
A fast reconstruction algorithm for fluorescence 
molecular tomography with sparsity 

regularization 

Dong Han
1
, Jie Tian

1,*
, Shouping Zhu

1
, Jinchao Feng

2
, Chenghu Qin

1
, 

Bo Zhang
3
, and Xin Yang

1
 

1 Medical Image Processing Group, Institute of Automation Chinese Academy of Sciences, 
 Beijing, 100190, China 

2 The College of Electronic Information & Control Engineering, Beijing University of Technology China 
3 Sino-Dutch Biomedical and Information Engineering School of Northeastern University, 

 Shenyang, 110004, China 
*tian@ieee.org 

Abstract: Through the reconstruction of the fluorescent probe distributions, 
fluorescence molecular tomography (FMT) can three-dimensionally resolve 
the molecular processes in small animals in vivo. In this paper, we propose 
an FMT reconstruction algorithm based on the iterated shrinkage method. 
By incorporating a surrogate function, the original optimization problem 
can be decoupled, which enables us to use the general sparsity 
regularization. Due to the sparsity characteristic of the fluorescent sources, 
the performance of this method can be greatly enhanced, which leads to a 
fast reconstruction algorithm. Numerical simulations and physical 
experiments were conducted. Compared to Newton method with Tikhonov 
regularization, the iterated shrinkage based algorithm can obtain more 
accurate results, even with very limited measurement data. 

©2010 Optical Society of America 
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(170.6280) Spectroscopy, fluorescence and luminescence; (170.3880) Medical and biological 
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1. Introduction 

In vivo small animal optical molecular imaging has become an important and rapidly 
developing method for biomedical research, and has been widely utilized for cancer detection, 
drug discovery and gene expression visualization, etc [1–4]. When small animals are labeled 
with optical molecular probes, the corresponding biological information can be indirectly 
visualized by measuring the emitted light photons of the probes over the surface, thus 
realizing non-invasive investigation of the small animals [5]. Among optical molecular 
imaging modalities, fluorescence molecular imaging has become a popular and promising 
technique. This is partly due to the wealth of the fluorescent probes [6]. However, because the 
photons in the NIR or visible spectrum are highly scattered by tissue, the traditional planar 
fluorescence imaging cannot reflect the probe distributions accurately. Fluorescence 
molecular tomography (FMT), on the contrary, can three-dimensionally resolve the molecular 
processes by measuring the photons over the animal surface and reconstructing the 
distribution of the fluorescent probes, which makes it a hot spot in recent years. 

FMT is often an ill-posed problem since only the photon distribution over the surface is 
measurable [7]. This can be alleviated by increasing the measurement data sets. However, 
even if sufficient measurements can be obtained, the problem may still be ill-conditioned, 
which means that it is unstable and is sensitive to noises caused by CCD measurement errors 
and data interpolation errors. To compute a meaningful approximate solution, more a priori 
information should be incorporated to regularize the FMT problem [8]. Among different 
regularization methods, the Tikhonov regularization is a popular method that has been widely 
adopted in FMT problems [10,11]. Tikhonov method assumes that the “size” of the solution 
should not be very large and adds L2-norm constraint of the solution to the original problem, 
thus making the problem less sensitive to perturbations. The advantage of L2-norm 
regularization is that the problem is simple and can be solved efficiently by standard 
minimization algorithms, such as Newton method and conjugate gradient method. However, 
the solution is often over-smoothed with reduced intensities, and the localized features are 
lost during the reconstruction process [12]. In recent years, some researchers began to use 
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sparsity regularization for the optical tomography problems [8,9,12]. For FMT this is based 
on the fact that, the domains of the fluorescent sources are usually very small and sparse 
compared with the entire reconstruction domain [9]. This can be considered as valuable a 
priori information for FMT. A straightforward way to integrate the sparsity constraint is to 
replace the Tikhonov method with L0-norm regularization. However, the optimization 
problem becomes NP-hard in this case, and cannot be solved efficiently [13]. A tradeoff is to 

select a proper Lp-norm with [1,2)p∈ . When p  is within this range, large values in the 

solution are penalized less severely compared with Tikhonov regularization. Therefore, the 

Lp regularization ( [1,2)p∈ ) has a higher tendency to promote the sparsity of the 

reconstructed result. This effect has been demonstrated in many published articles [8,13]. 
Another advantage of the sparsity regularization is that, it can still perform well when the 
measurement data is very limited. This has been well studied in the area of compressed 

sensing [14]. Besides, the Lp-norm with [1,2)p∈  is convex, so the FMT problem remains 

convex which is important for successful FMT reconstructions. However, this requires the 
design of new algorithms that can solve the optimization problems with general Lp-norm 
regularization. Another problem lies in the performance of the reconstruction algorithm. A 
long reconstruction time may become an obstacle for FMT to be transferred into practical use. 
Therefore, we believe that designing a fast reconstruction algorithm is always a hot spot for 
FMT. 

In this paper, a fast reconstruction algorithm based on the iterated shrinkage method is 
proposed [15]. This algorithm decouples the original high dimensional optimization problem 
and converts it into a set of one dimensional optimization problems, which enables us to 
handle each one separately. More importantly, general Lp-norm regularization can be 
incorporated straightforwardly without increasing the complexity of the problem. Next, we 
provide two reconstruction strategies for different situations together with their complexity 
analysis. Last, we explain that duo to the sparsity of the light sources, the computational 
burden can be greatly reduced, which leads to a fast reconstruction algorithm. 

This paper is organized as follows. The iterated shrinkage based reconstruction algorithm 
is presented in section 2. In section 3, numerical simulations and physical experiments are 
conducted to evaluate the performance of the proposed method. Finally, we discuss the results 
and conclude this paper. 

2. Method 

2.1 Photon propagation model 

For photon propagation in biological tissue within the near infrared spectral window, 
scattering is the dominant phenomenon over absorption. Therefore, the diffuse approximation 
to the radiative transfer equation has been extensively applied to model the photon transport 
[16–20]. For steady-state FMT with point excitation sources, the following coupled diffuse 
equations can be utilized to depict the forward problem: 

 
( )
( )
· ( ) ( ) ( ) ( ) ( )

· ( ) ( ) ( ) ( ) ( ) ( )
( )

x x ax x l

m m am m x af

D r r r r r r

D r r r r r
r

r

µ δ
µ ηµ

∇Φ − Φ = −Θ −

∇

∇
∈Ω∇ Φ − Φ = −Φ

 (1) 

where subscripts x  and m  denote the excitation and emission wavelengths, respectively; Ω  

denotes the domain of the problem; 
,x m

Φ  is the photon flux density; 
,ax am

µ  is the absorption 

coefficient and 
, , ,

1 3( (1 ) )
x m ax am sx sm

D gµ µ= + −  is the diffusion coefficient, 
,sx sm

µ  is the 

scattering coefficient, and g  is the anisotropy parameter; 
af

ηµ  denotes the fluorescent yield 

which is to be reconstructed. Here, we assume that the absorption and scattering of the 
excitation light caused by the fluorescent probes will have little effect on the distribution of 

x
Φ , as the fluorescent probes often occupy a very small volume compared with the imaging 
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domain Ω . In this forward model, the excitation light is implemented as isotropic point 
sources located one mean free path of photon transport beneath the surface at different 

locations ( 1, 2, , )
l

r l L= … . Θ  denotes the amplitude of the point sources. The coupled 

equations are complemented by Robin-type boundary conditions which depict the refractive 
index mismatch between the external medium and Ω : 

 ( ), , ,· (( ) 2 ( ) ( ) () )x m x m x mr AD r v r rrΦ + Φ ∈∂Ω
�

 (2) 

where v
�

 denotes the outward normal to the surface. A  is a constant depending on the optical 

reflective index mismatch at the boundary [21]. 

2.2 Linear relationship establishment 

Instead of solving Eqs. (1) and (2) directly, they are posed in the weak solution forms. 
Discretizing the domain with small elements and employing the base functions as the test 
functions, the FMT problem can be linearized and the following matrix-form equations can be 
obtained. 

 [ ]{ } { }
x x x

K SΦ =  (3) 

 [ ]{ } [ ]{ }
m m

K F XΦ =  (4) 

where 
,x m

K  is the system matrix. Matrix F  is obtained by discretizing the unknown 

fluorescent yield distribution. Vector X  denotes the fluorescent yield to be reconstructed. For 

each excitation point source at ( 1, 2, , )
l

r l L= … , 
x

Φ  can be directly obtained by solving Eq. 

(3). Considering the inverse crime problem, 
x

Φ  is calculated on a fine mesh using 2nd order 

Lagrange elements. Then it is projected onto a coarse mesh which will be used for the 

reconstruction of X  with linear elements. As matrix 
m

K  is symmetrical positive definite, Eq. 

(4) can be transformed into: 

 
1

, ,
{ } [ ][ ]{ } [ ]{ }

m l m l l
K F X B X

−Φ = =  (5) 

Removing the unmeasurable entries in 
,m l

Φ  and corresponding rows in 
l

B , we have: 

 
,

{ } [ ]{ }
meas

m l l
A XΦ =  (6) 

Next, we assemble Eq. (6) for different excitation locations and obtain the following matrix-
form equation: 

 { } [ ]{ }A XΦ =  (7) 

The detailed descriptions can be found in [7]. 

2.3 Reconstruction based on iterated shrinkage method 

As is mentioned, FMT is usually an ill-posed problem, which means that the dimension of the 
null space of A  is not zero. Therefore, the solution is not unique in this case. Even if the 
FMT problem becomes less ill-posed when more fluorescence measurement data can be 
captured by the CCD camera, it can still remain ill-conditioned (with a large condition 
number). Therefore, errors in the FMT problem can be magnified, which will affect the 
reconstruction results. Errors are inevitable and can be introduced in several ways, e.g. the 
fluorescence measurement errors caused by CCD camera noise and the approximation errors 
caused by data interpolation. A standard way to regularize the problem is to incorporate 
additional constraints on the solution, which can be considered as a kind of a priori 
information: 
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2

20

1
min ( ) ( )

2X
E X AX R Xλ

≥
= −Φ +  (8) 

where ( )R X  is the penalty function, and λ  is a positive real number called the regularization 

parameter which is used to balance the two terms. In this paper, X  is considered to be non-
negative. When L2-norm penalty function is used, this becomes the popular Tikhonov 

regularization method. Here, we only consider the case when ( )R X  is || ||
p

p
X  with [1,2)p∈ . 

In this case, the original energy function for the FMT problem with general Lp-norm 
regularization can be represented as follows: 

 
2 2

2 2
1

1 1
( )

2 2

N
p p

ip
i

E X AX X AX xλ λ
=

= −Φ + = −Φ + ∑  (9) 

where N  is the dimension of X . Here, we define 1 1 1 1

1 2
[ , , , ]p p p p T

N
X x x x− − − −= ⋯ . To minimize 

the energy function, we calculate the partial derivative of ( )E X , and set the result to zero: 

 1 0T T pA AX A pXλ −− Φ + =  (10) 

When 1p =  and 0
i

x∃ = , Eq. (10) is not correct. This special case will be considered later. 

Equation (10) is non-linear except when 1p = . If TA A  is a diagonal matrix, then solving X  

is equivalent to solving each 
i

x  individually, which is quite simple. However, this is 

generally not the case for FMT, and all 
i

x  are closely coupled. Therefore, solving Eq. (10) is 

not trivial. 
Next, we introduce a surrogate function with the following form [15]: 

 
2 2

0 0 02 2

1
( ; )

2 2

c
S X X X X AX AX= − − −  (11) 

where c  is a constant scalar and 
0

X  is a constant vector. The parameter c  should be chosen 

so that 
0

( ; )S X X  is strictly convex. This implies that the Hessian matrix of 
0

( ; )S X X  should 

be positive definite, 0T
cI A A− ≻ . This can be satisfied by choosing parameter 

2
|| || ( )T Tc A A A Aρ> = . Adding ( )E X  and 

0
( ; )S X X  together, we get the new energy 

function as follows: 

 
2 2 2

0 0 02 2 2

1 1
( ; )

2 2 2

p

p

c
J X X AX X X X AX AXλ= −Φ + + − − −  (12) 

Calculating the partial derivative of Eq. (12) with respect to X  and setting the result to zero, 
we have: 

 ( ) 1

0 0 0( ; ) 0
T p

J X X A AX cX pX cXλ − ∇ = − Φ − + + + =   (13) 

Let 1

0 0
( )TD c A AX X−= Φ − +  represent all the constant items, Eq. (13) can be further 

simplified as follows: 

 1 0pp
X D X

c

λ −− + =  (14) 

In Eq. (14), all 
i

x  are decoupled now, and solving Eq. (14) is equivalent to solving each 
i

x  

individually, which makes the use of general Lp-norm regularization possible. This is a 
distinctive advantage of the iterated shrinkage method compared with other methods, e.g. the 
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Lasso estimator that is based on L1 regularization [22]. Here, we take 1p =  for example. To 

solve a certain 
i

x , we firstly assumes that 0
i

x > . Then, if 
i

d cλ> , we have 
i i

x d cλ= − . 

If 
i

d  does not satisfy the condition, we don’t calculate 
i

x  using Eq. (14) but simply set 

0
i

x = . Therefore, we can avoid the aforementioned special case. Now, we define a function 

named Shrink: 

 , ( ; 1)

0

c

c c
Shrink p

c

λ

λ λ

λ

 − >
= = 

 ≤


z z

z

z

 (15) 

This function maps the values smaller than the threshold to zero; values larger than the 
threshold are “shrinked”, thus the name of the function. An important feature of the Shrink 
function (not limited to 1p = ) is that it can be determined once and off-line. Using this 

Shrink function, the optimal solution to the optimization problem can be represented as: 

 

, 1

, 2

0

,

( ; 1)

( ; 1)
arg min ( ; )

( ; 1)

c

c

opt
X

c N

Shrink d p

Shrink d p
X J X X

Shrink d p

λ

λ

λ

= 
 = = =
 
 

=  

⋮
 (16) 

Next, we analyze the influence of the surrogate function on the optimization problem. 

Since 
0

( ; )S X X  is strictly convex, it has a unique global minimum. Zeroing the derivative of 

0
( ; )S X X  with respect to X  leads to the equation: 

 
0 0

( ) ( )TA A X X c X X− = −  (17) 

Since 
0

X X=  is obviously a solution to Eq. (17), it is the unique solution. Therefore, the 

global minimum of 
0

( ; )S X X  is zero when 
0

X X= . From the above analysis, we know that 

the optimal solution to this optimization problem will have a bias towards 
0

X . 
0

X  can be 

regarded as the a priori knowledge of X . However, this a priori information may not be 
obtainable in most cases. To resolve this problem, an iterative reconstruction scheme is 

adopted instead. For a new iteration 1k + , 
1k

X +  is calculated by replacing 
0

X  with 
k

X : 

 ( )1, , , ( ); 1 ( 1, 2, , )k i c k i kx Shrink d X p i Nλ+ = = = …  (18) 

Now, D  becomes a function of 
k

X  and can be updated iteratively. Here, we should point out 

that the convergence analysis in [15] cannot be directly used to analyze the proposed method. 
A major reason is that, the base functions in the finite element framework are not orthogonal, 
though they are linearly independent. However, it is shown in reference [23] that even with 
unorthogonal bases, the iterated shrinkage method is still practiced successfully. We share 
similar experience in the FMT reconstructions. This can be seen from the reconstruction 
results in section 3. Here, we provide a brief explanation to show that the proposed method 

still makes sense in this case. In fact, ( ; )
k

J X X  is a upper bound of ( )E X , which means 

( ; ) ( )
k

J X X E X≥ . Equality can be satisfied if and only if 
k

X X= . Then, for a certain 

iteration k , the following inequality exists: 

 
1 1

( ) ( ; ) ( ; ) ( )
k k k k k k

E X J X X J X X E X+ +≤ ≤ =  (19) 

Therefore, ( )
k

E X  is non-increasing as k  grows. 
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Now, we consider the calculation of c  satisfying ( )Tc A Aρ> . A straightforward way is 

to calculate all the Eigen values of TA A , and c  can be set to the largest Eigen value plus ε , 

where ε  is a small positive value. However, this could be rather time-consuming. Therefore, 

we provide two alternative ways to determine c . For the first one, we estimate the upper 

bound of the maximum Eigen value instead of actually calculating it, and c  can be set to the 

upper bound plus ε . Several estimation algorithms can be adopted, e.g. the popular Minc 

method [24]. The second way is to calculate the maximum Eigen value directly using e.g. the 
Power method [25], and c  can be set similarly. Sometimes, the estimated upper bound of 

maximum Eigen value may be too large compared with the true value. This will increase the 
influence of the surrogate function on the optimization problem and will slow down the 
convergence rate. Therefore, for the above two ways, we prefer the latter one, because it is 
more accurate. 

Next, we provide two reconstruction strategies for different situations. Suppose we have 

obtained A  and Φ . For a certain iteration k , 
k

D  can be represented in the following two 

ways: 

 ( )1 T

k k k
D A AX X

c
= Φ − +  (20) 

 
1 1T T

k k k
D A A AX X

c c
= Φ − +  (21) 

Equations (20) and (21) lead to the following two reconstruction strategies: 

Reconstruction strategy 1 

Require: 
m n

A × , Φ  and λ  

1: Calculate the maximum Eigen value 
max

eig  of matrix [0, ; ,0]TA A  

2: �
2

max
igc e ε= +  

3: for 0k =  to 
max

k  do 

4:        
k k

V AX= Φ −  

5:       
1 T

k k k
D c A V X−= +  

6:       for 1i =  to N  do 

7:               
1, ,

( )
k i k i

x Shrink d+ =  

8:      end for 
9: end for 

Reconstruction strategy 2 

Require: 
m n

A × , Φ  and λ  

1: 
TM A A=  

2: 
TB A= Φ  

3: Calculate the maximum Eigen value 
max

eig  of M  

4: �
max

c eig ε= +  

5: for 0k =  to 
max

k  do 

6:          
1 1

k k k
D c B c MX X− −= − +  

7:           for 1i =  to N  do 

8:                   
1, ,

( )
k i k i

x Shrink d+ =  

9:          end for 
10: end for 
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For reconstruction strategy 1, we don’t compute TA A  since this is time-consuming. As 

we know, ( )TA Aρ  is equal to the square of the maximum singular value 
max

s  of A , and 
max

s  

is equal to the maximum Eigen value 
max

eig  of the assembled matrix [0, ; ,0]TA A . So we can 

calculate 
max

eig  instead. For each iteration, two matrix-vector multiplications are needed. If 

we ignore the computations for the vector-vector operations (including the Shrink operations) 

and the calculation of 
max

eig , which are relatively cheap in the total reconstruction process, 

the computational complexity of strategy 1 can be represented as 
max

( *2 )O k mn . 

For reconstruction strategy 2, we pre-calculate both TA A  and TA Φ . The computational 

complexity of calculating TA A  is 2( * )O m n . For each iteration, only one matrix-vector 

multiplication is needed. Then, the computational complexity of strategy 2 can be represented 

as 2

max
(( )* )O k m n+ . 

From the above analysis, it is clear that when 
max

k  is not very large, strategy 1 is more 

efficient. For a large 
max

k , especially when 
max

k  is much larger than the dimension of the 

problem, strategy 2 becomes a better choice. 

When 
max

k  is very large, even strategy 2 will be quite time-consuming. Fortunately, if the 

sparsity characteristic of X  is considered, the performance of both strategies can be greatly 

improved. Suppose 
k

X  is sparse with 
k

n  non-zero elements, and 
k

n  is usually far less than 

n . When multiplying 
k

X  by a matrix, the multiplications involving the zero elements in 
k

X  

can be simply ignored. Taking strategy 2 for example, the computational complexity of 

calculating 
k

MX  is 2( )O n . If the sparsity of 
k

X  is considered, only *
k

n n  multiplications 

are needed, which is a small fraction of the original. For strategy 1, the computational 

complexity of calculating 
k

V  can be reduced to ( )
k

O mn . However, 
k

V  is not sparse any 

more. Therefore, computing 
k

D  still needs *m n  multiplications. 

3. Results 

3.1 Simulation verifications 

In this subsection, heterogeneous simulation experiments were conducted to demonstrate the 
performance of the proposed method. Figure 1(a) shows the heterogeneous cylindrical 
phantom we used, which was of 20mm in diameter and 20mm in height. Figure 1(b) is a slice 
image of the phantom in z = 0 plane. The phantom consisted of four kinds of materials to 
represent muscle (M), lung (L), heart (H) and bone (B), respectively. The optical parameters 
can be found in Table 1. The black dots in Fig. 1(b) represent the excitation light sources, 
which were modeled as isotropic point sources located one mean free path of photon transport 
beneath the surface in z = 0 plane. 
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Fig. 1. Mouse-mimicking heterogeneous phantom with four kinds of materials to represent 
muscle (M), lung (L), heart (H) and bone (B), respectively. (a) is the 3D view of the phantom. 
(b) is the slice image of the phantom in z = 0 plane. The black dots in (b) represent the 
excitation point source locations. For each excitation location, fluorescence is measured from 
the opposite cylindrical side with 160° field of view. 

 

Fig. 2. Three different phantom setups for single fluorescent source (left column), double 
fluorescent sources (middle column) and three fluorescent sources (right column), respectively. 
The first row is the 3D views of the phantoms, and the second row is the slice images in z = 0 
plane. All the fluorescent sources are spherical and are centered in z = 0 plane. The diameters 
of these spherical fluorescent sources are all set to be 2mm. 

Table 1. Optical parameters of the heterogeneous phantom [26] 

Material 
1( )

ax
mmµ −

 
1( )

sx
mmµ −′  

1( )
am

mmµ −
 

1( )
sm

mmµ −′  

Muscle 0.0052 1.08 0.0068 1.03 

Lung 0.0133 1.97 0.0203 1.95 

Heart 0.0083 1.01 0.0104 0.99 

Bone 0.0024 1.75 0.0035 1.61 
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As is mentioned, for FMT, the domains of the fluorescent sources are usually very small 
and sparse. Therefore, we used small spheres to represent the fluorescent sources in our 
experiments. Figure 2. shows the three different phantom setups for single source (left 
column), double sources (middle column) and three sources (right column), respectively. The 
first row of Fig. 2 is the 3D views of the phantom setups and the second row is the slice 

images in 0=z  plane. All the fluorescent sources were of 2mm in diameter and were 

centered in 0=z  plane. The fluorescent yields of these sources were set to be 8. These three 

phantom setups were discretized with tetrahedrons. For the forward problem, three fine 
meshes, each with about 23000 degrees of freedom (DOFs), were used for different phantom 
setups. Then the forward solutions were projected onto a single coarse mesh with 2710 DOFs, 
which was used for the inverse problem. Fluorescence measurement was implemented in 
transillumination mode. For each excitation source, measurement was taken from the opposite 
cylindrical side with 160° field of view (FOV), which is illustrated in Fig. 1(b). This means 
that all the nodes on the cylindrical surface within this FOV were considered to be 
measurable. When practical fluorescence measurements are taken using a CCD camera, the 
shot noise always exists, which obeys the Poisson distribution. If large numbers of photons 
are collected, the shot noise will approach a Gaussian distribution. Therefore, for FMT 
reconstructions with simulated data, Gaussian noise is often used to simulate the real case. In 
our simulation experiments, we added 5% Gaussian noise to the measurement data. 

In this paper, L1-norm regularization was utilized. The maximum iteration number 
max

k  

was set to be 30000, which was sufficiently large for these experiments. Since 
max

k  was 

larger than the dimension of the inverse problem, reconstruction strategy 2 was adopted. To 
better illustrate the performance of the proposed method, we compared it to the bound-

constraint Newton method that minimized the original energy function ( )E X  with Tikhonov 

regularization. Since the Newton method is a second-order optimization method, it generally 
converges faster than those first-order ones. Here, we set the maximum iteration number for 
the Newton method to be 300. Regularization parameter generally plays an important role in 
the FMT reconstructions. In this paper, the regularization parameters for the Newton method 
and the proposed method were manually optimized. Finding the optimal or near-optimal 
regularization parameters automatically will be our future work. Both reconstruction 
algorithms were implemented in C++, and all the reconstructions were carried out on a 
personal computer with 2.33GHz Intel Core2 duo CPU and 2GB RAM. 

In the first set of experiments, fluorescence was excited by point sources from 15 different 
locations in sequence, which is illustrated in Fig. 1(b). Measurements were taken every 24° 
and a total of 15 data sets were acquired for the reconstruction of the fluorescent yield. 
Figures 3, 4 and 5 show the reconstruction results for three different phantom setups, which 

are presented in the form of slice images in 0=z  plane and iso-surfaces for 30% of the 

maximum value. The small circles in the slice images denote the real positions of the 
fluorescent sources. From Figs. 3, 4 and 5 we can clearly see that, when only one fluorescent 
source exists, the results from both methods are quite satisfactory. However, when multiple 
sources exist, the over-smooth effect of Tikhonov regularization begins to appear. On the 
contrary, the proposed method can still preserve the sparsity of the sources very well in this 
case, and the reconstructed intensities are greater. To analyze these results quantitatively, we 

define the location error to be 
0 2

|| ||
r

L L− , where 
0

L  is the real location of the source center 

and 
r

L  is the location of the node with the maximum reconstructed value for that source. We 

also define the relative intensity error to be 
0 0

| | /
r

I I I− , where 
0

I  is the true intensity of the 

source and 
r

I  is the maximum reconstructed intensity. The quantitative comparisons between 

these results are presented in Table 2. From Table 2 we can see that, both reconstruction 
methods can obtain satisfactory source localizations. But the relative intensity errors for the 
proposed method are smaller. 
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Next, we compare the running time of the two methods. Since both methods need the pre-

calculation of TA A  and TA Φ , we set the starting point at the time when TA A  and TA Φ  
were just obtained. Then, the running time of the Newton method for three different phantom 
setups was 166.62s, 189.32s and 180.09s, respectively. And the running time of the proposed 
method was 1.16s, 2.11s and 4.46s, respectively. The proposed method is much more 
efficient. 

 

Fig. 3. Reconstruction results from the Newton method (first row) and the iterated shrinkage 
based method (second row) for 1 spherical fluorescent source and 15 measurement data sets. 
These results are presented in the form of slice images in z = 0 plane (left column) and iso-
surfaces for 30% of the maximum value (right column). The small circles in the slice images 
denote the real positions of the fluorescent sources. 

Table 2. Quantitative comparisons between the results from the Newton method with 
Tikhonov regularization (Newton-L2) and the iterated shrinkage based method with L1 

regularization (IS-L1) for 15 measurement sets 

Phantom 
setup 

Source 
No. 

Location 
error (mm) 

(Newton-L2) 

Location 
error (mm) 

(IS-L1) 

Relative intensity 
error (Newton-L2) 

Relative intensity 
error (IS-L1) 

1 source S 0.39 0.39 44.5% 38.2% 

2 sources 
S1 0.39 0.39 70.0% 45.3% 

S2 0.85 0.85 75.9% 66.4% 

3 sources 

S1 0.25 0.25 74.4% 33.0% 

S2 0.97 0.97 75.3% 63.4% 

S3 0.73 0.73 71.8% 63.8% 
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Fig. 4. Reconstruction results from the Newton method (first row) and the iterated shrinkage 
based method (second row) for 2 spherical fluorescent sources and 15 measurement data sets. 
These results are presented in the form of slice images in z = 0 plane (left column) and iso-
surfaces for 30% of the maximum value (right column). The small circles in the slice images 
denote the real positions of the fluorescent sources. 

 

Fig. 5. Reconstruction results from the Newton method (first row) and the iterated shrinkage 
based method (second row) for 3 spherical fluorescent sources and 15 measurement data sets. 
These results are presented in the form of slice images in z = 0 plane (left column) and iso-
surfaces for 30% of the maximum value (right column). The small circles in the slice images 
denote the real positions of the fluorescent sources. 

In the second set of experiments, we reduced the amount of measurement data to simulate 
a much worse case. This is possible when long-time measurement is not appropriate or 
feasible. For instance, when imaging small animals like mice, the artifacts caused by 
movements must be taken into consideration. Besides, long-time measurement can cause the 
bleaching effect of the fluorescent probe, which may influence the reconstructed results. One 
way to resolve these problems is to reduce the number of fluorescence measurements. This 
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requires that we should be able to reconstruct the fluorescent sources from very limited data. 
It has been shown for bioluminescence tomography that, by using sparsity constraint, 
satisfactory results can still be achievable even with very limited imaging data [8]. Here, we 
only retained the measurement data sets generated by excitation point source 1, 6 and 11. 
Figures 6, 7 and 8 show the reconstruction results in this case. From these figures we can see 
that, when the measurement data is very limited and multiple fluorescent sources exist, the 
proposed method can obtain much better results compared to the Newton method with 
Tikhonov regularization. This demonstrates the applicability of the proposed method under 
more ill-posed conditions. Quantitative comparisons are presented in Table 3. For the Newton 
method, the reconstruction errors for source S1 and S2 in the third phantom setup are not 
presented, because the two sources cannot be separated in the result. The running time of the 
Newton method for three different phantom setups was 183.98s, 173.91s and 168.02s, 
respectively. And the running time of the proposed method was 1.84s, 2.97s and 2.42s, 
respectively. 

 

Fig. 6. Reconstruction results from the Newton method (first row) and the iterated shrinkage 
based method (second row) for 1 spherical fluorescent source and 3 measurement data sets. 
These results are presented in the form of slice images in z = 0 plane (left column) and iso-
surfaces for 30% of the maximum value (right column). The small circles in the slice images 
denote the real positions of the fluorescent sources. 

Table 3. Quantitative comparisons between the results from the Newton method with 
Tikhonov regularization (Newton-L2) and the iterated shrinkage based method with L1 

regularization (IS-L1) for 3 measurement sets 

Phantom 
setup 

Source 
No. 

Location 
error (mm) 

(Newton-L2) 

Location 
error (mm) 

(IS-L1) 

Relative intensity 
error (Newton-L2) 

Relative intensity 
error (IS-L1) 

1 source S 0.39 0.39 53.5% 68.9% 

2 sources 
S1 2.00 1.62 91.4% 71.4% 

S2 0.85 0.85 84.4% 64.0% 

3 sources 

S1 —— 0.25 —— 29.3% 

S2 —— 0.97 —— 56.3% 

S3 0.73 0.73 87.0% 60.2% 
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Fig. 7. Reconstruction results from the Newton method (first row) and the iterated shrinkage 
based method (second row) for 2 spherical fluorescent sources and 3 measurement data sets. 
These results are presented in the form of slice images in z = 0 plane (left column) and iso-
surfaces for 30% of the maximum value (right column). The small circles in the slice images 
denote the real positions of the fluorescent sources. 

 

Fig. 8. Reconstruction results from the Newton method (first row) and the iterated shrinkage 
based method (second row) for 3 spherical fluorescent sources and 3 measurement data sets. 
These results are presented in the form of slice images in z = 0 plane (left column) and iso-
surfaces for 30% of the maximum value (right column). The small circles in the slice images 
denote the real positions of the fluorescent sources. 
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3.2 Physical experiments 

In this subsection, physical experiments were conducted to further test the proposed 
algorithm. Figure 9 illustrates the experimental setup. Excitation illumination was provided 
by a 671nm CW laser and the power was set to 20mW. The spot diameter of the laser beam 
was approximately 1mm. The fluorescence measurements were implemented in 
transillumination mode. A 10nm band-pass filter centered at 700nm was used to allow light 
transmission at the emission wave-length. The optical density of the filter at the excitation 
wave-length was larger than 5. Fluorescence was captured by a CCD camera (Princeton 

Instruments VersArray 1300B, Roper Scientific, Trenton, NJ) which was cooled to −110°C. 

To reconstruct the sources, the pixels of the measured fluorescence image should firstly be 
converted into the corresponding photon flux densities. Then, the calibrated image needs to 
be back-projected onto the surface of the phantom. Errors can be introduced during the 
mapping procedure. To avoid this problem and to test only the performance of the proposed 
reconstruction method, a cubic phantom was utilized in this experiment, and the back-
projection was reduced to a point-to-point mapping. Figure 10(a) shows the phantom we 
used. The side length is 20mm. The phantom is made from polyoxymethylene, and the optical 
parameters for both excitation and emission wave-lengths, which are presented in Table 4, 
were determined by diffuse optical tomography. The sparsity-promoting characteristic of the 
proposed method can be better demonstrated when more than one source exists, which can be 
seen from our simulation results. Therefore, in this experiment, two small holes of 1.25mm in 
radius were drilled to allow two fluorescent sources. 2000nM Cy5.5 solution was used as the 
fluorescent source. The height of the two cylindrical sources was 2mm, and the centers were 

at (−3.75mm, 3.75mm, 1mm) and (3.75mm, −3.75mm, 1mm) respectively, which is 
illustrated in Fig. 10(b). To simulate a badly ill-posed situation, fluorescence was excited by 

point sources from only 4 different locations in 0=z  plane, which is illustrated in Fig. 10(c). 

The phantom was placed on a rotational stage, which was controlled by computer, to allow 
measurements from four sides. 

 

Fig. 9. The sketch of the experimental setup. 

Table 4. Optical parameters of the cubic phantom 

Wave-length (nm) 
1( )

a
mmµ −

 
1( )

s
mmµ −′  

671 0.00029 1.08 

700 0.00051 1.11 
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Fig. 10. The homogeneous cubic phantom with 2 cylindrical fluorescent sources. (a) is the 
photograph of the phantom. (b) is the 3D view of the phantom and the sources. (c) is the slice 
image of the phantom in z = 0 plane. The black dots in (c) represent the excitation point source 
locations. 

In this experiment, the cubic phantom was discretized with tetrahedrons. For the forward 
problem, a fine mesh with about 21000 DOFs was adopted. And a coarse mesh with 2705 
DOFs was used for the inverse problem. Figure 11 shows the reconstruction results which are 

presented in the form of slice images in 1mm=z  plane and iso-surfaces for 30% of the 

maximum value. From Fig. 11 we can clearly see that, due to the badly ill-posed situation and 
the over-smooth effect of Tikhonov regularization, the reconstructed fluorescent sources from 
the Newton method are spread within the entire domain, which makes result totally 
meaningless. The location errors are not presented for the Newton method, because the source 
locations cannot be identified from the result. On the contrary, the proposed method with L1 
regularization can preserve the sparsity of the fluorescent sources very well, though some 
artifacts exist near the center. The location errors for the fluorescent sources S1 and S2 were 
1.21mm and 0.82mm, respectively. The running time of the Newton method and the proposed 
method was 135.91 seconds and 2.56 seconds, respectively. 

 

Fig. 11. Reconstruction results of the cubic phantom from the Newton method (first row) and 
the iterated shrinkage based method (second row) using 4 measurement data sets. These results 
are presented in the form of slice images in z = 1mm plane (left column) and iso-surfaces for 
30% of the maximum value (right column). The small circles in the slice images denote the 
real positions of the fluorescent sources. 
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4. Conclusion 

In this paper, an iterated shrinkage based reconstruction algorithm is proposed. By integrating 
an additional surrogate function, the original high dimensional optimization problem can be 
decoupled into a set of one dimensional ones that can be solved easily. This also enables us to 
incorporate sparsity regularization in a graceful way. Two reconstruction strategies are 
provided for different situations together with their complexity analysis. Besides, we explain 
that due to the sparsity characteristic of the fluorescent sources, the efficiency of the 
algorithm can be greatly improved, which leads to a fast reconstruction method. Simulation 
verifications show that the proposed method outperforms the traditional bound-constrained 
Newton method with Tikhonov regularization in two ways. First, due to the sparsity 
constraint of our method, obvious improvements can be seen from these reconstruction 
results. Second, our method is much faster than the Newton method when the fluorescent 
sources are sparse. This is important if we want to transfer FMT into practical use. We also 
test our method under a more ill-posed condition and satisfactory results can still be 
achievable. Reconstruction of experimental data further demonstrates the performance of the 
proposed method. 

For FMT reconstruction, the choice of the regularization parameter will have a significant 
impact on the results. A large parameter value can make the reconstructed solution deviate 
from the real distribution, while a small value will have little contribution to the 
regularization of the problem. Finding the optimal or near-optimal regularization parameter 
automatically still remains a challenging task. Generally speaking, two strategies can be used: 
determine the parameter in advance or update it heuristically. This will be our future research. 

Another important issue lies in the accuracy of the photon propagation model itself. The 
diffuse equation has been extensively utilized to describe light transport in biological tissue, 
yet it is not applicable in certain regions, such as void or more absorptive regions. Several 
improved models, e.g. higher order approximation to radiative transfer equation, have been 
proposed to resolve the problem, though more computations are typically needed and the 
physical meanings are not such explicit. Since FMT reconstruction is a linear inverse problem 
in nature, the proposed reconstruction algorithm can potentially be utilized in these improved 
models. 

In conclusion, we have developed a fast reconstruction algorithm with sparsity constraint 
for FMT. Numerical simulations and physical experiments show the merits of our method 
compared to the Newton method with Tikhonov regularization. In vivo mouse studies using 
the proposed method will be reported in the future. 
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