
Addressing Reward Engineering
for Deep Reinforcement Learning

on Multi-stage Task

Bin Chen1,2 and Jianhua Su1(B)

1 The State Key Laboratory of Management and Control for Complex Systems,
Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

{chenbin2017,jianhua.su}@ia.ac.cn
2 The school of Artificial Intelligence, University of Chinese Academy of Sciences,

Beijing, China

Abstract. In the field of robotics, it is a challenge to deal with multi-
stage tasks based on Deep reinforcement learning (Deep RL). Previous
researches have shown manually shaping a reward function could easily
result in sub-optimal performance, hence choosing a sparse reward is a
natural and sensible decision in many cases. However, it is rare for the
agent to explore a non-zero reward with the increase of the horizon under
the sparse reward, which makes it difficult to learn an agent to deal with
multi-stage task. In this paper, we aim to develop a Deep RL based policy
through fully utilizing the demonstrations to address this problem. We
use the learned policy to solve some difficult multi-stage tasks, such as
picking-and-place, stacking blocks, and achieve good results. A video of
our experiments can be found at: https://youtu.be/6BulNjqDg3I.

Keywords: Deep reinforcement learning · Robotic manipulation ·
Multi-stage task

1 Introduction

In recent years, the research of robotic grasping strategies has attracted increas-
ingly attention in the field of robotic manipulation. A key challenge is how to
perform a successful grasping without a prior knowledge of the manipulated
object. Analytic or model-based method can achieve excellent performance to
situations that satisfy their assumption. However, the complexity and diversity
of objects in a new environment have a tendency to confound these assump-
tions, hence learning-based methods have emerged as a powerful complement.
Recently, using end-to-end approaches to handle robotic manipulation tasks has
achieved great success both in the simulation environment [4] and in the real
environment [9].

Using deep reinforcement learning to handle multi-stage tasks is often chal-
lenging due to the lack of professional knowledge of a special task. A way to deal

c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, CCIS 1143, pp. 309–317, 2019.
https://doi.org/10.1007/978-3-030-36802-9_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36802-9_33&domain=pdf
https://youtu.be/6BulNjqDg3I
https://doi.org/10.1007/978-3-030-36802-9_33

310 B. Chen and J. Su

with this situation is only to provide a sparse reward − +1 for success and 0
for failure. In many cases it is difficult for an agent to learn a feasible action at
every moment in each episode for the delaying of the reward.

(a) Pick-and-place

(b) Stack blocks

Fig. 1. Frames from rollouts of the learned policy are shown above. (a) This is a
picking-and-place task, which is a classic robotic manipulation task from industry to
service robot. (b) This is a stacking blocks task, and robot must place one block to the
top of another block one by one.

There are many works to deal with the grasping task with learning-based
approaches, and these methods can be divided into two classes: reinforcement
learning and imitation learning(similar to supervised learning or learning from
demonstrations). For reinforcement learning, most of prior works [6,7] only train
a Deep RL policy to grasp an object with 4-D actions (x, y, z, θ), where the last
dimension specifies the anger of two gripper fingers. Hence, these policies often
fail to work when grasping irregularly shaped objects. In contrast, imitation
learning can learn an end-to-end policy to deal with this problem [8,11] if there
is enough labeled-data to be provided for training. Although the results are
impressive, it’s restricted for the widespread using of imitation learning as the
large amount of data are needed to be collected. In our work, we extend the
learning action to the 5-D space (x, y, z, rz, θ) based on the Deep RL method,
where the learned 4th dimension action is related to the posture of the object.

In reinforcement learning, learning a policy through sparse rewards has been
popular with researchers for people do not need the special knowledge to design
a reward function. However, learning an available policy is a huge challenge with
the increase of the horizon under the sparse reward, which makes it difficult to
deal with the long-horizon multi-stage task. There some related works [3,6,10]
combine demonstrations with RL algorithm to deal with this problem. The work
of [3,6] are essentially the same while they forcing the action generated by the
policy the same as the action from the demonstration by adding an additional
loss function. The method proposed in [10] is more reasonable while it gives

Addressing Reward Engineering for Deep RL on Multi-stage Task 311

different sampling probabilities through the importance of different transitions,
which increases the using-efficiency of transitions.

In this work, we use the improved Deep reinforcement learning algorithm
Deep Deterministic Policy Gradient (DDPG), combined with the our proposed
method to train an agent to complete the multi-stage task with high success rate
and good learning efficience. The input of the policy is only RGB image and
auxiliary low-dimensional information (joint angles, gripper state, etc). Figure 1
shows the images we put into the policy and the robot manipulation tasks we
are going to complete. Further more, we extend the learning action to the 5-D
spaces (x, y, z, rz, θ), which ensures the agent can adjust the angle of the z-axis
according to the variety of the shape of different objects and greatly improves
generalization ability of the policy. In summary, the main contributions of our
work are as follows:

1. In order to make full use of the demonstration data to improve learning
efficiency, we artificially make the network fully utilize the state-action pairs
in demo until the performance of the actions generated by the network exceeds
the actions in demo.

2. Most of the work focus on learning actions limited to 4-D spaces, while we
extend the learning actions to 5-D spaces, which is proved to be a significant
work for improving the generalization ability of the learned policy.

2 Background

2.1 Reinforcement Learning

We consider the continuous space Markov Decision Process which can be denoted
as the tuple (S,A, P, r, γ, S−), where S is a set of continuous states, A is a
set of continuous actions, P is a state transition probability function, r is a
reward function, γ is a discount factor and S− is a set of initial continuous
states. In reinforcement learning, the goal is to learn a policy at = π(xt) to
maximize the expected return from the state ti, where the return can be denoted
by Rt =

∑T
i=t γi−tri and T is the horizon that the agent optimizes.

Various reinforcement learning algorithms have been proposed in order to
solve the max expected return problem in RL. Most of the methods involve
constructing an estimate of the expected return from a given state after taking
an action:

Qπ(st, at) = Eri,si,ai
(

T∑

i=t

γi−tri|st, at) (1)

= Ert,st+1,ai E [rt + γEat+1(Qπ(st+1, at+1))] (2)

where the Qπ(st, at) is called the action-value function. Equation 2 is a recursive
version of Eq. 1, which is known as the Bellman equation.

In this work, we combine our method with a reinforcement learning algo-
rithm: Deep Deterministic Policy Gradient (DDPG). DDPG is an actor-critic

312 B. Chen and J. Su

method which bridges the gap between policy gradient methods and value
approximation method for RL, hence it composes of actor network π(s) and
critic network Q(s, a|θQ). However, experiments have shown if we only use sin-
gle ’Q-network’, it will make the learning process unstable − the parameters of
the critic network for calculating the Q function are employed to calculate the
gradient of the actor network while performing frequent gradient updates. We
can better understand this process with reference to Eqs. (3–5). In order to sta-
bilize learning, DDPG creates two target networks for actor network and critic
network, respectively. The update of the critic network is similar to the method
of supervised learning. The formula of the loss is:

L =
1
N

∑

i

(yi − Q(si, ai|θQ))2 (3)

where yi can be seen as a ‘label’:

yi = ri + γQ
′
(si+1, μ

′
(si+1|θμi

)|θQ
′
) (4)

When updating the actor network by off-policy method, the policy gradient of
the strategy is as follows:

∇θπJβ(π) = Esρβ [∇aQ(s, a|θQ)|a=π(s).∇θππ(s|θπ)] (5)

Note π is an actor policy at = π(st|θ), and β is a behaviour policy at = π(st|θπ)+
Nt used to explore potential better policies, where Nt is a Uhlenbeck-Ornstein
(UO) stochastic process as a random noise.

2.2 DDPG from Domenstrations

In our method, we use sparse reward as a feedback to an agent, in which the
agent would get +1 reward when success otherwise getting 0. However, com-
bining sparse reward with raw DDPG algorithm to deal with the multi-stage
task is impossible as sparse reward can not give enough information to update
parameters in right way. This problem can be partly overcome with the demon-
strations as the agent can learn a suitable policy for completing the task from the
demonstrations. Moreover, prioritized experience replay [10] modifies the agent
to sample more important transitions from its replay buffer more frequently.
The probability that each particular transition in the replay buffer is extracted
as P (i) = pα

i∑
k pα

k
, where p(i) represents the priority of each transition. In the

experiment, pi = δ2i + λ|∇aQ(si, ai|θQ)|2 + ε, where δi is the last TD error
calculated for this transition, the second term is the loss applied to the actor,
ε is a positive constant to ensure that all transitions have a certain probabil-
ity of being sampled, and λ is used to weight the contributions. DDPGfD [10]
merged the above two strategies and made further improvements. It collected
the demonstration before pre-training, as well as initialized the replay buffer
with the demo, and pre-trained the agent with the demo transitions. Besides,
they set pi = δ2i + λ|∇aQ(si, ai|θQ)|2 + ε + εD, where εD is a positive constant
for demo transitions to increase their probability of being sampled.

Addressing Reward Engineering for Deep RL on Multi-stage Task 313

3 Methods

3.1 Behaviour Clone Loss and Reward

[6] introduced a method of adding loss function to the network, which made full
use of the positive effects of the demonstration on policy training. This loss is
applied only when a demonstration is sampled from the replay buffer for training.
When the value function Q(ad) generated by the action ad in the demonstration
is bigger than Q(at), it means that ad is closer to the optimal action than at. At
this time, they would give the policy a penalty item LBC , and encouraged the
policy to propose the same action as the demonstration in the given state.

LBC =

{
|π(od) − ad|, if Q(sd, ad) > Q(sd, π(od))

0, otherwise
(6)

However, this way of adding loss to the network seems still does not fully utilize
the information in the demonstration. When each transition is collected from the
demonstration for the reason of initializing the replay buffer and pre-training the
policy for multi-stage task, the previous work always sets the reward for each
state transition to 0, while only the last state transition step is set to 1, as shown
in formula 7. Note that T is the total step size for an episode. However, if we
set the reward of the corresponding action in most transitions to 0, the agent
may consider this action to be undesirable and reject this action in training
(since reward is 0, the corresponding Q target value is smaller) even though
this action may benefit completing the task. Therefore, we set the reward of all
the transitions to 1 for an episode if the task is completed successfully when
collecting the transition. In the early stage of training, this method ensures the
policy generate the action the same as the demonstrator in the given state. In
the later stage of training, we use the Q filter method proposed in [6] to ensure
that the agent can use the Q-value to determine whether to use the action in
demonstration or not. It should be noted that this method is compatible with
the behavior clone Loss.

rt =

{
1, if t = T

0, otherwise
(7)

3.2 Extend the Learning Action to 5-D Spaces

For most of the Deep RL based policy only learning a 4-D action (x, y, z, θ) to
deal with the grasping task, it’s often fail to work if we are going to grasp irreg-
ularly shaped objects as be shown in Fig. 2(a). Hence, in our work we extend the
learning action to the 5-D space (x, y, z, rz, θ), where the learned 4th dimension
action is related to the posture of the object. Figure 2(b) shows the framework
of our method. The input of the actor network includes RGB image and full-
low dimensional state, while the twin critic networks only receive the full-low
dimensional state as input. Besides, we add the detection loss to actor loss to
help the policy recognize the essential scene features quickly. The output of the
actor network is a 5-D actions.

314 B. Chen and J. Su

(a) Predict the possible grasping points
for a given observation

(b) Framework of the proposed Method

Fig. 2. We extend the learning action to 5-D spaces. (a) If we only learn 4-D actions,
the predicting points is not always leading to successfully grasping (top), while the
learned 5-D actions from our method could predict the better grasping points (bottom).
(b) The framework of the proposed method.

4 Experimental Results

4.1 Environmental Setup

We evaluate our algorithm on several simulated Pybullet [2] environments. In
simulation environment we use the Kuka robot and a robotic grippers which
proposed by Pybullet. In the collection of demonstration’s data, the observation
is rendered by a virtual camera and the states of environment, such as robot arm
state, gripper state, goal position can be obtained by corresponding api function.
In our experiments, we will perform the experiments in a 5-D space as the extra
dimension representing the angle of rotation around the z-axis.

4.2 Evaluation

Comparison with Prior Work. In this section, we will demonstrate the supe-
riority of our algorithm through comparing with several competitive methods by
executing the picking-and-place and stocking blocks task. [1] proposed a ‘HER’
algorithmof storing experienced transitionswith different goals in the replay buffer
used in off-policyRLalgorithms that allows to learn the policymore efficientlywith
sparse rewards. [5] proposed a method which incorporates several improvements to
DDPG and can accomplish most of the simple tasks with excellent results, and we
call this method ‘Rainbow-DDPG’. [7] proposed an asymmetric actor critic algo-
rithm for visual-based task in which the critic is trained on full states while the
actor is trained on images and we call this algorithm ‘AAC’.

In our experiments, we all use a fully sparse reward to train the policy, where
the policy get a +1 reward if the object is at its goal position after rollouts ending.

rt =

{
1, if ||xi − gi|| < δ

0, otherwise
(8)

where the threshold δ is 3 cm.

Addressing Reward Engineering for Deep RL on Multi-stage Task 315

(a) Pick-and-place (b) Stock blocks

Fig. 3. We compare our method with some existing competitive methods and as can be
seen our method outperforms these methods. (a) Evaluation experiments on picking-
and-placing task. (b) Evaluation experiments on stacking blocks task.

Table 1. Comparison of our method with baselines

Task Ours Rainbow-DDPG AAC HER

Pick-and-place 95% 87% 50% 0%

Stack blocks 86% 72% 38% 0%

Table 1 reports the results of our evaluation experiments. The effect of our
method and ‘Rainbow-DDPG’ are more outstanding compared with the ‘AAC’
and ‘HER’. The main factor is that we utilize demonstration and take some
strategies to make the action generated by the policy close to the demo, which
greatly improves the success rate of learning. Figure 3 shows the variation of
the reward value during training. We run the each experiment 5 times in each
episode, and the corresponding reward value of each time step takes the average
of the past 10 episodes experimental results, so the curves report the mean of
past 50 experimental results. We adapt most of the improvements proposed in
‘Rainbow-DDPG’, as well as our own methods, and achieve competitive results.

As can be seen from Fig. 3, HER is unable to complete this task. While
Marcin Andrychowicz et al. explained in their paper that they could use HER to
complete the pick-and-place task, which seems to be contrary to our experimental
results. However, in their experiments, they assumed that the agent have got the
knowledge of the first half rollouts action (the box is grasped) before training
and the agent only needs to learn the action of rollouts in the latter half, which
greatly reduces the difficulty of learning the task. In our experiments, if we don’t
give any extra information to the agent about the task, it’s almost impossible
to complete the pick-and-place task through HER.

316 B. Chen and J. Su

Extend the Learning Action to 5-D Spaces. In this study, we only use
the improved reinforcement learning algorithm proposed in this paper to learn
a policy to grasp the irregularly shaped objects. We only compare the results of
grasping objects through the learned 4-D and 5-D actions by method proposed
in this paper due to the lack of existing methods for learning 5-D actions through
reinforcement learning as baseline. Table 2 shows that for objects with irregular
shapes, the learned 5-D actions can greatly improve the success rate of grasping.
Although our results are not outstanding enough for they do not reach the
level of supervised learning, the advantage of reinforcement learning does not
require a large number of annotation data drives us to explore the potential of
reinforcement learning algorithms to accomplish more difficult grasping tasks.

Table 2. The success rate comparison for learning different actions

Task
Learning

4-D action
Learning

5-D action

Pick-and-place for
irregularly shaped objects

54 % 72 %

In order to test the ability of the agent to analyze the scene for a given image,
we force the agent to predict the state of the key elements in the scene at each
moment, such as object position, gripper position. In Fig. 4(b), we show the loss
curves of the object-position, the robot gripper-position and the target-position,
respectively. It can be seen that as the training going, the agent can analyze the
location of each element accurately.

Fig. 4. (a) Evaluation experiments on grasping the irregularly shaped objects while
learning different actions. (b) The loss curve of the object-location, the robot gripper-
location and the target-location. It can be seen that as the training going, the agent
can analyze the location of every element in the scene accurately.

Addressing Reward Engineering for Deep RL on Multi-stage Task 317

5 Conclusion and Future Work

In this paper, we improve the policy based on DDPG by incorporating several
improvement methods and achieve impressive results on the multi-stage task. In
the experiment, compared with some baselines, the performance of the policy
proposed is of the great improved. At the same time, we extend the learning
action to 5-D space, which greatly improves the generalization of the policy.

In future work, we will deploy our algorithm to real word robots. For the
most domain adaption technologies are achieved by enriching the diversity of
elements in the scene, hence the success of the method in the real environment
is depend on the diversity of environment during training. The limitations of
this approach have been reflected in many of the previous works. Therefore our
further research will focus on exploring a domain adaption technique that allows
the algorithm to maintain comparable performance in the real world as it does
in the simulation environment.

Acknowledgements. This work was supported in part by NSFC under Grant
No.91848109, supported by Beijing Natural Science Foundation under Grant
No.4182068 and supported by Science and Technology on Space Intelligent Control
Laboratory under No. HTKJ2019KL502013.

References

1. Andrychowicz, M., et al.: Hindsight experience replay. In: Advances in Neural
Information Processing Systems, pp. 5048–5058 (2017)

2. Coumans, E., Bai, Y.: Pybullet, a python module for physics simulation for games,
robotics and machine learning. GitHub repository (2016)

3. Hester, T., et al.: Learning from demonstrations for real world reinforcement learn-
ing. arXiv preprint arXiv:1704.03732 (2017)

4. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor
policies. J. Mach. Learn. Res. 17(1), 1334–1373 (2016)

5. Matas, J., James, S., Davison, A.J.: Sim-to-real reinforcement learning for
deformable object manipulation. arXiv preprint arXiv:1806.07851 (2018)

6. Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W., Abbeel, P.: Overcoming
exploration in reinforcement learning with demonstrations. In: 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 6292–6299. IEEE
(2018)

7. Pinto, L., Andrychowicz, M., Welinder, P., Zaremba, W., Abbeel, P.: Asymmetric
actor critic for image-based robot learning. arXiv preprint arXiv:1710.06542 (2017)

8. Pinto, L., Gupta, A.: Supersizing self-supervision: learning to grasp from 50k tries
and 700 robot hours. In: 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 3406–3413. IEEE (2016)

9. Popov, I., et al.: Data-efficient deep reinforcement learning for dexterous manipu-
lation. arXiv preprint arXiv:1704.03073 (2017)

10. Večeŕık, M., et al.: Leveraging demonstrations for deep reinforcement learning on
robotics problems with sparse rewards. arXiv preprint arXiv:1707.08817 (2017)

11. Viereck, U., Pas, A.t., Saenko, K., Platt, R.: Learning a visuomotor controller
for real world robotic grasping using simulated depth images. arXiv preprint
arXiv:1706.04652 (2017)

http://arxiv.org/abs/1704.03732
http://arxiv.org/abs/1806.07851
http://arxiv.org/abs/1710.06542
http://arxiv.org/abs/1704.03073
http://arxiv.org/abs/1707.08817
http://arxiv.org/abs/1706.04652

	Addressing Reward Engineering for Deep Reinforcement Learning on Multi-stage Task
	1 Introduction
	2 Background
	2.1 Reinforcement Learning
	2.2 DDPG from Domenstrations

	3 Methods
	3.1 Behaviour Clone Loss and Reward
	3.2 Extend the Learning Action to 5-D Spaces

	4 Experimental Results
	4.1 Environmental Setup
	4.2 Evaluation

	5 Conclusion and Future Work
	References

