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a b s t r a c t 

The fast development of social media fuels massive spreading of misinformation, which 

harm information security at an increasingly severe degree. It is urgent to achieve misin- 

formation identification and early detection in social media. However, two main difficulties 

hinder the identification of misinformation. First, an event about a piece of suspicious news 

usually comprises massive microblog posts (hereinafter referred to as post), and it is hard 

to directly model the event with massive-volume posts. Second, information in social me- 

dia is of high noise , i.e., most posts about an event have little contribution to misinforma- 

tion identification. To resolve the difficulty of massive volume, we propose an Event2vec 

module to learn distributed representations of events in social media. To overcome the 

difficulty of high noise, we mine significant posts via content and temporal co-attention, 

which learn importance weights for content and temporal information of events. In this 

paper, we propose an Attention-based Convolutional Approach for Misinformation Identi- 

fication (ACAMI) model. The Event2vec module and the co-attention contribute to learn- 

ing a good representation of an event. Then the Convolutional Neural Network (CNN) can 

flexibly extract key features scattered among an input sequence and shape high-level in- 

teractions among significant features, which help effectively identify misinformation and 

achieve practical early detection. Experimental results on two typical datasets validate the 

effectiveness of the ACAMI model on misinformation identification and early detection 

tasks. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

owadays, social media, such as Facebook and Twitter, enable 
ncreasingly easy access and extensive applications for users.
n the one hand, users can enjoy convenient lives and easy 
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ccess to information anytime anywhere with the help of so- 
ial media. On the other hand, social media provides fertile 
reeding ground for misinformation dissemination. Accord- 

ng to statistics of Facebook (the most popular social network 
orldwide), there are more than 2 billion monthly active users 
nd 23% of users say to have shared misinformation either 
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knowingly or not.1 Social media will amplify harm of misin-
formation via wide propagation, which will likely harm in-
formation security, mislead public opinion, impact political
election 

2 and further pose huge threat to public security and
social stability. Moreover, a feasible solution to preventing the
spread of misinformation is to detect misinformation at an
early stage and launch directed and effective counter cam-
paigns ( Kumar and Geethakumari, 2014 ). Therefore, it is more
and more urgent to identify misinformation from a mass of
social media information and detect misinformation as early
as possible. 

The tasks in this work are misinformation identification
and early detection, both of which identify an event in social
media as misinformation or true information. Here an event
is about a piece of news propagating in social media, such
as “Ballistic missile threat inbound to hawaii”.3 Moreover, an
event usually comprises many posts including postings, re-
postings and comments. To be specific, the task of misinfor-
mation identification is to detect whether an event is misin-
formation or not by analyzing a sequence of posts of the event,
and the task of early detection is to identify misinformation
or true information only using partial posts of the early stage
of an event. 

To identify misinformation, some conventional models
have been proposed based on handcrafted features, which
are extracted from user credibility and post content at a post
level ( Castillo et al., 2011; Gupta et al., 2013; Qazvinian et al.,
2011 ), at an event level ( Kwon et al., 2013; Ma et al., 2015;
Zhao et al., 2015 ) or aggregating from the post level to the
event level ( Jin et al., 2014 ). Some other works adopt more ef-
fective handcrafted features, such as conflict viewpoints ( Jin
et al., 2016 ), temporal properties ( Kwon et al., 2013; Ma et al.,
2015 ), users’ replies ( Giudice, 2010; Rieh et al., 2014 ) and sig-
nals tweets containing skepticism ( Zhao et al., 2015 ). However,
handcrafted features may not cover potentially informative
features in dynamic and complicated social media scenarios.
What’s worse, a rough mergence of different handcrafted fea-
tures cannot shape high-level interactions among significant
features. Lastly, these feature engineering methods are also
labor-intensive for so many designs. 

However, events in social media contain massive-volume
and high-noise posts, which need suitable remedy. The mas-
sive number of posts of an event is up to tens of thousands.
What’s worse, misinformation with massive posts means se-
vere influence and damage. To resolve the difficulty of mas-
sive volume, we propose an Event2vec module to learn dis-
tributed representations of events in social media. Moreover,
information in social media is of high noise, i.e., most posts
about an event have little contribution to misinformation
identification. So, some significant information for misinfor-
mation identification may be easily drowned in the high noise
posts. To overcome the difficulty of high noise, we incorpo-
rate attention mechanism into the Event2vec module. Then
we can mine significant posts to obtain better representations
1 http://www.journalism.org/2016/12/15/many-americans- 
believe- fake- news- is- sowing- confusion/ . 

2 http://www.npr.org/2016/11/08/500686320/did- social- media- 
ruin- election- 2016 . 

3 https://www.nytimes.com/2018/01/13/us/hawaii-missile.html . 

 

 

 

 

 

of events. Specifically, we propose content and temporal co-
attention, which learn importance weights for content and
temporal information of events. 

The Event2vec module and the co-attention contribute to
learning a good representation of an event. To mine key fea-
tures from the event representation, deep neural network
(DNN) is a good choice. A RNN-based Rumor Detector (RRD)
( Ma et al., 2016 ) treats text content of posts in an event as a
variable-length time series, which can capture the dynamic
temporal characteristic during the diffusion process. But a
popular event may comprise tens of thousands of posts, back
propagation through a great number of time steps of RNN will
be computationally ineffective and costly, so RRD only use par-
tial posts from continuous intervals. Thus RRD cannot get sta-
ble performance of misinformation identification and practi-
cal early detection. 

On the one hand, shortcomings of above-mentioned
feature-engineering-based and RNN-based methods should
be remedied, if we want to further reduce harm of widespread
misinformation. On the other hand, some recent studies about
CNN architecture have successfully modeled significant se-
mantic features in varieties of fields, e.g., CNN based ap-
proaches to speech recognition ( Abdel-Hamid et al., 2012 ),
semantic analysis ( Kalchbrenner et al., 2014 ), click-through
rate prediction ( Liu et al., 2015 ), semantic segmentation ( Zhao
et al., 2017 ) and reinforcement learning tasks ( Tamar et al.,
2016 ). Different from feature engineering, CNN cannot only
automatically extract local-global significant features from an
input instance but also reveal those high-level interactions.
Unlike unchangeably propagating sequential characteristics
of RNN, the convolutional architecture and k -max pooling
operation in CNN can flexibly extract key features scattered
among an input sequence. 

In this paper, we propose an ACAMI model for misinfor-
mation identification and early detection tasks. The CNN in
ACAMI can automatically extract local-global significant fea-
tures from an input instance and reveal those high-level inter-
actions, so the ACAMI model can flexibly extract key features
scattered among one input sequence. We obtain some obser-
vations from visualization experiments of what the ACAMI
model has learnt, which help better understand human be-
haviors in social media and more exactly shape real-world so-
cial media scenarios for misinformation identification. 

The main contributions of this work are as follows: 

• We propose a new end-to-end trainable pipeline for mis-
information identification, which consists of (1) an unsu-
pervised Event2vec to learn distributed representations of
events in social media and (2) convolution networks to au-
tomatically obtain key features from distributed represen-
tations of both misinformation and true information. 

• We are the first to apply content attention and temporal
attention to the task of misinformation identification and
early detection, which contributes to learning key content
and temporal information for each post. 

• We demonstrate the robustness of the ACAMI model
against massive volume and high noise in misinforma-
tion identification and visualize what the proposed model
has learnt. Experiments conducted on two typical datasets
show that the ACAMI model outperforms the state-of-

http://www.journalism.org/2016/12/15/many-americans-believe-fake-news-is-sowing-confusion/
http://www.npr.org/2016/11/08/500686320/did-social-media-ruin-election-2016
https://www.nytimes.com/2018/01/13/us/hawaii-missile.html
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the-art methods in both misinformation identification and 

early detection. 

The rest of the paper is organized as follows. In Section 2 ,
e review related work and methods of misinformation iden- 

ification and early detection. Section 3 presents some analy- 
es of the two adopted datasets. Section 4 details the proposed 

odel. In Section 5 , we conduct experiments on two typical 
atasets and compare with several state-of-the-art methods.
ection 6 concludes the paper and discusses future work. 

. Related work 

n this section, we review some related works on misinforma- 
ion identification and early detection. We also introduce re- 
ated methods of attention mechanism, distributed represen- 
ations and convolutional neural network. 

.1. Misinformation identification and early detection 

ecently, many methods have been put forward for automatic 
dentification of misinformation. The work of Kumar et al.
2016b) analyzes impact and characteristics of hoax articles in 

ikipedia and proposes an efficient method to identify these 
ikipedia hoaxes. The work of Wu and Liu (2018) traces mis- 

nformation in social media by their propagating characteris- 
ics. In social media, some researchers identify misinforma- 
ion at the post level ( Castillo et al., 2011; Qazvinian et al.,
011 ), i.e., classifying a single post as being credible or not 
ased on tweet-based features. Some perform a characteri- 
ation analysis for the spread of fake images of posts during 
risis events ( Gupta et al., 2013 ). Some identify whether an 

vent belongs to misinformation or true information and ex- 
ract handcrafted features from the event level ( Kwon et al.,
013; Ma et al., 2015; Zhao et al., 2015 ). Another work ob- 
ains credibility of a post and then aggregates credibility to 
he event level ( Jin et al., 2014 ). Moreover, some other works 
xtract more effective handcrafted features. For instance, the 
ork of Jin et al. (2016) and Wu et al. (2017) takes advantage 
f “wisdom of crowds” to identify fake news, i.e., mining op- 
osing voices from conflicting viewpoints. Based on the time 
eries of misinformationâs lifecycle, the temporal characteris- 
ics of social context information are captured in Kwon et al.
2013) and Ma et al. (2015) . The work of Giudice (2010) and 

ieh et al. (2014) investigates the web page credibility through 

sers’ feedback. Signals tweets are identified from trending 
isinformation via finding signature text phrases express- 

ng skepticism about factual claims ( Zhao et al., 2015 ). All the 
bove feature-engineering-based methods fail to cover poten- 
ially informative features in dynamic and complicated social 

edia scenarios and shape elaborate high-level interactions 
mong significant features. To overcome these deficiencies, a 
NN-based model attempts to capture the dynamic tempo- 
al signals in the misinformation diffusion process and incre- 

entally learn both the temporal and textual representations 
f an event not relying on any handcrafted features ( Ma et al.,
016 ). 
.2. Attention mechanism 

ttention mechanism is first applied to a visual attention 

ystem for scene analysis ( Itti et al., 1998 ). The visual atten-
ion system selects attended locations in order of decreas- 
ng saliency, so that a complex scene can be understood by 
apidly selecting saliency locations in a computationally ef- 
cient method. In recent years, DNN is getting increasingly 
opular. Attention mechanism is once again taken out to be 

ntegrated into DNN. Hard attention is incorporated into RNN 

n Mnih et al. (2014) , to attend to different locations within the
mages one at a time and process them sequentially. The at- 
ention mechanism can help control expensive computation 

ndependent of the input image size and learn to track items 
ithout explicit training signals. 

In the field of computer vision, the work of Ba et al.
2015) extends the attention-based RNN model to multiple ob- 
ects detection task that learns to localize and recognize mul- 
iple objects despite being given only class labels. For an image 
aption task, an attention-based model is able to automati- 
ally fix its attention on salient objects of an input image while 
enerating the corresponding words of the output sentence 
 Xu et al., 2015 ). Some employ attention mechanism in a visual
uestion answering task, such as generating question-guided 

ttention to image feature maps for each question ( Chen et al.,
015 ), a question-guided spatial attention to images for ques- 
ions of spatial inference ( Xu and Saenko, 2016 ) and query- 
ng an image and inferring the answer multiple times to nar- 
ow down the attention to images progressively via stacked 

ttention networks ( Yang et al., 2016a ). For fine-grained image 
lassification, an attention-based CNN model improves the 
erformance of which to attend and what to extract without 
xpensive annotations like bounding box or part information 

 Xiao et al., 2015 ). 
In the field of natural language processing, researchers first 

ntroduce attention mechanism to neural machine transla- 
ion. Based on a primitive encoder-decoder architecture, the 
ork of Bahdanau et al. (2015) introduces a soft-global atten- 

ion to search a source sentence to attend to the most rele- 
ant words to predict a target word. Some extend the global 
nd local attention and compare different methods of obtain- 
ng attention scores ( Luong et al., 2015 ). Moreover, a hierarchi- 
al attention mechanism guides layers with a CNN to model 
ext in Yin et al. (2016) . The work of Yang et al. (2016b) pro-
oses self-attention which memorizes key information from 

elf-input without external-guide information. Besides, atten- 
ion mechanism is introduced into more research issues, such 

s abstractive text summarization ( Rush et al., 2015 ), text com- 
rehension task ( Dhingra et al., 2017; Kadlec et al., 2016; Yin 

t al., 2016 ), relation classification ( Wang et al., 2016; Zhou 

t al., 2016 ) and text classification ( Yang et al., 2016b ). In
horowski et al. (2015) , a novel model for speech recognition 

s proposed, which incorporates both content-based attention 

 Bahdanau et al., 2015; Xu et al., 2015 ) and location-based at-
ention ( Graves, 2013 ). 

.3. Distributed representations 

he idea of distributed representations is to digitize con- 
epts, which is first proposed in Hinton (1986) . And then we 
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Table 1 – Statistics of the datasets. 

Statistic Twitter Weibo 

# of Users 491,229 2,746,818 
# of Posts 1,101,985 3,805,656 
# of Events 992 4,664 
Avg. # of words/post 10.62 29.04 
Avg. # of posts/event 1,111 816 
Max # of posts/event 62,827 59,318 
Avg. time span/event 1582.6 h 2460.7 h 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 http://alt.qcri.org/ ∼wgao/data/rumdect.zip . 
5 www.snopes.com . 
6 http://www.ibtimes.co.uk/anonymous- hackers- threaten- 

reveal- identities- 1000- ku- klux- klan- members- opkkk- 1525758 . 
can model digitized concepts with the help of many math
and engineering tools, such as stochastic gradient descent
( Hinton and Roweis, 2003 ) and back-propagating ( Rumelhart
et al., 1988 ). For instance, the work of Rumelhart et al.
(1988) can learn distributed representations for words via
back-propagating. Later on, many works focus on a good lan-
guage model to learn word embedding, such as Bengio et al.
(2003) , Collobert et al. (2011) , Huang et al. (2012) , and Mnih and
Hinton (2007, 2009) . 

Distributed representations for concepts at a higher se-
mantic level, such as phase, sentence and paragraph, have
received much attention ( Mikolov et al., 2013; Mitchell and
Lapata, 2010; Yessenalina and Cardie, 2011 ). Semi-supervised
and supervised methods are introduced in Socher et al. (2011,
2013) . Moreover, the work of Le and Mikolov (2014) computes
the paragraph embedding through gradient descent, which
is unsupervised to obtain more general representations. How
to learn distributed representations for concepts at an even
higher semantic level, such as an event? In this case, we intro-
duce the attention module to selectively attend to important
paragraph text and obtain event representations in a super-
vised way. 

2.4. Convolutional neural network 

Inspired by biological organization of visual cortex, CNN has
been developed for visual object recognition ( Le Cun and
Bengio, 1994 ). Hierarchically and increasingly complex fea-
tures can be constructed by alternating applications of con-
volutional and pooling layers of CNN. The architectures help
model significant semantic features and achieve much im-
provement in various fields. In speech recognition, CNN has
been developed to extract temporal features ( Abdel-Hamid
et al., 2012 ). Similarly, semantic features from vision infor-
mation can be guided to image classification and segmenta-
tion tasks ( Zhao et al., 2017 ). Moreover, a general 2D CNN can
be extended to a 3D one for 3D image restoration problems
( Jain et al., 2007 ) and video-based human action recognition
( Ji et al., 2013 ). In sentiment prediction and document classifi-
cation, CNN can be trained to obtain semantic features at the
top layer ( Kalchbrenner et al., 2014 ) from raw text. CNN can
also be employed to other issues, such as click-through rate
prediction ( Liu et al., 2015 ) and reinforcement learning tasks
( Tamar et al., 2016 ). CNN is usually trained through stochas-
tic gradient descent (SGD), with backpropagation to compute
gradients. 

This paper is built on our preliminary conference version
( Yu et al., 2017 ) and the main extensions are detailed as fol-
lows. 

1) While the previous method in Yu et al. (2017) focus on dis-
tribution patterns at the dataset scale, we now specifically
mine content and temporal importance at the post scale,
i.e., mining importance of each post. 

2) We are the first to apply content and temporal co-attention
to learn representations for events with massive posts in
social media via the newly added Event2vec module. 

3) More comprehensive experiments, e.g., analyses of atten-
tion module, are designed to demonstrate that the atten-
tion module is effective, robust and interpretable to resolve
the massive volume and high noise difficulties of misinfor-
mation identification. 

4) A newly added review of methods of misinformation iden-
tification, which thoroughly summarize works about at-
tention mechanism in various fields and distributed rep-
resentation in different semantic levels. 

3. Dataset analysis 

3.1. Statistics of the datasets 

To empirically evaluate the performance of our methods on
misinformation identification, we perform experiments on
two typical microblog datasets: Weibo and Twitter datasets,4 

which are developed and used by Castillo et al. (2011) , Kwon
et al. (2013) and Ma et al. (2016) . Ground truth of each event
are confirmed from online rumor debunking service, such as
Snopes website 5 and Sina community management center.
For each event, Twitter API can return search results based on
keywords of the Snopes website; the Weibo API can return the
original posts, corresponding repost and reply messages about
an event. 

Details of the two datasets are illustrated in Table 1 . An
event in social media usually comprises thousands of posts.
It should be noted that some events of misinformation con-
tain tens of thousands of posts, whose massive volume means
severe influence and damage. For instance, a piece of misin-
formation about terrorism 

6 contains 12,217 posts, which will
pose threat to public security and social stability. For practical
misinformation identification, models should be still robust
even for misinformation with massive posts. 

3.2. Distribution pattern of misinformation and true 
information 

We investigate the data distribution of misinformation and
true information in these two datasets, which reveals two pat-
terns of the data distribution. 

Take the Weibo dataset as an example, the data distribu-
tion is illustrated in Fig. 1 . Each point represents the percent-
age of posts during a time window of 0.1 h at the correspond-
ing time point. The long-tailed distribution of both misinfor-

http://alt.qcri.org/~wgao/data/rumdect.zip
https://www.snopes.com
http://www.ibtimes.co.uk/anonymous-hackers-threaten-reveal-identities-1000-ku-klux-klan-members-opkkk-1525758
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Fig. 1 – The long-tailed distribution of both misinformation and true information in the Weibo dataset in a semi logarithmic 
coordinate. 
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ation and true information can be clearly shown even in the 
emi logarithmic coordinate (otherwise the curves almost co- 
ncide with two coordinate axes). 

Moreover, we can see that temporal properties usually dif- 
er between misinformation and true information. Compared 

o misinformation, most posts of true information are posted 

r reposted at the beginning of broadcast and vanish very fast.
owever, misinformation usually has a relatively larger quan- 

ity at the middle phase of an event. This observation inspires 
s to propose the following Event2vec module, where tempo- 
al attention is incorporated to model different temporal prop- 
rties. 

. Proposed models 

n this section, we propose the ACAMI model. We first intro- 
uce the general framework. Then we detail an Event2vec 
odule which can learn distributed representations for 

vents in social media. To investigate how to generate good 

epresentations for events with tens of thousands of posts,
e incorporate content and temporal co-attention into the 
vent2vec module. 

.1. General framework 

s illustrated in Fig. 2 , we will introduce the general frame- 
ork of the proposed ACAMI model. From the bottom up, there 
re two submodules as follows. 

Using Event2vec to learn distributed representations of events.
imilar to Word2vec ( Mikolov et al., 2013 ) and Para2vec ( Le 
nd Mikolov, 2014 ), given a set of events in social media, we 
ttempt to learn high-quality distributed representations of 
vents. Each event comprises many posts and each post is a 
aragraph of text with a timestamp. The Event2vec module in- 
uts an event of massive posts and outputs its distributed rep- 
esentation. The formulations of the Event2vec module will 
e detailed in the next Subsection. Moreover, event represen- 
ation learnt by the Event2vec module will not be updated in 

ollowing training process. 
Modeling high-level interactions by CNN. A commonly used 

rchitecture of CNN comprises convolutional layers, k -max 
ooling layers and a fully connected layer. 

For an input event instance e i with n phases, each phase 
s embedded as g i ∈ R 

d and we can get the instance ma-
rix G ∈ R 

d×n . In the convolutional network, a convolutional 
ayer is obtained by convolution operations of a weight ma- 
rix C ∈ R 

d×ω on the activation matrix at the layer below in 

 row-wise way. Followed by a nonlinearity function applied 

o the convolution result, an element of a feature map can be 
btained as: 

[ i ] = tanh 

(〈
G [: , i : i + ω − 1] , C 

〉
F 

)
(1) 

here G [: , i : i+ω−1] is the i to (i+ω−1) -th columns of G and the
ubscript F is the Frobenius inner product, i.e., the summation 

f products of corresponding elements of both matrices. At 
ast, we take k -max pooling over the feature map f to capture 
he most significant features f k max , i.e., k largest values of the 
eature map in response to the specific kernel f and the order 
f the values in f k max stays the same as their original order in f .

Moreover, the above convolutional and pooling operations 
an be repeated to yield deeper layers. Finally, there is a fully 
onnected layer and the ultimate output p e i is obtained via 
oftmax. Here, p e i is the probability which predicts whether 
he event e i belongs to misinformation. 

.2. Event2vec 

ote that the Event2vec module in the proposed ACAMI model 
s different from that in the previous version ( Yu et al., 2017 ).
he co-attention of the Event2vec module mines content and 

emporal importance at the post scale, which is more helpful 
or misinformation identification. The Event2vec module can 

e formulated as the following two steps. 
Splitting all correlative posts of an event into several groups of 

qual number. We intend to group all correlative posts of an 

vent into a sequence of time windows and extract features 
hrough modeling these groups. Why split into several groups? 
irst, an event generally consists of thousands of correlative 
osts on average and there is huge difference in quantity of 
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Fig. 2 – The general framework of the ACAMI model. From the bottom up: learn event representation; extract features from 

low level to high level with CNN. Event representation learnt by the Event2vec module will not be updated in following 
training process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

events. Moreover, posts during some specific time windows
are so relevant that we can treat these neighbor posts as a
group which represents a specific event phase. Note that win-
dow size of Word2vec is 10, which models semantics of 20 con-
text words.7 Inspired by the implement suggestion, we also
split posts of an event into 20 groups and learn the event repre-
sentation by modeling representations these context groups,
which achieves the best experimental result. 

Usually the basic grouping criterion is equally splitting by
time or quantity, which means groups are with equal time
spans or equal number of posts. Considering the long-tailed
distribution of social media information illustrated in Fig. 1 ,
the first few groups will contain the vast majority of posts
if splitting by time, which makes it difficult to learn repre-
sentations of events well. Moreover, splitting by quantity can
be local or global, which means each event is split separately
or by globally shared cut-points. The globally equal-quantity
grouping method first normalizes timestamps of posts of each
event, then obtains globally shared cut-points by equally split-
7 https://code.google.com/archive/p/word2vec/ . 
 

ting normalized timestamps of all events into multiple parts
( Yu et al., 2017 ). We will adopt both locally and globally equal-
quantity grouping methods in the Event2vec module. 

Learning representation for each group via content and temporal
co-attention. The attention module can acquire the importance
weights of content and temporal information of each post in
a group. This step can be depicted in Fig. 3 . 

First, the paragraph vector ( Le and Mikolov, 2014 ) is em-
ployed to learn representation of each post. Given a post of N
words, a word is represented by a column vector w n in W and
the post is represented by a column vector p j in D . To learn the
post representation p j , we compute 

arg max 
D , W 

1 
N 

N−k ∑ 

n = k 
log p ( w n | w n −k , . . . w n + k ) . (2)

The n -th word is predicted via softmax, 

p ( w n | w n −k , . . . w n + k ) = 

exp ( θT x n ) 

�i exp ( θT x i ) 
(3)

x n = h 
(
p j , w n −k , . . . , w n + k ; D , W 

)
(4)

https://code.google.com/archive/p/word2vec/
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Fig. 3 – The Event2vec module in ACAMI. From the bottom 

up: split raw content into chronological groups of equal 
number of posts; learn a representation of each group via 
attention mechanism (best viewed in color). Content and 

temporal co-attention are learnt from content text and 

timestamp separately. 
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is the softmax parameter and h is a concatenation or average 
peration. Context words and paragraph memory are lever- 
ged to predict the current word. 

We observe that an event may contain tens of thousands 
f posts, so some significant information for misinformation 

dentification may be easily drowned in the high-noise posts.
hat’s worse, there are many duplicate reposting contents in 

n event. If we only use Para2vec to capture semantic informa- 
ion of groups of posts, the event representations will mostly 
ocus on those duplicate content. Moreover, early detection of 

isinformation means using fewer posts of the early stage of 
n event. How can we still mine key features from fewer posts 
ith lots of noise? Attention mechanism may be a good so- 

ution. We propose content attention and temporal attention,
hich learn importance weights for both content and tempo- 

al information of events. I.e., the attention module selectively 
ttends to important content and temporal characteristic of 
n event. 

Based on above observation, content and temporal co- 
ttention will be leveraged to learn representation of each 

roup of posts. Given a group of c posts, we can learn a rep- 
esentation p j ∈ R 

d 1 for each post and concatenate them to 
btain a matrix M ∈ R 

d 1 ×c , where d 1 is the dimensionality of 
he paragraph vector of a post. The attention mechanism will 
roduce a vector a of attention weights and a weighted repre- 
entation g of a group via, 

 = tanh (EM ) (5) 

 c = B 

T u (6) 

 t = Yx (7) 
 = so ftmax ( a c + a t ) (8) 

 = Ma (9) 

hen we can acquire the input matrix G of CNN by concate- 
ating those g . Attention weights a c ∈ R 

c , a t ∈ R 

c are for con-
ent and timestamp of c posts in the group. And E ∈ R 

d 2 ×d 1 is
he parameter of a one-layer MLP to get a hidden represen- 
ation B of M . Attention parameter u ∈ R 

d 2 can be regarded 

s high-level semantic representation of “salient information 

n misinformation”, as a similar usage in memory networks 
 Kumar et al., 2016a; Sukhbaatar et al., 2015 ). We need to point
ut that d 2 is a hyper-parameter and the study about tuning d 2 
ill be presented in Section 5.5 . Moreover, x ∈ R 

n t is a vector
f temporal attention weights of n t different time intervals, 

 = [ x 0 , x 1 , · · · , x n t −1 ] T , (10) 

nd x i is for the i -th time interval. The timestamp t of each
ost can be allocated to a time interval as follows, 

int erval ) i = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

t = 0 i = 0 ;
t > ( n t − 2) t u i = n t − 1 ;
. . . 

, 

(i − 1) t u < t ≤ i · t u else. 

(11) 

here t u = 3600 seconds in this work. In addition, each row in 

 is an one-hot vector and Y i j = 1 if the timestamp of the i -th
ost in the group falls into the j -th time interval. 

. Experiments 

n this section, we first present several compared methods 
nd experimental settings used in our proposed method. Then 

e report experimental results of misinformation identifica- 
ion and early detection on two typical datasets. Moreover, we 
esearch into the robustness of the proposed ACAMI against 

assive volume and high noise in misinformation identifica- 
ion. We then discuss the influence of the number of posts 
o the performance of misinformation identification. We also 
onduct some visualization experiments which help appar- 
ntly illustrate what the proposed model has learnt against 
igh noise. 

.1. Experimental settings 

everal methods are used for empirical comparison with ours: 

1) RRD proposes a longest continuous intervals algorithm to 
construct input instances of a GRU model. The enhanced 

GRU hidden layer conduce to obtain high-level interactions 
of features ( Ma et al., 2016 ). 

2) SVM −TS is a linear SVM classifier that uses Time-Series 
structures to model the variation of social context features 
and these handcrafted features are extracted based on 

contents, users and propagation patterns ( Ma et al., 2015 ). 
3) DT −Rank is a Decision-Tree-based Ranking model to 

identify trending rumors through ranking the clustered 

disputed factual claims based on statistical features 
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Table 2 – Results of misinformation identification on both Weibo and Twitter datasets. (Class M : Misinformation ; Class T : 
True Information ). 

Method Class Weibo Twitter 

Accuracy Precision Recall F 1 Accuracy Precision Recall F 1 

DT-Rank ( Zhao et al., 2015 ) M 0.732 0.738 0.715 0.726 0.681 0.711 0.698 0.704 
T 0.726 0.749 0.737 0.647 0.662 0.655 

SVM-RBF ( Yang et al., 2012 ) M 0.818 0.822 0.812 0.817 0.715 0.698 0.809 0.749 
T 0.815 0.824 0.819 0.741 0.610 0.669 

DTC ( Castillo et al., 2011 ) M 0.831 0.847 0.815 0.831 0.718 0.721 0.711 0.716 
T 0.815 0.847 0.830 0.715 0.725 0.720 

RFC ( Kwon et al., 2013 ) M 0.849 0.786 0.959 0.864 0.728 0.742 0.737 0.740 
T 0.947 0.739 0.830 0.713 0.718 0.716 

SVM-TS ( Ma et al., 2015 ) M 0.857 0.839 0.885 0.861 0.745 0.707 0.864 0.778 
T 0.878 0.830 0.857 0.809 0.618 0.701 

RRD ( Ma et al., 2016 ) M 0.910 0.876 0.956 0.914 0.757 0.732 0.815 0.771 
T 0.952 0.864 0.906 0.788 0.698 0.771 

CAMI ( Yu et al., 2017 ) M 0.933 0.921 0.945 0.933 0.777 0.744 0.848 0.793 
T 0.945 0.921 0.932 0.820 0.705 0.758 

ACAMI M 0.948 0.940 0.952 0.946 0.803 0.781 0.806 0.794 
T 0.956 0.944 0.950 0.824 0.800 0.812 
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( Zhao et al., 2015 ). DTC is a Decision Tree Classifier mod-
eling information credibility ( Castillo et al., 2011 ). 

4) SVM −RBF is a SVM-based model with the RBF kernel ( Yang
et al., 2012 ). 

5) RFC is a Random Forest Classifier with three parameters to
fit the temporal tweets volume curve ( Kwon et al., 2013 ). 

6) CAMI is our preliminary conference work ( Yu et al., 2017 ),
using CNN to model distribution pattern of misinforma-
tion. 

In all experiments, we randomly choose 10% of the dataset
for model tuning and the rest 90% are randomly assigned to a
3:1 ratio for training and test. Similar to Ma et al. (2016) , we re-
port the Accuracy, Precision, Recall and F1-score of these methods
to measure the performance of misinformation identification.

For the proposed ACAMI, we apply a CNN architecture with
two layers in this work, which is implemented with Theano 8 .
The parameters of ACAMI are set as n t = 32 , t u = 3600 , the
dimensionality of the paragraph vector d 1 = 50 , attention di-
mensionality d 2 = 20 , the numbers of feature maps m and fil-
ter width w of two layers of CNN are set as m = [6 , 4] , w = [8 , 5]
for the Weibo dataset, m = [3 , 2] , w = [8 , 5] for the Twitter
dataset. 

5.2. Results of misinformation identification 

The results of all methods are illustrated in Table 2 . We can
see that the performance ranking of misinformation identi-
fication methods is as follows, ACAMI, CAMI, RRD, SVM-TS,
RFC, DTC, SVM-RBF and DT-Rank. Compared with DNN-based
methods, the performance of other methods is relatively poor.
These methods using handcrafted features or rules may not
adapt to shape dynamic and complicated scenarios in social
media. In contrast, DNN-based methods, ACAMI, CAMI and
8 http://deeplearning.net/software/theano/ . 

 

 

 

RRD, can learn high-level interactions among deep latent fea-
tures, which contribute to model real-world scenarios. 

Comparing those conventional methods, DT-Rank uses a
set of regular expressions selected from signal posts contain-
ing skeptical enquiries. But not all posts in both Twitter and
Weibo datasets involve these skeptical enquiries. These se-
lected expressions are insufficient to conclude the informa-
tion credibility. Moreover, SVM-TS and RFC incorporate the
temporal structure into conventional models, which helps
outperform other compared methods like SVM-RBF and DTC.
So, we can see that modeling these temporal features is work-
able and effective. 

For these DNN-based methods, the CAMI model obtains
significant improvement over RRD. Despite the fact that both
models learn deep latent features from a sequence of groups
of posts, a trained GRU model possesses a constant recur-
rent transition matrix, which induces unchangeable propa-
gations of sequence signals between every two consecutive
time windows. However, in real-world scenarios, social me-
dia is so dynamic and complicated that the above constant
recurrent transition matrix of the RRD model has its limitation
to shape an adequate misinformation identification model.
Furthermore, the above RRD model cannot get stable perfor-
mance of misinformation identification due to the incomplete
usage of input information. While key features of both mis-
information and true information can appear at any part of
an input sequence and may be dropped by RRD. The convolu-
tional architecture and k -max pooling operation in the CAMI
model, in contrast, can flexibly extract key features scattered
among an input sequence. We will demonstrate it by the fol-
lowing visualization experiment. 

In regard to the CAMI and ACAMI models, the ACAMI model
surpasses the CAMI model in terms of all the evaluation met-
rics on both datasets. There is big difference between time
distributions of misinformation and true information, so the
CAMI model extracts more accurate and effective features
based on the time distribution to gain better performance

http://deeplearning.net/software/theano/
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Fig. 4 – The ablation study of the proposed ACAMI with only temporal attention, only content attention and 

temporal-content co-attention using different metrics (Best viewed in color). The numbers on the columns indicate relative 
decrease of individual attention against co-attention. M: Misinformation; Class T: True Information. 
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Fig. 5 – The performance of the proposed ACAMI with 

locally and globally equal-quantity grouping methods 
using different metrics (Best viewed in color). M: 
Misinformation; Class T: True Information. 
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han previous methods. However, the attention mechanism of 
he ACAMI model can weigh the importance of every post at a 
ner scale than the CAMI model. Moreover, the ACAMI model 
an directly consider content and timestamp of a post. While 
he CAMI model will ignore some groups that are relatively 
nimportant on average, even if these groups contain a bit of 

mportant posts. Again, we will demonstrate this by the fol- 
owing visualization experiment. 

Moreover, the accuracy on Twitter is significantly lower 
han that on Weibo. There may be two reasons. Firstly, a post 
n Twitter usually contains less words than a post in Weibo,
omparing the average number of words per post in Table 1 .
osts in Twitter is comparatively less informative than posts in 

eibo, so it more difficult identify misinformation in Twitter 
ith fewer words. Secondly, an event in Twitter usually con- 

ains more posts than an event in Weibo, comparing the av- 
rage or maximum number of posts per event in Table 1 . It is
ore difficult to attend to a few key posts from greater vol- 

mes of posts, which will degrade the performance of misin- 
ormation identification in Twitter. 

.3. Effects of temporal and content attention 

hough extensive experiments are conducted to demonstrate 
ffectiveness of the proposed ACAMI method, it is also in- 
eresting to compare the effects of temporal and content 
ttention for the contributions to misinformation identifi- 
ation, respectively. Therefore, we do ablation study of the 
roposed ACAMI with only temporal attention, only content 
ttention and temporal-content co-attention, whose results in 

he Weibo dataset is reported in Fig. 4 and similar results are 
lso achieved in the Twitter dataset. Comparing with perfor- 
ance of temporal-content co-attention, the performance of 

nly content attention and only temporal attention decrease 
.02%, 1.03%, 1.03% and 3.69%, 3.82%, 3.76% in F1(M), F1(T), Ac- 
uracy, respectively. 

From the results in Fig. 4 , we can draw the following two 
onclusions. Firstly, both temporal and content attention, that 
s, the timestamps and content information of posts are very 
ignificant for misinformation identification. Secondly, the 
ontent attention makes a relatively greater contribution to 
dentifying misinformation than the temporal attention. 

.4. Grouping methods 

s described in Section 4.2 , we adopt both locally and globally 
qual-quantity grouping methods in the Event2vec module,
e want to investigate how two grouping method will influ- 

nce the performance of the proposed ACAMI, whose results 
n the Weibo dataset is reported in Fig. 5 and similar results 
re also achieved in the Twitter dataset. We can see that the 
roposed ACAMI with either locally or globally equal-quantity 
rouping method achieves almost the same performance in 

ll metrics. 
The globally equal-quantity grouping method can con- 

ider the global temporal distribution of information in so- 
ial media, which has proven to be effective in the previ- 
us work ( Yu et al., 2017 ). So, the attention mechanism in
he Event2vec module may help reduce the gap between 

wo grouping methods. It should be noted that globally 
qual-quantity grouping method is much more complicated 
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Fig. 6 – Early detection of misinformation of four most competitive methods on both Weibo and Twitter datasets. The official 
report time is the average reporting time over misinformation and announced by the debunking services like Snopes and 

Sina community management center. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that the locally equal-quantity one. Therefore our proposed
attention-based Event2vec module can simplify the grouping
method of the previous work ( Yu et al., 2017 ). For the sake of
simplicity, we can just adopt the locally equal-quantity group-
ing method, that is, divide all correlative posts of an event into
equivalent amount. 

5.5. Early detection of misinformation 

In order to evaluate performance of early detection of com-
pared methods, we set a series of detection deadlines and only
use posts from the initial broadcast to corresponding dead-
lines during the test process. 

Four most competitive methods are for comparison,
ACAMI, CAMI, RRD and SVM-TS. Moreover, conventional early
detection tasks count on official announcements, which is the
average reporting time over misinformation and announced
by the debunking services like Snopes and Sina community
management center. So, we take official report time as a ref-
erence. 

Performance of the CAMI and ACAMI models versus the
above methods with various deadlines are illustrated in Fig. 6 .
The CAMI and ACAMI models can reach relatively high accu-
racy at a very early time while other methods will take a longer
time to achieve good performance. Furthermore, accuracy of
the CAMI and ACAMI models take a strong lead at any phase.
Only in this way can the CAMI and ACAMI models shot misin-
formation at first appearance and achieve more practical early
detection. 

The accuracy of most methods will experience a con-
spicuous climbing during the first few hours and then rise
with different growth rates, convergence rates and conver-
gence accuracies. For instance, accuracy curve of SVM-TS
climbs slowly at early phase and gradually converge to a rel-
atively low accuracy. Moreover, its accuracy curve still fluctu-
ates after the official report time. While the accuracy curve of
RRD climbs rapidly at early phase and converges to a much
higher accuracy on a much earlier deadline than that of SVM-
TS. 

Most state-of-the-art methods for early detection, such as
RRD and SVM-TS, usually follow the intuitive paradigm to
model time series features in sequences of posts. But these
time-series-based models are not qualified for practical early
detection due to the conflict between the models and the task.
Take RRD as an example. On the one hand, the input sequence
should be long enough to embody these possibly existing dy-
namic temporal signals to be captured by RRD ( Ma et al., 2016 ).
On the other hand, the practical early detection means lim-
ited input sequence can be used. The limited input sequence
may not cover required dynamic temporal signals. So RRD
may not be suitable for early detection of misinformation in
some cases. Nonetheless, convolutional and max pooling op-
erations of the CAMI model can flexibly extract key features
even from a limited input sequence, which make the CAMI
model more effectively applied to early detection of misin-
formation. Moreover, the ACAMI model can attend to every
post within each group, at a finer scale than the CAMI model,
which helps further improve the performance of early detec-
tion. 

Besides, the proposed ACAMI model can achieve a slightly
better performance than the CAMI model. An event may con-
tain tens of thousands of posts and many posts share dupli-
cate reposting content. Moreover, early detection of misinfor-
mation means using fewer posts of the early stage of an event.
Attention mechanism in the ACAMI model can help still mine
key features from fewer posts with lots of noise. The content
attention and temporal attention learn importance weights
for both content and temporal information of events which
selectively attend to important content and temporal charac-
teristic of an event. 
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Fig. 7 – The proportion (best viewed in color) of Group1-5 on two datasets: Weibo dataset (left) and Twitter dataset (right). 

Table 3 – The detailed mapping between Group and Post# 
(We divide events of both Weibo and Twitter datasets into 

5 parts (i.e., Group1-5) by the number of posts.). 

Post# Group1 Group2 Group3 Group4 Group5 

Weibo < 100 100–200 200–400 400–1000 > = 1000 
Twitter < 20 20–50 50–100 100–500 > = 500 
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.6. Robustness against massive volume 

imilar to Tweet Index,9 Microblog Event Index (MEI) here is 
eferred to as the number of microblog posts of an event. In 

his subsection, we want to discuss the influence of MEI to 
he performance of misinformation identification. Because we 
hould check whether models are still robust to misinforma- 
ion with massive posts, which usually means severe influ- 
nce. We split the events in the test set into five groups based 

n MEI and compare the performance on each group among 
hree most competitive methods, ACAMI, CAMI and RRD. To be 
pecific, we first present why and how these five event groups 
re divided. Then we will detail the analyses based on the per- 
ormance of the three models. 

Intuitively, it is relatively difficult to identify whether an 

vent is misinformation or not if the event contains massive 
osts. In an extreme circumstance, if an event comprises tens 
f thousands of posts, some significant information may be 
asily drowned in the information flood. Moreover, we learn 

epresentations based on Para2vec, which is unsupervised 

nd learns from context. So, it is challenging to learn a good 

epresentation for an event with massive posts. Therefore, we 
ivide the events into five groups (i.e., Group1-5) based on MEI.
he grouping criteria is shown in Table 3 . For instance, an 

vent whose MEI falls within the scope of 200 and 400 belongs 
o Group3 in the Weibo dataset. On account of different distri- 
utions of Weibo and Twitter datasets, the scope of MEI may 
e different. For simplicity, groups are roughly equidistributed.
n this way, metrics (such as Accuracy ) computed based on the 
ame group size are comparable. The proportions of Group1-5 
re depicted in Fig. 7 . 
9 https://blog.twitter.com/engineering/en _ us/a/2014/building- 
- complete- tweet- index.html . 

T
e
o
b  
The performance on these five different event groups is 
hown in Fig. 8 . Here we only compare the three competi- 
ive methods, ACAMI, CAMI and RRD. From Fig. 8 , we can see
hat the performance of the three models on Group1 is closer 
han other groups. However, as the MEI increases, the perfor- 

ance curve of the CAMI and RRD models fluctuates a lot.
hile the performance of the ACAMI model is more robust 

s MEI increases. Moreover, the ACAMI model acquires better 
erformance than CAMI and RRD on the Group5 of the high- 
st MEI. If we want to develop a practical system for misin- 
ormation identification, we should check models’ robustness 
o misinformation with massive posts. Because massive vol- 
me may mean severe influence and some models may fail.
ompared with the CAMI model, the attention module in the 
CAMI model plays a key role in extracting significant infor- 
ation from so many posts of an event. 

.7. Attention dimensionality 

he parameters in the attention module are as follows, E ∈ 

 

d 2 ×d 1 , u ∈ R 

d 2 . It seems that we can fine tune the hyper-
arameters d 1 and d 2 . But d 1 is also the dimensionality of the
aragraph vector of a post in the Para2vec module. In order 
o best capture the distributed semantic representation of a 
aragraph of text, we first need to fine tune the dimensionality 
 1 of the paragraph vector, as suggested in Lai et al. (2016) . So
hen we improve the following attention module, we only fine 

une the hyper-parameter d 2 and keep the hyper-parameter d 1 
nchanged. 

Here, we refer to the hyper-parameter d 2 as the atten- 
ion dimensionality. We report performance of the proposed 

CAMI model with different attention dimensionality d 2 .
rom Fig. 9 , we can see that the performance truly fluctuates a
ot with the attention dimensionality d 2 . Moreover, the ACAMI 

odel can achieve the best performance when the attention 

imensionality d 2 is set around 20 for both Weibo and Twitter 
atasets. 

.8. Visualizing the CAMI and ACAMI models 

he visualization experiments of the CAMI and ACAMI mod- 
ls attempt to demonstrate the following things. First , we can 

bserve that key features scatter among an input sequence 
ut not focus on a fixed part of sequences. Second , the CAMI

https://blog.twitter.com/engineering/en_us/a/2014/building-a-complete-tweet-index.html
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Fig. 8 – The performance of three most competitive models on five different event group of both Weibo and Twitter datasets. 

Fig. 9 – The performance of the proposed ACAMI model with different attention dimensionality d 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

model can flexibly extract these scattered key features. Third ,
the attention mechanism can further improve the robustness
of the ACAMI model against high noise. 

Visualizing convolutional kernels. We obtain all convolutional
kernels from the first convolutional layer of a learnt CAMI
model. With regard to a kernel matrix W ∈ R 

d×ω correspond-
ing to a specific feature map, we sum all the rows into a row
vector v i ∈ R 

ω . Suppose there are m feature maps, we can stack
these row vectors, v 1 , v 2 , . . . , v m 

, into a visualization matrix
V ∈ R 

m ×ω and then plot it in a checkerboard which is illus-
trated in Fig. 10 . Taking the adopted one-dimension convolu-
tion into consideration, each row in the visualization figure
illustrates general response of a corresponding kernel with re-
spect to the input sequence. 

From Fig. 10 , we can see that the forepart of the input usu-
ally obtains relatively stronger response than the rear part.
After all, main description of misinformation and most rela-
tive replies may locate at the forepart. Only using partial posts
from continuous intervals, the RRD model may not make the
best of key features. These observations show that the CAMI
model can flexibly extract key features scattered among an in-
put sequence. 

Visualizing saliency maps. Inspired by visualizing work in
computer vision ( Simonyan et al., 2013; Vondrick et al., 2013 ),
we plan to visualize key features grabbed by the CAMI model.
In a feedback pass during test process, we compute the gra-
dient of a class label value with respect to the input embed-
ding matrix. More concretely, for a test instance, we perform a
feedforward pass to obtain the output value and correspond-
ing class label. Then we treat the class label value as loss and
implement back propagation algorithm to acquire the gradi-
ent matrix of the class label value with respect to the input
embedding matrix. Finally, we can get the most salient part of
the input instance from the gradient matrix. 

The top part of Table 4 demonstrates extracted salient
posts of an identified misinformation about “Donald Trump
Said Republicans Are the Dumbest Group of Voters”, in which
many questioning and denial signals can be observed in corre-
sponding groups of posts. Such groups with indicating signals
could be flexibly grabbed by the CAMI. 
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Fig. 10 – Visualization of convolutional kernels from the 
first convolutional layer (better viewed in color and rows). 
Each row represents a convolution kernel of size 7 and 

there are kernels (termed K1, K2, . . . , K6) from 6 feature 
maps. Colors varying from bright blue (dashed line box) to 

bright red (solid line box) map values from low to high, 
representing the response intensity of kernels with respect 
to the input. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version 

of this article.) 

Table 4 – Extracted salient posts. The table is divided 

into two parts: the top part represents salient posts ex- 
tracted by the CAMI model; the bottom part represents 
extra salient posts extracted by the ACAMI model. 

what???? 
time window #1 IS IT TRUE? 
of CAMI probably faked 

I doubt the Trump2016 folks do 

untrue... 
time window #2 False, darn it. 
of CAMI Didn’t think so... 

it pays to fact check 

this is false 
time window #6 Fake. False. Deceitful. 
of CAMI but no proof exists that he said this... 

Just another graphic created by a pundit 

it is just another scam 

Extra posts FYI, Alert !!!!! 
by ACAMI #Dipshidiot! 

Nasty, is it true 
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Visualizing the attention module of the ACAMI model. Similar to 
he above visualization of saliency maps, we implement back 
ropagation algorithm to acquire the gradient matrix for the 
CAMI model. Statistics in Section III reveal that some misin- 

ormation contains up to tens of thousands of posts. But most 
sers simply accept and repost the misinformation, i.e. most 
osts about an event are high noise to misinformation identifi- 
ation. So we visualize the CAMI model and the ACAMI model 
o illustrate what the proposed models has learnt against high 

oise. 
For comparison’s purposes, we do the same as in the CAMI 

odel and show extracted salient posts of the same identi- 
ed misinformation about “Donald Trump Said Republicans 
re the Dumbest Group of Voters”. Apart from posts in the 

op part of Table 4 , the ACAMI model still acquires extra sig-
ificant information in the bottom part of Table 4 . Why the 
AMI model misses some key information? Because the CAMI 
odel is only at the group scale not the post scale and only ex-

racts key features of relatively important groups on average.
nd there are some groups which are relatively unimportant 
s a whole but indeed contain some key posts. The content 
ttention and temporal attention in the ACAMI model learn 

mportance weights for both content and temporal informa- 
ion of events which selectively attend to important content 
nd temporal characteristic of an event. So the ACAMI model 
an weigh the importance of each post within a group and at- 
end to key features in a finer post scale that may be ignored
y the CAMI model. That is to say, the ACAMI model is more
obust against high noise with the help of the attention mod- 
le thus achieves a better performance. 

. Conclusion 

n this paper, we have proposed the ACAMI model for 
oth misinformation identification and early detection tasks.
oreover, we propose an Event2vec method to learn repre- 

entations for events with massive posts in social media. Be- 
ides, content and temporal co-attention can help still mine 
ey content and temporal features from thousands of posts 
ith high noise and simplify the grouping procedure in the 
roposed models. Extensive experiments on two typical social 
edia datasets have demonstrated the effectiveness of the 

CAMI model than both conventional feature-engineering- 
ased methods and a RNN-based method. We also illustrate 
emporal properties of information in social media and visu- 
lize what the proposed model can capture, which will help 

hape more exact real-world social media scenarios for mis- 
nformation identification. Then we can better accomplish the 
ask of misinformation identification and early detection. 

In the future, we may incorporate cause and effect rela- 
ionship among misinformation and trending issues into the 
roposed models. Acquiring all-round understanding of mis- 

nformation in social media, we can build a more effective, ro- 
ust and interpretable model. 
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