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Abstract—Even for deep neural networks, it is still a chal-
lenging task to indiscriminately model thousands of fine-grained
senones only by one model. Ensemble learning is a well-known
technique that is capable of concentrating the strengths of differ-
ent models to facilitate the complex task. In addition, the phones
may be spontaneously aggregated into several clusters due to
the intuitive perceptual properties of speech, such as vowels and
consonants. However, a typical ensemble learning scheme usually
trains each submodular independently and doesn’t explicitly
consider the internal relation of data, which is hardly expected to
improve the classification performance of fine-grained senones.
In this paper, we use a novel training schedule for DNN-based
ensemble acoustic model. In the proposed training schedule, all
submodels are jointly trained to cooperatively optimize the loss
objective by a Stochastic Multiple Choice Learning approach.
It results in that different submodels have specialty capacities
for modeling senones with different properties. Systematic ex-
periments show that the proposed model is competitive with
the dominant DNN-based acoustic models in the TIMIT and
THCHS-30 recognition tasks.

Index Terms—Stochastic Multiple Choice Learning, acoustic
modeling, automatic speech recognition, ensemble learning

I. INTRODUCTION

Acoustic model is the key component of the hybrid auto-
matic speech recognition (ASR) system. It is used to compute
the posterior probabilities over HMM states. A large vocab-
ulary continuous speech recognition system generally needs
to model thousands of fine-grained senones, which requires
the strong acoustic modeling capability. At present, deep
learning techniques have dominated the acoustic modeling
fields. Many deep models, including deep neural networks
(DNNs) [1] [2], convolutional neural networks (CNNs) [3]
[4] and recurrent neural networks (RNNs) [5] [6] have widely
been applied into acoustic modeling and achieved significant
performance improvement. In addition, many novel variants,
such as highway long short-term memory RNN [7] and
residual LSTM [8], are developed in order to further promote
the acoustic modeling capabilities. With the increasing depth
and complicating architecture of the network, the modeling
capability is constantly growing. But even so, it is still a
challenging task to indiscriminately model thousands of fine-
grained senones only by a single model. Moreover, it’s hard
to train very deep and complicated networks in practice [9].

In fact, the speech phones may be spontaneously aggregated
into several clusters due to the intuitive perceptual properties

of speech, such as vowels and consonants. It can be expect-
ed to improve the classification performance of fine-grained
senones by an ensemble of acoustic models, in which different
submodels have specialty capacities for modeling senones with
different properties.

Ensemble learning is a well-known technique that is capable
of concentrating the strength of different models to facilitate
the complex task. It has attracted more and more attentions
of speech recognition community [10] [11] [12] [13]. For
instance, Microsoft latest speech recognition system uses the
combination of various convolutional and LSTM acoustic
models and reaches human parity on the Switchboard corpus
[14]. However, these ensemble schemes usually train each
submodule independently and don’t explicitly consider the in-
ternal relation of data. It can be expected to further improve the
classification performance of fine-grained senones by mining
the underlying distribution of data. Kirchoff and Bilmes [15]
discuss the problem of acoustic model combination, using
a soft version of the “min” function which is differentiable
and can thus be jointly backpropagated through the entire
ensemble. But this technique needs to backpropagate for all
submodules of the ensemble during training, which is time
consume and not applicable to the large acoustic models.

In this paper, we use a novel training schedule for DNN-
based ensemble acoustic model. In the proposed training
schedule, all submodels are jointly trained to cooperatively
optimize the loss objective by a Stochastic Multiple Choice
Learning (SMCL) approach. Compared with boosting methods
that train each submodel of ensemble sequentially by data re-
sampling [16], SMCL trains all ensemble members concurrent-
ly and is time efficient. It results in that different submodels
have specialty capacities for modeling senones with different
properties.

The rest of this paper is organized as follows: the related
work is discussed in Section II. We present the Stochastic
Multiple Choice Learning for acoustic modeling in Section III.
In Section IV, we demonstrate the effectiveness of the SMCL
method. Finally, we draw conclusions and discuss future work
in Section V.

II. RELATED WORK

Ensemble learning focuses on diversity between submodules
and expects to combine the benefits of both various model



architectures and different input features. Moreover, submod-
els can be trained complementarily by re-sampling data [17],
negative correlation learning [18] and Adaboost [19], but
these iterative methods that require costly retraining aren’t
applicable to the DNN-based acoustic models. In addition, [15]
uses a soft version of the “min” function which can be jointly
backpropagated through the entire ensemble. [21] describes
a system composed of several different expert networks plus
a gating network that decides which of the experts should
be used for each training case. [22] extends the mixture of
experts to a stacked model with multiple sets of gating and
experts. However, these techniques need to backpropagate for
all submodules of the ensemble during training, which is time
consume. In practice, various acoustic models are combined
for score fusion [20] [23], which obtain WER improvements.

There is a large amount of work on the topic of extracting
multiple diverse solutions from a single model [24] [25] [26].
The Multiple Choice Learning (MCL) scheme is formalized
in [27], which explicitly minimizes the joint loss over the
outputs of an ensemble. [28] presents a max-margin formu-
lation in which ensemble members are learned sequentially
like k-means method to minimize an upper-bound on the loss
function. [29] introduces a stochastic gradient descent based
algorithm to train ensemble members concurrently.

III. STOCHASTIC MULTIPLE CHOICE LEARNING FOR
ACOUSTIC MODELING

In this section, we briefly describe the training process of the
ensemble learning. In addition, we elaborate the technology
of stochastic multiple choice learning for acoustic modeling,
consisting of the joint loss formulation and training algorithm.

A. Ensemble Learning for acoustic modeling

Various neural networks for acoustic modeling are usually
trained by optimizing the cross entropy (CE) objective func-
tion,

leg = —ZlogP(sﬂwi7§>) (1)
i
where s; are the state-level forced alignment targets, x; are
the input features, ¢ is frame index, and ® is the model. The
models can then be trained by sequence training method with
either the Maximum Mutual Information (MMI) criterion,
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or the Minimum Bayes Risk (MBR) criterion,
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where u is the utterance index, w,, are the sentence hypotheses
space, w, are the corresponding correct hypotheses, and
A(w,,w?) is a loss function between w,, and w;.

Each submodule in the ensemble acoustic model is trained
at frame or sequence level. After each submodule is well-
trained independently, the frame-level combination used is the

weighted average of the frame posteriors, which is illustrated
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Fig. 1. Comparison of ensemble learning and stochastic multiple
choice learning. (a)structure of ensemble learning; (b)structure of
stochastic multiple choice learning.

in the Fig. 1(a). The bottom of the Fig. 1(a) represents
the training process where each submodule has its own loss
function and the red curve at the top is the weighted average
score fusion for decoding,
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where s,,, are the m*"* submodel outputs, M is the ensemble
size, f (-) presents linear or log-linear function, and «,, are
the ensemble mixture weights, such that " «,, = 1 and
Q= 0.

B. Stochastic Multiple Choice Learning for Acoustic Modeling

For acoustic modeling, we consider training an ensemble of
neural networks to together produce a set of outputs with the
minimal joint loss.

Given inputs x; € X and alignment targets s} € S, our goal
is to learn a function h : X — S™ which maps each input
to M outputs. We fix the form of h to be an ensemble of M
models f such that h(x) = (f1 (&), fo(x),-- -, far (x)). For
acoustic modeling, loss ¢ (s*, s) measures the error between
true and predicted outputs s* and s. And we define the joint
loss of h as

Lo =)  min (s}, fm(zi)) )
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In order to directly minimize the loss for an ensemble of
learners, [27] present a max-margin formulation that mini-
mizes an upper-bound on loss function (5). This objective
replaces the min in the joint loss with flag variables (p; m),,_,



where p; ,, is 1 if model m has the smallest error on sample
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[27] also propose the block-coordinate descent algorithm
where parameters of model and {p; ., } are optimized iterative-
ly. However, this algorithm requires retraining models multiple
times and is not applicable to neural networks, because it is
time-consuming to train a deep model once. To overcome
this shortcoming, [29] propose a stochastic algorithm for
differentiable models which alternates the assignment step
with batch updates in stochastic gradient descent. Consider
the partial derivative of the objective in (6) with respect to the
output of the m*” single model on sample z;,
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Notice that if model f,, has the minimum error for example
x;, then p;,, = 1, and the progress of gradient back-
propagation is the same as training a single model; otherwise,
the gradient is zero. This behavior applies to a straightforward
optimization strategy for models trained by stochastic gradient
descent(SGD). The structure of this algorithm is shown in the
Fig. 1(b). Comparing with conventional ensemble method, this
algorithm can be trained under a joint loss. For each batch,
we pass the samples through the models and calculate losses
from each submodel for each sample. During the backward
propagation, according to the ‘pick-one-model’ constraint, the
gradient of the loss for each sample is back-propagated only to
the model that has the lowest error. The black dashed line of
the Fig. 1(b) means no gradient backward propagation for the
submodel that isn’t selected, which decreases the computation
cost.

Equation (6) can be generalized by loosening the constraints
with ‘pick-k-model’, i.e. ng:l pi.m = k, where k is a robust
parameter that controls data overlap between models. The
forward propagation is unchanged and the loss gradient is
back-propagated to the top k best models. If £ = M, all
models learn the same function, which is the same as the
traditional ensemble method. And we analyze the effect of
k in our experiments.

This approach called Stochastic Multiple Choice Learning
(SMCL) is shown in algorithm 1. SMCL is applicable to
a broad range of complicated neural networks by stochastic
gradient descent. Unlike the iterative training method that [27]
propose, ensemble models can be trained concurrently by SM-
CL. We perform calculating losses at the most straightforward
frame level. Nevertheless, training ensemble models by SMCL
at the fullsequence level is considerably more complex and
will not be discussed in this paper.

Algorithm 1 SMCL method
Input: Dataset ; € X, s} € S, randomly initialized deep
models fy (x), -, far (x) parameterized by 01, -+ , 05,
Output: Ensemble of M learned models f1 (x), -+, far ()
1: repeat
2:  mini-batches B
for m =1to M do
// forward propagation
Sm,1," " 78m,B — fm(B)
for i =1 to | B| do
// select k lowest error model per example
mi_, < arg mingnfk[l"” My (s, Sm.i)
// backward propagation
10: GmINk = GmINk — )\ﬁémhwi/aem»{w
11: end for
12:  end for
13: until convergence
14: return fi (x),- -
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IV. EXPERIMENTS
A. Datasets and setup

We systemically evaluate the Stochastic Multiple Choice
Learning for acoustic modeling on the TIMIT [30] and
THCHS-30 Mandarin Chinese corpus [31], which is realized
by the Kaldi speech recognition toolkit [32].

For TIMIT corpus, the standard 462-speaker training set is
used and a separate validation set from 50 speakers’ data is
used for early stopping. Results are reported using the 24-
speaker core test set. The THCHS-30 corpus is collected and
transcribed by the center for speech and language technolo-
gies(CSLT) at Tsinghua University, which contains more than
30 hours speech, including 10893 utterances in the training
set and 2496 utterances in the test set, respectively. And 90%
of the training set is used for training acoustic models and the
remaining for validation.

In following experiments, we take the 40-dimensional filter-
banks as the input features, and each dimension of features
is normalized to have zero mean and unit variance over the
training set. To capture temporal information, 11 frames of
context features were concatenated as the final inputs. The
frame-level targets required in training comes from a well-
trained Gaussian Mixture Model (GMM-HMM) system. After
state clustering, the neural network for TIMIT and THCHS-30
have 1969 and 3480 targets respectively.

B. Models

In all experiments, Deep Neural Networks (DNNs) are used
for acoustic modeling. We don’t use any explicit methods
to make the ensemble models diverse during training ex-
cept for using different random seeds for the DNNs weight
initializations, which is sufficient to demonstrate the SMCL
training method. All DNNs are first initialized with layer-wise
discriminative pretraining [33]. The initial weight values were
drawn uniformly from the interval [-0.02, 0.02]. Nonlinear



activation function used is Rectifier Linear Unit (ReLU) [34].
The learning rate is reduced by half with an initial value
of 1.0e-04 when the performance of validation set becomes
Wworse.

The baseline system is classical ensemble in which each
model is trained independently with different weight ini-
tializations. The combined frame posterior probabilities are
calculated according to (4) and we set o, = ﬁ, where M is
the ensemble size. Then the results are passed up to the HMMs
as observation likelihoods, and used with standard decoding.
We will refer to these as classical methods.

The proposed acoustic model is trained with the CE criterion
at the first few epochs, getting the better initial points, then
fine-tuned concurrently using SMCL training method. “6L-
1024H” means a DNN which has 6 hidden layers with 1024
neurons in each layer. At the test time, we set a according to
(8) for weighted average,

M
o = "0m) 7 P ®)

m/=1
where P(y,,) represents the prediction accuracy of the myp

model maximum output in the development set and the de-
nominator is the normalization factor.

C. Results

TABLE 1
PER (%) ON TIMIT. ‘SINGLE’ HAS ONE DNN. ‘ENSEM-N’ MEANS AN
ENSEMBLE OF N DNNS. ‘NP’ IS THE NUMBER OF PARAMETERS.
‘6L-1024H’ DENOTES THE MODEL HAS 6 HIDDEN LAYERS WITH 1024
NEURONS IN EACH LAYER. ‘CLASSICAL’ AND ‘SMCL’ REPRESENTS
TRAINING BY CLASSICAL ENSEMBLE LEARNING AND SMCL

RESPECTIVELY.
Model Architecture NP Classical SMCL
Single 6L-1024H 7.72M 19.97 19.97
Ensem-2 6L-1024H 15.44M 18.50 17.51
Ensem-3 6L-1024H 23.16M 18.10 17.08
Ensem-4 6L-1024H 30.88M 17.33 16.97
Ensem-4 6L-512H 7.72M 18.24 17.31
TABLE 11

WER (%) oN THCHS-30. ‘SINGLE’ HAS ONE DNN. ‘ENSEM-N’ MEANS
AN ENSEMBLE OF N DNNS.

Model Architecture NP Classical SMCL
Single 6L-1024H 10.17M 23.56 23.56
Ensem-2 6L-1024H 20.34M 23.27 23.08
Ensem-3 6L-1024H 30.51M 23.06 22.80
Ensem-4 6L-1024H 40.68M 22.68 22.59
Ensem-4 6L-512H 10.17M 23.18 22.89

We compare the classical and SMCL ensembles in different
ensemble sizes and the experiment results on the TIMIT task
are shown in Table I and THCHS-30 in Table II. With the
ensemble size increasing, both classical and SMCL ensembles
obtain performance improvement, which can demonstrate that

initializing each DNN with a different random seed is still able
to provide combination gains. And SMCL training method
for acoustic modeling outperforms classical ensemble learning
at different ensemble size. Note that 4 DNNs ensemble of
‘6L-512H° has the same number of model parameters as
the single model of ‘6L-1024H’, and obtains relative 6-8%
performance improvement. The acoustic model trained by
SMCL can achieve performance improvement by mining the
underlying distribution of speech data rather than relying on
increasing the model parameters.
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Fig. 2. Frame accuracy and loss during training for SMCL and
classical ensembles on TIMIT. ‘Classical’ and ‘SMCL’ represents
training by classical ensemble learning and SMCL respectively.

In order to further make a comparison of training process
between SMCL and classical ensemble learning, we analyze
the loss and frame accuracy during training in the TIMIT
recognition task. Fig. 2(a) shows that the ensembles trained
by SMCL result in higher frame accuracy than the classical
ensembles. The ensembles trained by SMCL optimize for the
joint cross-entropy losses directly, not only arriving at lower
loss solutions but also reducing errors more quickly, which is
shown in Fig. 2(b). Compared with the improvement obtained
in the frame accuracy and loss, the PER/WER improvement is
relatively smaller. The acoustic model is the submodule in the
ASR task and it is the key for the further speech recognition
performance improvement to exploite potentialities of the
acoustic models trained by SMCL in the following decoding.

We select 10 classes randomly from 1969 neural network
outputs of TIMIT and explore class-wise distribution of the
validation set frames assigned to the lowest error model.
When the acoustic model is trained by SMCL, the label-
space clustering is shown in Fig. 3(a). Most models become
experts at classifying certain classes and these assignments
don’t rely on manual adjustments or pre-initialization in any
case, which automatically appear after training by SMCL.
In contrast, Fig. 3(d) shows that the class assignments for
a standard ensemble are nearly uniform. The level of class
division can demonstrate the hypothesis that the phones may
be spontaneously aggregated into several clusters due to the
intuitive perceptual properties of speech. The phonetics knowl-
edge may help us make better class clustering but it’s uncertain
whether the manual adjustments could reveal the underlying
distribution of the speech data. For the generalization of (6) by
changing the constraints to “pick-k-model”, we also research
the effect of k. By varying k between 1 and the number of
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41.77% 0.00% | 30.80% 27.43% 20.22% 17.98% 23.60% 38.20%
32.92% 0.00% 15.53% 16.77% 27.95% 33.54% 21.74%
26.17% 3. 74% [AONTI9% 29.91% 19. 63% | 37.38% 24.30% 18.69%
26.92% 17.31% 0. 00% 30.77% 27.88% 18.27% 23.08%
32.20% 28.81% 27.12% 11.86% 30.51% 27.12% 25.42% 16.95%
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Fig. 3. ‘s0-s9” represent 10 different tied states that are selected

randomly from 1969 neural network outputs on TIMIT experiment.
k is a parameter that controls the number of models each example
can be assigned to during training. (a-d) show the assignment of
validation set examples for various k between 1 and the number of
ensemble size M.

ensemble size M, the models transition from minimizing the
joint loss at £ = 1 to a standard ensemble learning at kK = M.
Fig. 3 shows these results and model trained by SMCL with
k =1 gets the highest frame accuracy.

V. CONCLUSIONS

In this paper, we propose a novel training schedule for
DNN-based ensemble acoustic model. In the proposed training
schedule, all submodels are jointly trained to cooperatively
optimize the loss objective by a Stochastic Multiple Choice
Learning approach. It results in that different submodels
have specialty capacities for modeling senones with different
properties. Systematic experiments show that the proposed
model is competitive with the dominated DNN-based acoustic
models. The future work will perform Stochastic Multiple
Choice Learning for acoustic modeling at the full-sequence
level.
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