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SUMMARY

Molecular imaging possesses the ability to characterize and measure biological processes at the cellular
and molecular level in vivo. As one of the new molecular imaging modalities, bioluminescence tomography
(BLT) is to reconstruct the light distribution inside a small animal from the photon flux measured on its
surface. To obtain accurate and robust reconstruction, it needs a good understanding of the propagation
of photons in biological tissues, which is referred to as the forward problem in BLT. Because the turbid
media is high scattering and low absorption, the propagation process can be described by the steady
diffusion equation. In this paper, an hp-adaptivity method for BLT forward problem is presented based
on finite elements of high orders and moderate meshes by finite element method (FEM). Both numerical
simulation and physical experiment are performed to evaluate the accuracy of solution and the efficiency
of computation. The relevant results show that element order is more critical than mesh size to produce
an accurate FEM solution efficiently. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Modern medical imaging has undergone structural and functional imaging techniques since the
discovery of X-ray by Wilhelm Konrad Roentgen in 1895. The relevant equipments, such as CT,
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MRI, PET, SPECT, etc, have brought great innovation in the diagnosis and treatment of diseases.
These medical equipments help medical staff to observe and measure the tissue lesions more
clearly and accurately. However, most of them are only able to screen the advanced stages of
diseases. With the advances in biomedical and genetic engineering, molecular imaging provides
promising solutions to early diagnosis of disease, personalized treatment, drug development, gene
study and so on [1–3]. Compared with other molecular imaging techniques, optical imaging
has the advantages of nano–molar sensitivity, high spatial resolution, short imaging time, low
cost and so on [4, 5]. Optical imaging modalities include optical coherent tomography, diffusion
optical tomography, photoacoustic tomography, optical-PET, bioluminescence tomography (BLT)
and fluorescence molecular tomography [6, 7]. BLT is to reconstruct the bioluminescent light
sources inside an object from the optical signals measured at its boundary, and to provide real-time
detection and quantitative measurement of tagged cells while keeping the small living animals
intact. Although optical imaging can only detect the surface light, BLT fails to get the depth
information of targets under test directly [8]. Multi-spectral and multi-modality method are recently
developed to improve the performance of BLT [9–11].

Since biological tissues are turbid, bioluminescent photons undergo absorption, reflection, scat-
tering and other optical behaviors. BLT employs the near infrared light to image in vivo because
the lowest coefficient of absorption occurs within the range of 650–900 nm [3]. Light propagation
in biological tissues can be depicted by Monte Carlo method (MC) based on repeated random
sampling, or by radiative transfer equation (RTE) based on classic transport theory [6, 12–14].
But both methods are computationally expensive. In high-scattering and low-absorption biological
tissues, RTE is simplified as the diffusion equation (DE) with appropriate boundary condition,
which provides a quite accurate description of the imaging model [15]. BLT problems consist of
forward problem and inverse problem. Forward problem is to find out the light distribution with
given light sources and tissue parameters, whereas inverse problem is either to determine tissue
optical properties or to retrieve inner light sources from boundary measurement [16]. Mathemati-
cally, forward problem is to solve a partial differential equation. The solution is difficult to obtain
analytically in most practical cases. Many numerical methods, such as finite difference methods,
finite element method (FEM), boundary element method, are widely adopted [17–21]. Owing to
the efficient and flexible discretization techniques, FEM has become well established in biomedical
optics [22].

In this paper, we investigate the effects of mesh size and element order on FEM solution and
evaluate the accuracy and the convergence compared with analytical solution, MC simulation and
experimental measurement. In the second section, BLT forward problem is formulated by DE
and then analyzed via FEM. In the third section, numerical simulation and physical experiment
are performed to evaluate the accuracy and the efficiency of FEM. In the final section, results and
conclusions are discussed.

2. THEORY AND METHOD

2.1. Transport theory and RTE

In BLT, forward problem is to find the photon density in the biological tissue and the outgoing
flux on its boundary. Photon transport in biological tissue can be described with RTE based on
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transport theory [12, 19]
�L(r, ŝ, t)/V

�t
= −ŝ ·∇L(r, ŝ, t)−(�a+�s)L(r, ŝ, t)

+�s

∫
4�

L(r, ŝ′, t)P(ŝ′ · ŝ)dŝ′+S(r, ŝ, t) ∀r ∈� (1)

where L(r, ŝ, t) denotes radiance at position r at time t into direction ŝ in the unit of Wmm−2 sr−1,
V the velocity of light in tissues, �a and �s are absorption and scattering coefficients, respectively,
in mm−1, Phase function P(ŝ′ · ŝ) represents the probability distribution of light with propagation
direction ŝ′ scattered into the direction ŝ, S(r, ŝ, t) is the inner light source in Wmm−3 sr−1.

2.2. Diffusion approximation and boundary conditions

The RTE is difficult to solve since there are six independent variables. The RTE is usually simplified
by diffusion approximation for high-scattering and low-absorption medium (�a��s), where the
radiance L(r, ŝ, t) is expanded to the first order of spherical harmonics. Thus the RTE (1) can be
reduced to the DE [16]

∇ ·D(∇�(r, t))−�a�(r, t)= ��(r, t)/V

�t
−S(r, t) ∀r ∈� (2)

where �(r, t) is the instantaneous photon flux density at time t in Wmm−2, D=1/(3(�a+
(1−g)�s)) the optical diffusion coefficient in mm and g the anisotropy parameter.

Let S(r, t)=�(r, t) and � be an infinite homogeneous domain, we can get Green’s function
solution to the DE:

�(r, t)=V (4�DV t)−3/2 exp[−r2/(4DV t)−�aV t] ∀r ∈� (3)

For an arbitrary source, the solution to Equation (2) can be obtained by the following convolution:

�(r, t)=�(r, t)∗S(r, t)=
∫ t

0

∫
�

�(r−r ′, t− t ′)S(r ′, t ′)dr ′dt ′ (4)

If the measurement is carried out in an ideal environment without outer light interference, the
boundary condition for Equation (2) can be expressed as [23]

�(r, t)+2A(r;n,n′)D(�·∇�(r, t))=0 ∀r ∈�� (5)

where � is the unit outer normal on boundary, n and n′ are the refractive indices of inner and outer
medium, respectively, A(r;n,n′) can be approximated as

A(r;n,n′)≈(1+R(r))/(1−R(r)) (6)

where n′ is close to 1 when experiments are performed in air, R(r) is a parameter governing the
internal reflection on boundary �� [19]:

R(r)≈−1.4399n−2+0.7099n−1+0.6681+0.0636n

According to Fick’s law, the outgoing flux density measured on the boundary is [8]:
G(r, t)=−D(�·∇�(r, t))=�(r, t)/(2A(r;n,n′)) (7)
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In real experiments, the bioluminescent sources are usually provided by mixing different chem-
ical solutions, which can release constant power during quite a long period. This means we usually
deal with photon flux density independent of time. From Equations (2) and (5), we can get the
steady-state form of DE and its boundary condition as follows:

−∇ ·(D∇�(r))+�a�(r) = S(r) ∀r ∈�

�(r)+2A(r;n,n′)D(�·∇�(r)) = 0 ∀r ∈��
(8)

2.3. Analytical solution to steady-state DE

It is difficult to obtain an analytical solution to the DE in most practical cases. However, when
the model is simple, for example, infinite homogeneous medium enclosing a spherical source,
the analytical solution can be calculated through Equation (4). The power density of a uniform
spherical solid source in a three-dimensional spherical coordinate system can be written as [16, 24]

S(r,�,�)=
{
p for 0���2�,0����,0�r�r0

0 else
(9)

where p is the light source power in W , r0 is the radius of the spherical source in mm, � denotes
the polar angle and � the azimuthal angle.

Substituting Equation (9) into Equation (4) and simplifying the convolution, we can derive the
analytical solution to the steady-state DE [24]:

�(r)= p exp[−�effr ]
r D(�eff)2

(
r0 cosh(�effr0)−

1

�eff
sinh(�effr0)

)
(10)

where r0 denotes the radius of the spherical source, r denotes the distance between the source
surface and measuring point, �eff is the effective attenuation coefficient defined as �eff=

√
�a/D.

2.4. Weak form and FEM formulation

The weak form of Equation (8) is to find �(r) such that∫
�
D∇�(r)·∇�(r)dr+

∫
�

�a�(r)�(r)dr+
∫

��

1

2A
�(r)�(r)dr =

∫
�
S(r)�(r)dr (11)

where �(r) is an arbitrary piecewise continuous test function [23]. According to the standard finite
element analysis, domain � is decomposed into T vertex nodes (N1,N2, . . . ,NT ) and Ne mesh
elements, denoted as el (l=1,2, . . . ,Ne). Let the set E={el} be triangulation. Then �(r) can be
expressed approximately as

�(r)≈�h(r)=
T∑

k=1
�k�k(r) ∀r ∈� (12)

where �k is the approximate nodal value of �(r) on the node Nk,�k(r) is the nodal basis function
with support over the elements el , which have the node Nk as a common vertex. In the same way,
the source is approximated as

S(r)≈ Sh(r)=
T s∑
k=1

sk	k(r) ∀r ∈� (13)
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where {sk} is the interpolation node values of S(r) and 	k(r) the interpolation basis functions,
which may be the same with or different from �k(r),T s is the number of interpolation basis
functions. Usually, tissue consists of several organs and T s is much smaller than T . We adopt a
global node numbering scheme for each organ and light source to deal with the discontinuities in
optical coefficients. Using �k(r) as the test function and substituting Equations (12) and (13) into
Equation (11), we have:

∑
i, j

{∫
�
D∇�i ·∇� j dr+

∫
�

�a�i� j dr+
∫

��

1

2A
�i� j dr

}
�i =

∑
i, j

{∫
�

	i� j dr

}
si (14)

By defining the system matrix M=(Mi j )∈ RT×T and the vector F=( fi )∈ RT×1:

Mi j =
∫

�
D∇�i ·∇� j dr+

∫
�

�a�i� j dr+
∫

��

1

2A
�i� j dr

fi = ∑
j

{∫
�

	i� j dr

}
si

Equation (14) becomes a linear equation as follows:

M�=F (15)

where �=(�i ), i=1,2, . . . ,Ne. M is a sparse, symmetric and positive-definite system matrix.
Hence, the solution to Equation (8) is to find out a series of nodal values of �(r).

As a linear equation, Equation (15) is generally solved by direct solvers or iterative solvers. The
formers introduce matrix factorization and Gauss elimination, while the latters need initial values
and proper preconditioners to accelerate the convergence.

2.5. High-order basis functions

As was mentioned above, domain under investigation is partitioned into a set of mesh elements.
These finite elements are of simple shapes, such as triangle, quadrilateral for 2D domain and
tetrahedron, prism for 3D domain. Since triangular elements have better approximation of irreg-
ular geometry, we employ tetrahedral elements for subdomains and triangular elements for the
boundary.

After the discretization of domain � into finite elements, approximations to the dependent
variables need to be introduced, as illustrated in Equation (12). That means one should approximate
�(r) with a function �h(r) in finite element spaces. �k is called degrees of freedom (DOFs),
and �k(r) the nodal basis function. In terms of the finite element, basis function can be linear,
quadratic, cubic or even higher order [25, 26]. In this paper, we construct piecewise continuous
basis functions by using Lagrange interpolation.

For 1D domain, �(x), which passes through n+1 points (x0, y0), (x1, y1), . . . , (xn, yn), is a
linear combination of Lagrange interpolation basis functions:

�(x) =
n∑

k=0
yk Nk(x)

Nk(x) :=
n∏
j=0
j 	=k

(x−x j )

(xk−x j )

(16)

Copyright q 2008 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2009; 25:667–681
DOI: 10.1002/cnm



672 Y. HOU ET AL.

It is obvious that 1D Lagrange basis functions satisfy following properties [27]:
(1) 0�Nk(x)�1.
(2) Nk(x j )=� jk .
(3)

∑
k Nk(x)=1.

According to the definition in Equation (16), �k(x) is of degree at most n−1. The more points
that are used in the interpolation, the higher the degree of the basis function, as shown in Figure 1.

For 2D domain, the description of basis functions is simplified by the introduction of barycentric
coordinates [28] for simplicity. In the context of triangle, barycentric coordinates are also known
as area coordinates. As illustrated in Figure 2, coordinates of P with respect to triangle ABC are
proportional to the areas of PBC, PCA and PAB.

If we define:

L1= S�PBC

S�ABC
, L2= S�PCA

S�ABC
, L3= S�PAB

S�ABC
(17)

The area coordinates (L1, L2, L3) of vertices A, B and C are (1,0,0), (0,1,0) and (0,0,1),
respectively. Obviously, L1, L2 and L3 satisfy properties (1), (2) and (3). Thus we can express

Figure 1. 1D Lagrange interpolation basis function: (a) linear; (b) quadratic; and (c) cubic.

Figure 2. Triangular area coordinates for linear basis function.
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Figure 3. Triangular area coordinates for quadratic basis function.

�(r) as a combination of linear Lagrange interpolation basis functions

�(r)=
3∑

k=1
�k�k(r) ∀r ∈�Pi Pj Pm (18)

where �k = Lk,k = 1, 2, 3.
Because area coordinates do not depend neither on the shape nor on the position of the triangular

finite element, it is quite convenient to derive the quadratic and cubic Lagrange interpolation basis
functions

�k =
m∏
j=1

f (k)
j (L1, L2, L3)

f (k)
j (L1k, L2k, L3k)

, k=1,2, . . . ,N (19)

where m is the degree of �k, f
(k)
j (L1, L2, L3) is the left-hand side of straight-line

equation excluding the kth node, f (k)
j (L1k, L2k, L3k) the area coordinates on the kth node,

N=(m+1)(m+2)/2 the number of nodes contained in the triangular element.
Based on Equation (19), it needs to add other three nodes to build quadratic basis function,

as shown in Figure 3. Nodes 4 to 6 are the midpoints of three edges, and �(r) is expressed as
follows:

�(r)=
6∑

k=1
�k�k(r) ∀r ∈�ABC (20)

where �k = Lk(2Lk−1), k=1,2,3, �4=4L2L3, �5=4L3L1, �6=4L1L2.
Likewise, the basis functions of different orders for 3D can be constructed by the introduction

of volume coordinates. In general, basis function of high order specifies a finite element space
with better accuracy while the drawback is that DOFs increase.

2.6. Error estimation and convergence

FEM formulation is the discretization of the original problem, the error between exact solution
and approximation is bounded by [29]

‖�−�h‖�Chmin(m−1,p) (21)

Copyright q 2008 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2009; 25:667–681
DOI: 10.1002/cnm



674 Y. HOU ET AL.

where ‖·‖ denotes the Euclidean norm, h is the maximum mesh size, p is the degree of the basis
function and m is a measure of the order of the singularity in the problem. In order to reduce the
error, three versions of FEM may be adopted, which correspond to shortening the element size by
h-adaptivity, increasing the degree of basis function by p-adaptivity and swapping the edge and
facet of the element by r-adaptivity, respectively.

In theory, if the maximum mesh size is sufficiently small, the numerical solution to Equation (15)
could converge to the exact solution of Equation (8) [23]. But the smaller h is, the more unknowns
in Equation (15), need to be found out. In practice, we usually have to make a tradeoff between the
solution accuracy and computation overhead. In this paper, h-p FEM is applied, where convergence
can be achieved by refining mesh element or by increasing the approximation order or by a
combination of both [30]. Convergence order n is evaluated by:

n= ln‖�−�h‖− ln(c)

ln(h)
, c∈(0,1] (22)

In the next section, we will study the effects of h and p on the accuracy and the convergence
of FEM solutions with numerical simulation and physical experiment.

3. SIMULATION AND EXPERIMENT

In study of BLT forward problem by FEM, the domain under consideration is first described
by creating geometry. Second, the region of interest (ROI) is discretized into finite elements by
meshing, and then through assigning relevant parameters and selecting appropriate basis functions
we form a group of linear equations as described in Section 2. Finally, a proper solver is employed
and the unknown variables are determined. Extensive comparisons were made to evaluate the
effects of high-order FEM on the accuracy of solution and the efficiency of computation. In our
simulations, we partitioned the geometric model into tetrahedral elements with Netgen 4.3, and the
main computational platform is a Compaq desktop computer, dc7700 with Intel CoreTM 2 CPU
6300 @ 1.86GHz and 2GB RAM.

3.1. Comparison with analytical solution

3.1.1. The accuracy of FEM solution. In order to examine the accuracy compared with the analyt-
ical solution obtained by Equation (10), we adopted the homogeneous phantom from Hui [16].
As shown in Figure 4(a), the phantom consists of concentric spheres. The inner ball of the radius
0.3mm was a solid uniform light source with power of 1�W. The outer was the tissue with optical
parameters of �a=0.082mm−1, �s=10.27mm−1, g=0.90 and n=1.37. Figure 4(b) shows the
phantom mesh after discretization with a radius of 4mm and moderate mesh size. With radius
of tissues varying from 2 to 10mm, we obtained a group of flux density values. Because the
solutions to Equation (15) were the nodal values of �(r) on overall nodes, whereas the solution to
Equation (10) was a point value on the phantom surface, some work must be done as a necessary
preprocessing step. Here, we integrated solutions over the tissue surface to derive the photon flux
in Watt.

As it was expected, both results from FEM and analytical formula declines with the increasing
radius of phantom surface, as shown in Figure 5. The numerical solutions show good accordance
with the analytical solutions.
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Figure 4. Spherical homogenous phantom containing a solid ball source: (a) geometric model and
(b) mesh elements after moderate discretization.

Figure 5. Comparison between FEM solution and analytical solution.

3.1.2. The convergence of high-order elements. We constructed basis functions by Lagrange inter-
polation in this paper. The basis function is a piecewise continuous on each element and its degree
is equal to the order of the Lagrange element. The higher the order is, the smoother the basis
function is, and the better the numerical solution approaches the true solution [15, 24]. Three
groups of FEM solutions were obtained by adopting tetrahedral elements of different orders, all
the geometric and optical parameters were the same as those in Section 3.1.1 except that the tissue
was fixed with a radius of 4mm. Figure 6 demonstrates the comparison, and Tables I and II list
the quantitative results.

As shown in Figure 6, fast convergence can be achieved, when the exact solution is smooth and
higher-order finite elements are adopted. Particularly, the FEM solution with cubic element can
achieve a fairly good consistency with the analytical solution even on coarsest meshes. Hence, it
is quite wise to employ elements of higher order than just to refine the meshes further, especially
when both of them promise the similar accuracy, as listed in Tables I and II. For BLT forward
problem, FEM solution with quadratic element on coarse mesh is able to make a good tradeoff
between precision and efficiency.

3.2. Comparison with MC simulation

Because of its accuracy and flexibility, MC method has been established as a gold standard for
photon propagation simulation in turbid medium. We also performed the numerical experiment to
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Figure 6. FEM solutions with tetrahedral elements of different orders.

Table I. The quantitative results of FEM solutions with different order elements compared with the
analytical solution, which are considered as exact solution and its power is 0.236mW.

Finite element Tetrahedra Degree of freedoms Relative error Elapsed time

Linear 226 599 40 214 −0.85% 13.5 s
Quadratic 2124 2058 −0.85% 0.6 s
Cubic 1158 5062 +0.85% 1.2 s

Table II. The convergence orders of FEM solutions with different order elements.

Linear element Quadratic element Cubic element

Error Convergence Error Convergence Error Convergence
Mesh sizes Tetrahedra norm order norm order norm order

Coarsest 1158 0.062 0.5 0.003 3.6 0.002 4.1
Coarser 2124 0.039 0.8 0.002 3.4 0.002 3.4
Coarse 4456 0.014 1.4 0.001 3.3 0.002 2.8
Moderate 11070 0.013 1.2 0.001 2.7 0.002 2.3
Fine 20847 0.009 1.2 0.001 2.4 0.002 2.0
Finer 58798 0.005 1.3 0.002 1.7 0.002 1.7
Finest 220001 0.002 1.4 0.002 1.4 0.002 1.4

compare the accuracy between MC and quadratic FEM. A cylindrical phantom of diameter 19mm
and height 30mm was used. It had the optical parameters of �a=0.01mm−1, �s=3.0mm−1,
g=0.80 and n=1.37. The phantom was discretized into 20 365 tetrahedral elements and 3805
nodes. A total 301 virtual detectors were placed on the phantom surface to record the photon
flux density. The phantom was embedded with two light sources, whose parameters were listed in
Table III.
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Table III. The parameters of light source.

Source no. Shape Center (mm) Diameter (mm) Height (mm) Power (nW)

1 Cylinder (0, 0, 19.9) 0.4 1 170
2 Cylinder (6, 0, 19.9) 0.4 1 170

Figure 7. Comparison between FEM solution and MC simulation.

It took about 2 h to perform MC simulation in molecular optical simulation environment [31].
Figure 7 shows that the solution obtained by quadratic FEM is in good agreement with the result
from MC simulation with a relative error (RE) of 6.3%. The RE is defined as

∑
detectors |�MC−

�FEM|/∑
detectors�MC [32]. Compared with MC, the quadratic FEM had an excellent computation

efficiency that it spent less than 8 s in solving the same problem.

3.3. Comparison with CCD measurement

We adopted the same phantom and method to perform the physical experiment, as reported in the
literatures [23, 33]. The mouse chest phantom of 30mm height and 30mm diameter consisting of
four different high molecular polymers to represent muscle (M), lungs (L), heart (H) and bone
(B), respectively, as shown in Figure 8(a). Table IV lists the corresponding optical parameters.

The luminescent light stick (Glowproducts, Canada) was selected as the testing light source,
which could last for about 4 h at an emission wavelength around 700 nm. Two light tubes were
placed inside the two small holes with their centers at (−9.0,1.5,15.0) and (−9.0,−1.5,15.0)
in the left lung. Their power were 105.1 and 97.4 nW, respectively. A scientific nitrogen-cooled
CCD camera (Roper Scientific Inc, Trenton, NJ) was used for recording the flux density on the
cylindrical surface of the phantom, as schematically shown in Figure 8(b).

While obtaining FEM solutions, we had implemented three groups of simulation under different
settings. The phantom was discretized into 21 673 linear elements with the coarsest mesh size,
65 529 linear elements with coarse mesh size and 21 422 quadratic elements with the coarsest mesh
size, in Simulation 1, 2 and 3, respectively. Figure 9 gives the CCD measurement and the result
of Simulation 3. The image in Figure 9(b) was transformed from the flux density on the phantom
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678 Y. HOU ET AL.

Figure 8. Heterogeneous physical phantom: (a) the phantom consisting of muscle (M), lungs (L), heart
(H) and bone (B) and (b) a cross-section through light sources in the left lung. The arrow shows the

camera direction during data acquisition.

Table IV. Optical parameters of the physical phantom.

Material �a (mm−1) �s (mm−1) g n

Tissue (T) 0.007 10.31 0.90 1.37
Lung (L) 0.023 20.00 0.90 1.00
Heart (H) 0.011 1.96 0.90 1.37
Bone (B) 0.010 3.00 0.98 1.37

Figure 9. Bioluminescent images of front view: (a) CCD measurement and (b) FEM simulation.

surface by geometric mapping. Both CCD measurement and FEM simulation data were mapped
into 24 b bitmap after regularization to simplify the comparison.

We sampled the middle two columns in Figures 9(a) and (b) to make quantitative comparisons,
and detailed results are plotted in Figure 10.

As illustrated in Figure 10, simulation 3 with quadratic elements and the coarsest meshes
matches CCD measurement best. The mean REs of simulation 1, 2 and 3 are 4.2, 3.2 and 2.8% and
the maximum REs are 20.3, 14.3 and 6.8%, respectively. It took 6.9, 15.7 and 12.6 s to perform
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Figure 10. Relative errors (RE) between experimental measurement and
three groups of numerical simulation.

simulation 1, 2 and 3. That means simulation 3 based on quadratic elements has the obvious
advantages of accuracy and efficiency over simulation 1 and 2, which are based on linear elements.

4. DISCUSSIONS AND CONCLUSIONS

FEM is feasible for the numerical study of BLT forward problem. In this paper, we elucidate the
BLT forward problem, introduce the formulation by finite element analysis and discuss FEMs with
varying mesh size and varying basis function degree. Both numerical and experimental studies
on the accuracy and the convergence of FEM solution are made. As the results indicate, based
on proper mesh size and basis function degree, accurate FEM solutions to DE can be obtained
efficiently. Moreover, adopting higher-order finite elements will achieve much better accuracy
and convergence than just refining the meshes further. For BLT forward problem, quadratic finite
elements of coarse size are able to make a good tradeoff between solution accuracy and computation
efficiency.

Since the system matrix is sparse and symmetric, specialized techniques on the storage and
manipulation for sparse matrix can be employed. When decomposing the geometry into mesh
elements, we can only refine ROI (e.g. light source domain), while keeping the remainder intact.
Our future work is to focus on the adaptive meshing and multiple sources with complicated tissues.
Relevant results will be available later.
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