end-to-end approach that

uses a hierarchical process to dynamically determine what me-

dia and what time to focus on to answer the question. Lioutas
t al. [35] use two separate word embedding models to increase

he expressive power of the attention model. Yang et al. [36] uti-

ize self-attention to find the most informative components of the

uestion and use new question representation to guide visual at-

ention of images. Yu et al. [13] present a Modular Co-Attention

etwork (MCAN) which consists of self-attention and guided-

ttention units to model the intra- and inter-modal interactions

imultaneously. 

Memory-augmented neural networks have also been developed.

iong et al. [37] propose new modules on the top of the DMN (Dy-

amic Memory Networks) framework to tackle the VQA problem.

a et al. [9] exploit memory-augmented neural networks to main-

ain the relatively long-term memory of scarce training exemplars,

hich can even predict accurate answers to visual questions occur-

ing rarely in the training set. 

Moreover, recent researches begin to incorporate external

nowledge into VQA. Wu et al. [38] first introduce the Fact-based

QA (FVQA) task and build a new dataset, where questions re-

uire deeper reasoning with external knowledge. Narasimhan et al.

39,40] further study this problem and investigate fact retrieval

ased methods on FVQA. Marino et al. [41] introduce OK-VQA

ataset with more diverse unstructured knowledge and propose a

et of baselines that exploit unstructured knowledge. 

Although image based VQA methods have achieved impressive

rogress, they are inadequate for the video QA due to the lack of

odeling the temporal dynamics of video contents. In this work,

e leverage the spatio-temporal information from videos by em-

loying C3D [22] feature extraction to better understand the video

ata. 

Video question answering (Video QA). Compared with the

tudies on image QA mentioned above, video QA is less studied.

hu et al. [42] introduce the problem of video QA and present an

NN-based encoder-decoder approach to answer multiple-choice

uestions. Tapaswi et al. [15] introduce the problem of Movie QA

here given questions can be answered by using multiple sources

f information including full-length movies, subtitles, scripts and

lots. Zeng et al. [14] extend several image QA approaches to

ideo QA and introduce a new dataset. Maharaj et al. [43] present

 fill-in-the-bank QA dataset and evaluate five different mod-

ls on the dataset. Mun et al. [44] construct a dataset collected

rom Super Mario video gameplay and propose spatio-temporal at-

ention models to conduct temporal event reasoning. Xue et al.

45] introduce the task of free-form open-ended video QA and

ropose an attention model to generate the answers. Jang et al.

16] establish a dataset for video QA named TGIF-QA containing

hort video snippets and propose a dual-LSTM based approach.

e et al. [17] propose to use the frame-level attributes for video

A. Gao et al. [18] introduce the memory network to video QA,

hich utilizes both motion and appearance information. Xue et al.

20] propose a heterogeneous tree-structured memory network for

ideo QA. Yu et al. [19] exploit a joint sequence fusion model

o measure hierarchical semantic similarity between two multi-

odal sequence data. Fan et al. [46] propose a heterogeneous

emory network with a new multimodal fusion layer which can

etter understand complex questions and attend to salient visual

ints. Zhao et al. [47] study the multi-turn video QA task with

 multi-stream hierarchical attention context reinforced network.

i et al. [48] utilize self-attention and co-attention mechanism re-

lacing RNNs in the propose model which can better exploit the

lobal dependencies of question and temporal information in the

ideo. 

However, these methods are generally designed to answer ques-

ions for short videos. Involving large numbers of answer-irrelevant

nippets will dramatically degenerate their performance. Differ-

nt from them, we focus on long video QA and propose a novel

atching-guided Attention Model to selectively attend to parts of
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Fig. 1. The problem definition of long video QA. The top row illustrates a long video with example frames, the middle row shows four selected snippets and their associated 

textual descriptions and the bottom row presents the generated pairs of questions and answers. 
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he long videos and predict the answers based on the attended vi-

ual feature. 

. Problem description 

The problem of long video QA is defined as follows: given a

ong video containing varying visual contents along with the time

xis, as well as a question referring to certain content of a tar-

et video snippet, the goal is to answer the question without pre-

nowing the location of the target snippet. As shown in Fig. 1 , we

ake a long video in which a person is cooking food for example.

he video consists of different snippets with various visual con-

ents, e.g. , “the person melted butter in a pan ” and “the person placed

he leek onto a white plate ”. Two example questions can be raised

ccording to these two snippets such as “what did the person melt

n a pan ? ” and “what is the color of the plate ? ”. The goal of long

ideo QA is to generate the answers, respectively, i.e. , “butter ” and

white ”. 

Note that there is a major difference between this problem and

he existing video QA works [14–18] . They deal with short video

nippets that are manually pre-extracted from raw long videos,

hich exactly contain the contents corresponding to the desired

nswers. However, such an assumption does not always hold in

eal-world scenarios, because most videos in real applications are

ntrimmed and contain various video contents over large time

pan, especially in video surveillance. To address this problem, we

ropose long video QA in this work which directly handles raw

ong videos. In addition to the target answer-related snippet, there

ill be many answer-irreverent snippets, which makes the prob-

em much more challenging. 

. Long video QA dataset 

We cannot directly exploit the publicly available video QA

atasets [14–16] for long video QA, since they only contain short

ideos especially designed for short video QA. To study the long

ideo QA problem, we have to create new datasets. We do not cre-

te the datasets from scratch because collecting human generated

A pairs is very time-consuming. Inspired by [3] , we extend two

xisting video caption datasets for long video QA, through generat-

ng pairwise questions and answers from the given video descrip-

ions. 
.1. Pairwise QA generation 

Although there are quite a few available video caption datasets,

ost of them cannot be used because they only provide short

ideo snippets. Rohrbach et al. [49] selected a subset from the

PII Cooking 2 dataset [50] , totally 185 long videos, and collected

 corpus named TACoS Multi-Level with about 20 triples of de-

criptions for each video, totally 52,593 descriptions. The lengths

f videos range from several minutes to tens of minutes. The cor-

us provides the start and end frames of each description, which

llows us to learn the relationship between video snippet and lan-

uage description, as well as serving as the ground truth for perfor-

ance evaluation. Therefore, we exploit TACoS Multi-Level dataset

nd MPII Cooking 2 dataset to produce the desired TACoS-QA

ataset. 

Another video caption dataset MSR-VTT [51] provides 10K web

ideo clips with 41.2 hours and 200K clip-sentence pairs in to-

al. It covers many activity categories and contains diverse vi-

ual contents, which is richer than TACoS Multi-Level in terms of

entence and vocabulary. The corpus of this dataset provides the

tart and end time of each clip in the raw long video, as well

s the link of the raw long video (the dataset does not provide

he raw long video directly). Because many links of the raw long

ideos are dead, we finally download 3,852 raw long videos in

otal. 

Another reason that we choose the above two datasets is that

e would like to provide long video QA datasets with varying dif-

culty levels. TACoS Multi-Level dataset is relatively simple that the

ideos are designed for the cooking behavior and the background

f videos is the same in a single scene. MSR-VTT dataset is rela-

ively complex that the videos are collected from general videos

n our life. The videos are collected in 20 representative categories

including cooking, sports, gaming, etc. ). 

We then use a commonly used question generation method

3] to generate pairs of questions and answers from those descrip-

ions. This method is able to generate 4 kinds of questions: ob-

ect question (what), number question (how many), color ques-

ion (what color) and location question (where). It rejects the an-

wers that appear too rarely or too often in the generated datasets.

fter the generation, we obtain a number of pairs of questions

nd answers. However, we find that among the video descriptions

here are some repeated sentences, which causes replicated pairs

f questions and answers for the same video snippet. Accordingly,
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Fig. 2. Proportions for four types of questions in the TACoS-QA dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Proportions for four types of questions in MSR-VTT-QA dataset. 

Table 1 

Statistics of TACoS-QA dataset. 

Train Val Test Total 

Num of videos 120 17 48 185 

Num of QA pairs 13,666 1773 5871 21,310 

Num of snippets 5433 751 2118 8302 

Mean video length 95,559 583 3708 8983 

Mean snippet length 484 172 432 443 

Table 2 

Statistics of MSR-VTT-QA dataset. 

Train Val Test Total 

Num of videos 2430 379 1043 3852 

Num of QA pairs 11,830 1970 5948 19,748 

Num of snippets 2430 379 1043 3852 

Mean video length 10,148 10,017 11,166 10,441 

Mean snippet length 464 485 472 469 
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we further refine the generated QA pairs based on the rule that

the questions must be different for a single video snippet. After the

above generation and refinement, we finally obtain our experimen-

tal datasets and denote them as TACoS-QA dataset and MSR-VTT-QA

dataset, respectively. Examples of generated questions and answers

are illustrated in Fig. 1 . It should be noted that in TACoS-QA dataset

there are several video snippets annotated with QA pairs in one

long video, while in MSR-VTT-QA dataset there is only one video

snippet annotated with QA pairs in one long video. 

4.2. Dataset statistics 

TACoS-QA dataset contains 185 long videos and 23,431 pairs of

questions and answers in total. We split the dataset into a train-

ing set, a validation set and a testing set, which consists of 13,6 6 6

pairs of questions and answers with 120 videos, 1773 pairs of ques-

tions and answers with other 17 videos and 5871 pairs of ques-

tions and answers with the rest 48 videos, respectively. The answer

set contains the most frequent 93 answers in the training dataset.

At a rate of 29 frames per second (FPS), the maximum and min-

imum lengths of the videos are 40,658 and 1,392 frames, respec-

tively. The mean and median lengths of the videos are 8,961 and

6,467 frames, respectively. For the generated questions, the max-

imum and minimum lengths are 8 and 4, respectively. Both the

mean and median lengths are 8. The distribution for the 4 types

of generated questions is shown in Fig. 2 . We can see that the

proportions of object question (what), location question (where),

number question (how many) and color question (what color) are

82.1%, 9.7%, 6.3% and 1.9%, respectively. The reason for such a large

proportion of object question is that the video contents are about

cooking behavior so that there are many kinds of actions, tools,

places, foods and ingredients in the descriptions. 

MSR-VTT-QA dataset contains 3852 long videos and 19,748 pairs

of questions and answers in total. We split the dataset into a train-

ing set, a validation set and a testing set, which consists of 11,830

pairs of questions and answers with 2430 videos, 1970 pairs of

questions and answers with other 379 videos and 5948 pairs of

questions and answers with the rest 1043 videos, respectively. The

answer set contains the most frequent 100 answers in the train-

ing dataset. At a rate of 29 frames per second (FPS), the maxi-

mum and minimum lengths of the videos are 108,575 and 254

frames, respectively. The mean and median lengths of the videos

are 10,441 and 7635 frames, respectively. The maximum and min-

imum lengths of questions are 21 and 4, respectively. The mean

and median lengths are 8 and 7, respectively. The distribution for

the 4 types of generated questions is shown in Fig. 3 . We can see

that the proportions of object question (what), location question

(where), number question (how many) and color question (what

color) are 56.3%, 10.1%, 17.2% and 16.4%, respectively. 
Other statistics of the two generated datasets are summarized

n Tables 1 and 2 , respectively. From the tables we can find that

he lengths of most videos are very long ( i.e. , thousands of frames)

ontaining very complex visual contents, while those ground truth

nippets are very short ( i.e. , several hundreds of frames). Thus, ac-

urately localizing the answer-related video snippet is very chal-

enging. 

. Matching-guided Attention Model 

The problem of long video QA can be formulated as follows:

iven a question q and a long video v = { v 1 , v 2 , ..., v N } , where

 i ( i = 1 , 2 , ..., N ) is the i th video snippet proposal which can be

btained using a sliding window, we aim to predict the desired

nswer a . As shown in Fig. 4 , we propose a Matching-guided At-

ention Model (MAM) which contains three modules: a) video and

uestion embedding, b) question-related video content localization

nd c) answer prediction. In this section, we will describe the three

odules one by one. 

.1. Video and question embedding 

To discriminately represent the video snippets, we use a 3D

onvolutional neural network (C3D) [22] focusing on both appear-

nce and motion information to extract features from the last fully-

onnected layer. For a video snippet proposal v i , we first extract

eatures for its every 16 consecutive frames with 8-frame overlap

nd then use mean pooling over all the features as its embedding.

 fully connected layer with ReLU further embeds the visual fea-

ure to f v . Note that we also compare and analyze other sampling

requencies during feature extraction in Section 6.5 . 
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Fig. 4. An overview of Matching-guided Attention Model (MAM). The model contains three modules: a) video and question embedding, b) question-related video content 

localization and c) answer prediction. A matching loss is used to match related question and video snippet. A regression loss is used to regress the temporal boundary of 

the question-related video content in the video snippet proposal. A softmax loss is used to categorize the fused question and attended visual feature into an answer class. 
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For a given question q = { x 1 , x 2 , ..., x T } where x t is the t th word,

e adopt LSTM to model the sequential relations of words in the

uestion: 

 

t = φ(W g (Ex t ) + R g h 

t−1 + b g ) 
 

t = σ (W i (Ex t ) + R i h 

t−1 + b i ) 
f t = σ (W f (Ex t ) + R f h 

t−1 + b f ) 
 

t = g t � i t + c t−1 
� f t 

 

t = σ (W o (Ex t ) + R o h 

t−1 + b o ) 
 

t = φ(c t ) � o t 

(1) 

here c t , x t and h t are the memory cell, input and hidden state at

he t th timestep, respectively. E denotes a matrix of learned repre-

entations of words in the questions, which can be indexed by the

ne-hot vector x t . W, R and b denote the input weights, recurrent

eights and biases, respectively. g, i, f and o are subscripts indi-

ating the input passway, input gate, forget gate and output gate,

espectively. σ and φ refer to the sigmoid and hyperbolic tangent

unctions, respectively. � means the dot product operation. At the 

ast time step T , we regard the hidden state h T followed by a fully

onnected layer with ReLU as the embedding of the input question,

enoted as f q . 

The inputs of the first fusion module are the video representa-

ion f v and the question representation f q , which have the same

imension. Following [52] which achieves good performance on

anguage-driven temporal activity localization, we use element-

ise addition, element-wise multiplication and vector concatena-

ion followed by a fully connected layer to fuse information from

oth modalities. 

f v q = ( f q × f v ) ‖ ( f q + f v ) ‖ 

F C ( f q ‖ f v ) (2) 

he cross-modal representation f vq is used as the input to the next

odule, namely question-related video content localization. 

.2. Question-related video content localization 

Directly answering questions from original long videos is very

ifficult, since long videos contain various question-irrelevant con-

ents. We propose to firstly extract question-related video snippet

roposals for each question. To avoid generating video snippet pro-

osals with a large number of scales, we utilize a matching score

o evaluate the relation between each video snippet proposal and

he question and then further adjust the temporal boundary of the

ideo snippet proposal. 

Taking the cross-modal feature f vq as input, we use two 1 × 1

onvolutional layers to generate the matching score denoted as

 , which indicates the similarity between a question and a video
nippet. The formulation is denoted as s = θs ( f v q ) . To encourage

atched snippet-question pairs having positive match scores and

ismatched pairs having negative scores, we minimize the follow-

ng objective: 

 match = 

1 

N 

∑ 

i =0 

[ w 1 log (1 + exp (−s i,i )) 

+ 

N ∑ 

j =0 , j � = i 
w 2 log (1 + exp (s i, j ))] (3) 

here N is the batch size, s i,j is the matching score between ques-

ion q j and video snippet v i , w 1 and w 2 are the hyper parameters

hat control the balance between positive (matched) and negative

mismatched) snippet-question pairs, respectively. 

It is straightforward to generate a large number of video snip-

et proposals with different scales and regard the most matching

ideo snippet proposal as the question-related video snippet. How-

ver, generating video snippet proposals with a large number of

cales is computationally expensive. Instead, we control the num-

er of video snippet proposals by using sliding windows in limited

ranularity. Then, we perform location regression on the top of the

enerated video proposals to further adjust the temporal boundary.

Using the same network as the matching score network, the

tart time and end time are also generated after two 1 × 1 con-

olution layers, which is formulated as (t s , t e ) = θse ( f v q ) . We ex-

loit an L 2 regression loss to optimize the temporal boundary as

ollows: 

 reg = 

1 

N 

N ∑ 

i =0 

‖ (t i s , t 
i 
e ) − (g i s , g 

i 
e ) ‖ (4)

here t i s and t i e denote the start time and end time of the i th video

nippet proposal respectively, g i s and g i e denote the ground truth

tart time and end time of question-related video snippet respec-

ively and N is the batch size. 

Due to the difficulty of question-driven video content localiza-

ion, the precision of the top-1 detected video snippet is relatively

ow such that it is problematic to directly regard it as the final

xtracted video snippet. Thus, we propose a matching-guided at-

ention mechanism, where the top- n video snippet proposals are

elected and fused together weighted by the matching scores. 

For each question, we select top- n video snippet propos-

ls { v 1 , v 2 ... v n } with top- n matching scores. We then ex-

ract question-related video snippets precisely from the top-

 video snippet proposals according to the regression results

 (t 1 s , t 
1 
e ) , (t 2 s , t 

2 
e ) ... (t n s , t 

n 
e ) } . Consequently, we obtain n extracted
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video snippets { v ∗1 , v ∗2 ... v ∗n } with matching scores { s 1 , s 2 ... s n }. The fi-

nal visual representation corresponding to a question is calculated

as: 

v attend = s 1 · θv (v ∗1 ) + s 2 · θv (v ∗2 ) + ... + s N · θv (v ∗n ) (5)

where θ v denotes the function of video embedding as illustrated

in Section 5.1 and v attend is the final attended visual feature vector.

5.3. Answer prediction 

After obtaining the attended visual feature vector, we concate-

nate it with question embedding as the final cross-modal feature

vector. We then adopt two fully connected layers with ReLU and a

standard softmax layer to generate the answers in a classification

manner. 

a = softmax 
[
W 

� 
a ( f q ‖ v attend ) + b a 

]
(6)

where f q is the embedding of question and v attend is the attended

visual feature. We use a cross-entropy loss for answer prediction

as follows: 

L ans = −
N ∑ 

i =1 

a i log ̂  a i (7)

where a i is the predicted answer of the i th question, ˆ a i is the

ground truth answer of the i th question and N is the batch size. 

5.4. Model learning 

During model learning, to jointly perform question-related

video content localization and answer prediction, we need to min-

imize the following objective: 

L = λ1 L match + λ2 L reg + λ3 L ans (8)

where L match , L reg and L ans denote the matching loss, the regression

loss and the cross-entropy loss, respectively. λ1 , λ2 , λ3 are tuning

parameters. 

If we simply minimize the matching loss, regression loss and

cross-entropy loss simultaneously, the model converges to some

suboptimal solutions where the matching module and regression

module perform badly. Here, we propose to train our model in

two stages: 1) training the model with matching loss and regres-

sion loss together to produce accurate estimations for matching

scores and regression results, and then, 2) combining the obtained

attended visual feature vector and question embedding to predict

the final answers with the cross-entropy loss. In the first stage, the

parameters of the answer prediction module remain unchanged.

In the second stage, we keep the parameters related to the first

stage unchanged. We experimentally find such a two-stage training

process can well address the multi-task problem which maintains

the convergence of our model and reduces the computational time

greatly. 

As mentioned above, we first consider to use LSTM to encode

the questions. However, the model performs not well on question-

related video content localization and answer prediction. We find

that for a given long video, there are a lot of identical predicted an-

swers of different questions. The possible reason is that the scales

of TACoS-QA and MSR-VTT-QA are not large enough to sufficiently

train the LSTM encoder and the sequential information of sen-

tences is not well captured. Hence, we use an off-the-shelf skip-

thoughts [53] sentence embedding extractor to encode the ques-

tions, which is pre-trained over a large-scale book corpus produc-

ing more generic sentence representations. 

6. Experiments 

In this section, we will present the experimental configurations

and results of the proposed method. 
.1. Implementation details 

Data preparation. Before training, we use multi-scale tempo-

al sliding windows with [64, 128, 256, 512] frames and 80% over-

ap to generate video snippet proposals. At testing stage, we only

se sliding windows with [128, 256] frames for efficiency. We then

se these video snippet proposals to collect training samples which

re used as the input to our framework. For a video snippet pro-

osal, we align it as a positive training sample if it satisfies two

onstraints as follows: 1) the IoU (intersection over union) of the

liding window snippet and the ground truth temporal interval

s larger than 0.5. 2) the nIoL (non intersection over length) of

he sliding window snippet and ground truth temporal interval is

maller than 0.2. We also collect negative samples which have no

ntersection with any question annotation. 

Video representation. For each video snippet proposal in the

raining set, we extract features for every 16 consecutive frames

ith 8-frame overlap and perform mean pooling over them. At the

nd of video feature extraction, we add an L 2-normalization. Due

o the high FPS rate, we sample the frames with frequencies of 8,

6, 32 and 64, respectively. For example, under the sampling fre-

uency of 8, we extract C3D features at the 8 th , 16 th , 24 th , ..., (8n) th
rames of the video, respectively. We compare the impact of differ-

nt sampling frequencies in Section 6.5 . 

Question embedding. The question embedding is performed

sing LSTM with a maximum length of 100, where we initialize the

ord embeddings using a continuous bag-of-words model [54] to

ompute 300 dimensional vectors. In the deep video-question em-

edding model, we encode both the questions and video snippets

nto 1024 dimensional vectors. Besides LSTM, we also use skip-

houghts [53] to encode the sentences, because skip-thoughts is

rained on a large corpus of documents, which can produce generic

entence representations that are robust and perform well in cross-

odal tasks. 

Optimization. We use Adam [55] to train our network with a

earning rate of 0.001. The batch size is set as 24. In Eq. (3) and (8) ,

 1 , w 2 , λ1 , λ2 and λ3 are all set as 1. During training, the temporal

oundaries of the question-related video content within the video

re given in the positive examples. In testing stage, the temporal

nformation is only used for performance evaluation. We experi-

entally find that a fused representation of three video snippets is

ufficient for answer prediction. 

Evaluation metric. We compute Recall@ n as the evaluation

etric, which means that at least one of the top- n results is the

ight answer. The metric itself is on question level, so the over-

ll performance is the average among all the questions. Recal l @ n =
1 
N 

∑ N 
i =1 r ( n, q i ) , where r ( n, q i ) is the recall for question q i , N is the

umber of questions and Recall@ n is the averaged performance. 

.2. A baseline method 

Because there is no previous work focusing on long video QA

n the literature, we further propose a baseline method for long

ideo QA which is used to demonstrate the effectiveness of our

ethod. We develop a two-step baseline method. 1) We first learn

 deep video-question embedding model to map the question q

nd video snippets { v 1 , v 2 , ..., v N } into a common space, where the

imilarity score between the matched question-snippet is higher

han mismatched ones. 2) After selecting the most related snippet

f question through the deep video-question embedding model, we

rain a classifier on the concatenated representations of selected

nippet and question to finally predict the desired answer. 

We define the product of a snippet and a question s ( ̃ v , ̃  q ) as the

imilarity score s ( ̃ v , ̃  q ) , in which 

˜ v and ˜ q are scaled to have unit

orm. In this way, the similarity function is equivalent to cosine

imilarity. Let θ denotes all the trainable parameters, the model
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Table 3 

Detection results of different methods on TACoS-QA . 

Methods IoU = 0.1 IoU = 0.2 IoU = 0.3 IoU = 0.4 IoU = 0.5 

Baseline method 6.38 5.33 4.37 3.93 3.17 

MAM (LSTM) 6.78 5.42 3.66 1.64 1.29 

MAM (skip-thoughts) 14.48 10.99 7.95 5.91 3.95 

Table 4 

Detection results of different methods on MSR-VTT-QA . 

Methods IoU = 0.1 IoU = 0.2 IoU = 0.3 IoU = 0.4 IoU = 0.5 

Baseline method 4.48 5.26 4.96 3.52 2.68 

MAM (LSTM) 5.82 5.01 3.39 1.53 2.10 

MAM (skip-thoughts) 9.23 8.41 6.35 5.85 3.64 
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Table 5 

Comparison of different methods on TACoS-QA . 

Methods Recall@1 Recall@5 Recall@10 

Random 1.08 5.38 10.75 

HME-VideoQA 10.6 30.8 38.1 

TGIF-QA 13.53 20.89 29.24 

Baseline method 16.35 27.43 35.81 

MAM (LSTM) 13.35 23.06 35.70 

MAM (skip-thoughts) 22.84 33.38 46.77 

Table 6 

Comparison of different methods on MSR-VTT-QA . 

Methods Recall@1 Recall@5 Recall@10 

Random 0.01 0.05 0.10 

Baseline method 11.45 18.23 22.56 

MAM (LSTM) 9.57 15.90 20.25 

MAM (skip-thoughts) 12.59 20.23 25.18 
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an be learnt by optimizing a ranking loss as follows: 

in 

θ

∑ 

˜ v 

∑ 

k 

max { 0 , α − s ( ̃ v , ̃  q ) + s ( ̃ v , ̃  q k )) } 
 

∑ 

˜ q 

∑ 

k 

max { 0 , α − s ( ̃  q , ̃  v ) + s ( ̃  q , ̃  v k ) } (9) 

here ˜ v and ˜ q are matched video snippet and question, ˜ v k is the

 -th negative video snippet to question ˜ q and ˜ q k is the k -th nega-

ive question to video snippet ˜ v . The negative pairs are chosen ran-

omly from the training set and re-sampled at each epoch during

he training phase. α is a margin parameter. 

After obtaining the deep video-question embedding model, we

mbed each question and corresponding video snippet proposals

f the given video into a common space, i.e. , ˜ q , ˜ v 1 , ˜ v 2 , ..., ˜ v N . Based

n these embeddings, we can compute the similarity scores of the

uestion with all the proposals. We select one snippet ˜ v ∗ with the

ighest score as the question-related video snippet. We then con-

atenate the embeddings of the selected snippet and the question

ogether: 

JR = 

˜ v ∗ ‖ 

˜ q (10) 

here ‖ is the concatenation operation. By treating each answer

n the training set as a class, we train a linear SVM classifier to

lassify the ν JR to the desired answer. 

.3. Question-driven video detection 

In the testing phase, we extract the most relevant video snippet

or each question, which can be regarded as the task of question-

riven video detection. We adopt a similar metric used in [52] to

ompute “IoU = m ”, which means the percentage of the top-1 re-

ults whose IoUs are larger than m . The metric is also evaluated on

entence level. Thus, the overall performance is the average among

ll the questions. 

We denote the Matching-guided Attention Model as MAM.

STM means the questions are embedded with LSTM, while skip-

houghts means the questions are embedded with skip-thoughts.

he detection results on two datasets are presented in Tables 3 and

 , respectively. 

As shown in Tables 3 and 4 , the MAM (skip-thoughts) model

onsistently outperforms the baseline method in terms of all the

valuation metrics by a large margin. The MAM (LSTM) model out-

erforms the baseline method at IoU = 0.1 and 0.2, but it is in-

erior to baseline model at high IoUs. The possible reason is that

he scales of the two generated datasets are not large enough to

rain the LSTM. Since skip-thoughts is trained on a large corpus of

ocuments, it can produce more generic sentence representations

hich leads to better detection results. 
.4. Long video QA 

We test the proposed Matching-guided Attention Model (MAM)

nd comparison methods on TACoS-QA and MSR-VTT-QA datasets

nd report Recall@{1, 5, 10}. The results are shown in Tables 5 and

 , where all methods use the same C3D features. ‘Random’ means

hat we randomly select n answers from the test set and eval-

ate Recall@ n . MAM (LSTM) uses LSTM as the question encoder,

hile MAM (skip-thoughts) uses pre-trained skip-thoughts as the

uestion encoder. We can see that our proposed matching-guided

ttention model consistently outperforms the baseline method by

 large margin under all evaluation metrics on both two datasets,

hich demonstrates the effectiveness of our model on long video

A. The performance of the MAM (skip-thoughts) model outper-

orms the MAM (LSTM) model, because the scales of TACoS-QA and

SR-VTT-QA are not large enough to train the LSTM. 

Besides, we can observe that the answer prediction results are

onsistent with the detection results shown in Tables 3 and 4 ,

here better detection results lead to better answer prediction

emonstrating the importance of question-related video content

ocalization. 

In addition, we compare our method with two classic mod-

ls for short video QA including TGIF-QA [16] and HME-VideoQA

46] on TACoS-QA dataset. TGIF-QA [16] is a commonly used short

ideo QA approach. HME-VideoQA [16] is the current state-of-the-

rt method for short video QA. The comparison results are shown

n Table 5 . As shown in Table 5 , we can see that our MAM model

utperforms both TGIF-QA and HME-VideoQA on all evaluation

etrics by a large margin, which demonstrate the effectiveness of

ur method on long video QA. The reason that short QA meth-

ds perform not well is that they cannot attend to question-related
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Fig. 5. The accuracy of questions with different lengths. 

Table 7 

Results with different model configurations. 

Configurations Accuracy 

Video snippet Question Recall@1 Recall@5 Recall@10 

√ × 16.03 24.78 30.51 

× √ 

18.97 29.45 41.44 √ √ 

22.84 33.38 46.77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 

Results corresponding to different types of questions under dif- 

ferent sampling frequencies. q : question type, and f : sampling 

frequency. 

f / q Object Number Color Location Total 

8 14.85 % 41.53 % 45.88% 37.89 % 24.82 % 

16 14.50% 40.21% 47.06 % 37.46% 22.13% 

32 14.55% 30.69% 47.05% 34.79% 22.17% 

64 14.50% 35.71% 45.88% 35.07% 23.88% 

Table 9 

Mean IoU (mIoU) of question-driven video content detection un- 

der different sample frequencies. f : sampling frequency. 

mIoU / f 8 16 32 64 

Baseline method 3.64% 6.58% 3.86% 7.71 % 

MAM (skip-thoughts) 5.57% 8.04 % 5.88% 6.77% 
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video snippet in long videos. Although they use attention mecha-

nism, it is not effective in long videos as the attention weights are

not constrained explicitly. In our model, we deal with these chal-

lenges by using the location regression to precisely localize the

question-related video snippets and use the proposed matching-

guided attention mechanism to the localized video snippets. As il-

lustrated in Tables 3 and 4 , our method can improve the detection

results significantly compared with the baseline model. 

We report the accuracies of the questions with different lengths

on TACoS-QA in Fig. 5 . The lengths of questions vary from 4 to

14 words. We observe several points as follows: 1) the baseline

method performs well when the lengths of questions are longer

than 10, where the performance is even better than MAM (skip-

thoughts) when the lengths are equal to 10 and 12. 2) the MAM

(skip-thoughts) performs better than the MAM (LSTM) for both

long questions and short questions. 

To estimate the importance of video and question data in our

model, we conduct experiments with two variational MAM(skip-

thoughts) models. In the first model, we delete the question in-

put and train the model with the rest architecture. Contrarily, we

delete the visual input in the second model. The comparison re-

sults of different model configurations on TACoS-QA dataset are

presented in Table 7 . 

As shown in Table 7 , when the video snippet is deleted, the

accuracy drops 4%. When the question input is removed, the ac-

curacy drops 6%. Then, the importance of video and question in-

put can be summarized from the accuracies, namely the question

might play a more important role in the attention mechanism. The

possible reason is that the model with only video snippet input

is not able to attend to question-related video snippet, due to the

various contents and long range of long videos. Therefore, it cannot

output reasonable answers. However, questions are more distinct

in semantic meanings so that they can lead to more reasonable

answers. 

6.5. Impact of sampling frequencies 

We train the MAM (skip-thoughts) model with different sam-

pling frequencies on TACoS-QA dataset and calculate Recall@1 of

four types of questions as shown in Table 8 . As we can see, the
ccuracies of color questions are the best, although the number

f color questions is the least. In particular, there are totally 8

inds of answers for color questions and an accuracy of more than

5% is achieved. Answering object questions is the hardest, due to

he large potential answer space including various actions, tools,

laces, etc . Note that the accuracy of number questions drops a lot

s the sampling frequency increases. It might result from the fact

hat using a high sampling frequency will lose much detailed and

ounting-related information. Similar observations can also be ob-

ained in location questions. 

The mean IoUs of question-driven video content detection un-

er different sam pling frequencies are shown in Table 9 . From the

able we can see that, except for the case of 32 and 16, as the sam-

ling frequency becomes higher, the IoU becomes better. However,

he overall mean IoUs are relatively low. It is mainly attributed to

he fact that, the lengths of most videos are very long ( i.e. , thou-

ands of frames) while the ground truth snippets are very short

 i.e. , several hundreds of frames), so precisely localizing these snip-

ets is very difficult. 

.6. Impact of the number of attended video snippets 

When training the proposed Matching-guided Attention Model

ith skip-thoughts on TACoS-QA dataset, we vary the number of

ttended snippets in the attention module from 1 to 5. For all

he cases, we keep the sampling frequency as 8 and other hyper-

arameters unchanged. The corresponding results in Table 10 show

hat, when the number of attended snippets is 3, the model

chieves the best performance. The possible reason is that when

he model attends to more snippets the model obtains more data

oise. When the number of attended snippets is less than 3, due

o the low precision of detection, the attended visual feature vector

ay not contain the question-related video content. 

.7. Qualitative evaluation 

We illustrate 4 examples of detected video snippets and pre-

icted answers by our proposed method in Fig. 6 . In the top row,

he given question is “what did the person enter ”. The prediction

s longer than the ground truth, as the prediction contains some

rames before the person walking into the kitchen. In the second

ow, the key words in the question are “wash” and “sink”. The

odel can find the relevant content but the start time and end

ime are not accurately equal to the ground truth. In the third row,

he key information is “open up beneath the counter”. The predic-

ion of our model has no intersection with the ground truth. The

rediction is reasonable due to the fact that this long video con-

ains multiple snippets with the same content. In the bottom row,



W. Wang, Y. Huang and L. Wang / Pattern Recognition 102 (2020) 107248 9 

Table 10 

Results of the MAM (skip-thoughts) model using different numbers of attention snip- 

pets. 

Number of attention snippets 1 2 3 4 5 

Accuracy 23.15% 23.86% 24.82 % 19.14% 17.15% 

Fig. 6. Examples of detected snippets and predicted answers by our proposed Matching-guided Attention Model on TACoS-QA dataset. 
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he question is about cracking eggs. The prediction is shorter than

he ground truth. 

By carefully analyzing these examples, we can obtain the fol-

owing conclusions. 1) Different from the IoU measurement which

s calculated in a strict way, the answer prediction does not require

 very accurate video location detection but can still get the correct

nswer. It can also partially explain the inconsistent performance
rends between the IoU in Table 9 and the answer accuracy in

able 8 . 2) Each long video contains very diverse contents, so that

ur question-driven video detection method may reasonably detect

he “wrong” snippet having the same or similar content with the

round truth snippet. For example, given a question “what did the

erson open up beneath the counter ? ” and a long video containing

everal snippets with the same content of a person opening up the
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drawer, our proposed method may detect any snippet of them and

output the correct answer “drawer ”. 

7. Conclusions and future work 

This paper has investigated a challenging but hardly studied

problem, namely long video QA. Given a long video and a ques-

tion, the goal of long video QA is to answer the question with-

out pre-knowing the location of the target snippet. Two long-video

QA datasets are built on the top of two video caption datasets,

namely TACoS-QA dataset in cooking scene and MSR-VTT-QA dataset

in diverse life scenes. Compared with existing video QA datasets,

the proposed datasets have the following strengths. 1) Videos in

the datasets are untrimmed long videos containing various visual

contents, which enables the evaluation of long video QA. 2) The

datasets provide the temporal boundaries of QA pairs in the long

videos, such that the question-related video content can be local-

ized in an accurate manner. 3) There are several different QA pairs

in a given video which increases the difficulty of long video QA. 

To deal with this problem, we have proposed a Matching-

guided Attention Model (MAM). Extensive experimental results

show the effectiveness of the proposed method by comparing with

two short video QA methods and a baseline method. The pro-

posed model localizes the question-related video content and an-

swers the question simultaneously, which is efficient and end-to-

end trainable. The proposed matching-guided attention module is

much more effective than traditional attention mechanism, since a

matching loss is used to supervise the attention weights (match-

ing scores). The weakness of the proposed model may be that the

linguistic knowledge of questions is not well employed. In the fu-

ture, we will study how to use compositional linguistic structure

in questions or use external knowledge-based methods for better

answer prediction. Moreover, we will improve our model by in-

corporating more advanced components, e.g. , augmented memory

modeling [32] . 
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