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Abstract— Object detection methods fall into two categories,
i.e., two-stage and single-stage detectors. The former is charac-
terized by high detection accuracy while the latter usually has
a considerable inference speed. Hence, it is imperative to fuse
their merits for a better accuracy vs. speed trade-off. To this
end, we propose a dual refinement network (DRN) to boost the
performance of the single-stage detector. Inheriting from the
advantages of two-stage approaches (i.e., two-step regression
and accurate features for detection), anchor refinement and
feature offset refinement are conducted in a novel anchor-offset
detection, where the detection head is comprised of deformable
convolutions. Moreover, to leverage contextual information for
describing objects, we design a multi-deformable head, in which
multiple detection paths with different receptive field sizes
devote themselves to detecting objects. Extensive experiments on
PASCAL VOC and ImageNet VID datasets are conducted, and
we achieve a state-of-the-art detection performance in terms of
both accuracy and inference speed.

I. INTRODUCTION

Recent years have witnessed significant progress in object
detection with deep convolutional neural networks (CNN).
The prevalent detection networks fall into two categories,
i.e., two-stage approaches [1]–[5] and single-stage detectors
[6]–[12]. The two-stage process usually sees state-of-the-art
detection accuracy, but it induces high time costs. As the
pioneering work, YOLO [6] and SSD [8] made attempts
to detect objects in real time. Thus, they got rid of region
proposal and tried to localize and classify objects using a
single-shot network.

It is known that high detection accuracy of two-stage
approaches come with two major merits: i) Two-step re-
gression, i.e., a region proposal process coarsely localizes
objects, then a detection head precisely regresses them. ii)
Accurate features for detection, i.e, through ROI polling, the
features in ROI are used for classification and regression.
On the contrary, ignoring the objects’ location, the single-
stage detector directly predicts coordinates from handcrafted
anchors (reference bounding boxes), and the features for
detection are spatially fixed on feature maps. Therefore, the
SSD-like detector also should be endowed with the effective
two-stage processes. Inheriting a part of two-stage merits
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(i.e., the two-step cascaded regression), Zhang et al. proposed
a RefineDet to address class imbalance problem and elevate
detection accuracy [11]. However, features for detection still
did not follow the refined anchors. For augmenting the
spatial sampling locations, Dai et al. proposed deformable
convolutional networks to combat fixed geometric structures
in traditional convolution operation [13]. Inspired by them,
we attempt to propose a deformable architecture to seek
“accurate” single-stage features for detection.

On the other hand, the receptive field of detection head in
SSD-like networks is just suited to describe corresponding
anchor zone. However, underlying context is usually ignored,
which is crucial for object relation. For rich context, the two-
stage CoupleNet utilized global features and local parts to
describe a proposed region, and saw considerably improved
detection accuracy [5]. Therefore, the detection head of
single-stage methods is in urgent need of a contextual design.

The present study is a succeeding research and improve-
ment on SSD [8] and RefineDet [11]. We design a novel
single-stage detector with dual refinement structure, namely
dual refinement network (DRN). To inherit the merits of
both two-stage and single-stage detectors, our framework
is a single-shot network with two-step cascaded regression.
That is, refined anchors are firstly computed, which will be
used for further regression [11]. Features used for detecting
should also be refined to adapt anchor changes, so we
predict their offsets using the refined anchors, called feature
offset refinement. Composed by deformable convolutions, the
detection head takes over the feature maps, refined anchors,
and feature offsets for precise prediction, namely, anchor-
offset detection. Different from traditional deformable con-
volution, the offsets used in our deformable detection head
are predicted by refined anchors rather than the feature itself.
In consideration of contextual information are important for
describing objects, we propose a multi-deformable head with
multiple detection paths to diversify detection receptive field.
Our contributions are summarized as follows:

• Drawing inspiration from the merits of two-stage meth-
ods, we propose an anchor-offset detection including
an anchor refinement, a feature offset refinement, and
a deformable detection head to further improve the
performance of the single-stage detector.

• A multi-deformable head is designed to leverage both
region-level features and contextual information for
describing objects.

• The DRN sees 82.0% mean average precision (mAP)
vs. 55.2 frames per second (FPS) on VOC2007 test set
[15] and 69.4% mAP vs. 40.5 FPS on ImageNet VID
validation set [18].
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Fig. 1. Diagram of our designs. (a) The architecture of the DRN. The ARM and ODM are organized with FPN pipeline. Refined anchors are produced by
coarse regression with ARM features, and they are first employed to predict feature offsets, namely, feature offset refinement. The detection head utilizes
ODM feature maps, refined anchors, and feature offsets to detect objects, i.e., anchor-offset detection. Finally, a multi-deformable head is designed for rich
contextual information; (b) Detection mode of SSD; (c) Detection mode of RefineDet; (d) Detection mode of DRN. Our approach aims to use features in
refined anchors for detecting.

II. RELATED WORK

A. Single-Stage Detector

Initially, YOLO significantly improved detection speed,
but it used to miss small objects [6]. To address this problem,
SSD used shallow layers with low-level features for detecting
tiny objects [8]. Moreover, it employed convolution layers
as the detection head and saw a favorable trade-off between
accuracy and speed. Afterwards, many improved versions of
SSD have emerged. For example, Fu et al. added decon-
volution module behind convolution layers to include more
high-level expression in small object detection [9]; Lin et al.
developed a RetinaNet with feature pyramid networks [14]
for propagating information in a top-down manner to enlarge
shallow layers’ receptive filed [10]. Zhang et al. proposed
a RefineDet with strategies of two-step cascaded regression
and negative anchor filtering to deal with class imbalance
problem [11]. RefineDet inherited a part of merits of two-
stage detectors, and it performed well in terms of accu-
racy vs. speed trade-off, i.e., 80.0% mAP vs. 40.3 FPS
on VOC2007 test set [15]. In short, current single-stage
detectors have advantageous inference speed and modest
detection accuracy.

B. Tow-Stage Detector

Represented by RCNN family, two-stage approaches [1]–
[5] are usually composed of region proposal part and detec-
tion network. The former (e.g., RPN [3]) generates sparse
object proposals, while the detection module takes over
ROI features for precise regression and classification. To

date, the two-stage approaches still dominate the detection
accuracy on generic benchmarks. For example, Zhu et al.
developed a CoupleNet to fuse global information with
local parts for detection, which achieved 82.7% mAP on
VOC2007 test set [5]. However, the CoupleNet merely ran
at 8.2 FPS. Simply put, the two-stage detectors perform more
accurately, but they usually suffer from high time costs. In
our opinion, they have two major advantageous strategies.
On one hand, the process of region proposal preliminarily
proposes sparse candidate objects. Conversely, the single-
stage detector directly localizes objects from handcrafted
anchors. On the other hand, the detection head in two-stage
approaches leverages the ROI features for detecting objects.
On the contrary, the features for detection in the single-stage
pipeline are spatially fixed on feature maps, ignoring the
objects’ location. Therefore, there is an imperative need of
endowing the single-stage detector with the aforementioned
merits for a better accuracy vs. speed trade-off.

III. NETWORK ARCHITECTURE

As shown in Fig. 1(a), our proposed architecture is a
single-shot network with a forward backbone (i.e., VGG-16
[17]) for feature extraction, where fc6,fc7 in original VGG-16
are converted to convolutional layers, namely, Conv6,Conv7.
The network generates a fixed number of bounding boxes
and corresponding classification scores, followed by the non-
maximum suppression (NMS) for duplicate removal. Similar
to RefineDet [11], we also employ an anchor refinement
module (ARM) and an object detection module (ODM)
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for two-step regression. The ARM takes over pyramidal
feature hierarchy as the input, and regresses coordinates
as refined anchors. In addition, we predict feature offsets
using refined anchors for ODM. Subsequently, the ODM
fuses low-level features with high-level features for better
semantic information. Ultimately, a creative detection head
is designed with deformable convolution for final classi-
fication and regression, whose inputs are ODM features,
refined anchors, and feature offsets, namely, anchor-offset
detection. Furthermore, we develop a multi-deformable head
to leverage contextual information for detection.

A. Anchor-Offset Detection
In general, detection in traditional SSD-like manner is

based on handcrafted anchors which are rigid and usually in-
accurate. As shown in Fig. 1(b), predefined anchors and fixed
features could not be suited to regressing and classifying ob-
jects (e.g., the bus). Through preliminary localization, refined
anchors are in favor of more precise detection (see Fig. 1(c)).
However, the RefineDet still uses inaccurate features (shown
with blue dots in Fig. 1(c)) for detection. To overcome these
difficulties, we design an anchor-offset detection including
an anchor refinement, a feature offset refinement, and a
deformable detection head, whose motivation is shown in
Fig. 1(d).

1) Anchor Refinement: This process is analogous in
essence to RefineDet [11], i.e., using ARM to generate re-
fined anchors that provide better initialization for the second-
step regression. Similar to SSD, we firstly place regularly
tiled anchors ao on each feature map cell. Each feature layer
is associated with one specific scale of anchors. In detail,
we adopt the anchor size of [32, 64, 128, 256] for 4-scale
feature maps from low-level to high-level and tile 3 anchors
at each feature map cell with aspect ratios of [1.0, 2.0, 0.5].
The ARM generates the same number of refined anchors ar
using ARM features farm with convolution operation,

ar = (War ∗ farm + bar)⊕ ao, (1)

where ∗ denotes convolution (W, b are weights and bias); ⊕
represents anchor decoding operation [8].

2) Deformable Detection Head: We design a deformable
detection head for final classification and localization. The
standard detection head in SSD uses a regular 3 × 3 grid
R to predict category probability and coordinates for a
feature map cell. In the meantime, through careful anchor
design, R can describe a specific anchor zone (see Fig. 1(b)),
but it usually fails to describe the refined anchor (shown
in Fig. 1(c)), which could result in inaccuracy. Thereby,
allowing R to adapt to the anchor change, we develop a
deformable detection head to capture accurate features with
the feature offset δp,

Pp0
=

∑
p∈R

w(p) · fodm(p+ δp). (2)

where P is the prediction of category probability or coordi-
nates; w is the convolution weight; p represents positions in
R while p0 is the center; fodm denotes ODM features. The
bilinear interpolation allows δp to be a fraction [13].
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Fig. 2. Multi-deformable head. We design multiple detection paths with
different receptive field sizes. Additionally, feature offset refinement is
independent for each path. Finally, we fuse their results using element-wise
summation.

3) Feature Offset Refinement: Originally, The offset
∆p = {δp} is computed with the feature fed into the
deformable convolution, i.e.,

∆p = Wfr ∗ fodm + bfr. (3)

Nevertheless, there is a strong demand for describing the
zone of refined anchors with the deformed grids R (see
Fig. 1(d)). Therefore, we predict feature offsets for ODM
according to refined anchors, i.e., feature offset refinement.

∆p = Wfr ∗ (War ∗ farm + bar) + bfr. (4)

In detail, this operation is a 1 × 1 convolution. Since
each spatial element in (War ∗ farm + bar) is related to
coordinate predictions for refined anchors tiled at a specific
feature map cell, we fuse its channel information for feature
offset refinement.

In this way, the offsets are targeted for more effective
detection, when compared to traditional deform pipeline.
We call this mode anchor-offset detection, which can be
formulated as

Plocal = (Wloc ∗ (fodm,∆p) + bloc)⊕ ar
Pclass = Wconf ∗ (fodm,∆p) + bconf .

(5)

B. Multi-Deformable Head
The CoupleNet developed local and global FCNs to detect

objects [5]. The local FCN focused local features in a
region proposal while the global one paid attention to the
whole region-level features. In this way, more contextual
information and underlying object relation are exploited for
high-quality detection. Thus, we develop a spiritually similar
structure for the single-stage DRN, namely, multi-deformable
head. We take aim to describe the object using original,
shrunken, and expansile region-level features.

To this end, we employ multiple detection paths with
different receptive field sizes. As shown in Fig. 2, each
detection path is an anchor-offset detection, and their feature
offset refinement is independent. Additionally, their results
are fused with element-wise summation. Mathematically,
the detection with multi-deformable head can be given as
follows:

Plocal =
∑L

l=1(Wlocl ∗ (fodm,∆pl) + blocl)⊕ ar
Pclass =

∑L
l=1 Wconfl ∗ (fodm,∆pl) + bconfl .

(6)
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IV. TRAINING AND INFERENCE

A. Training Settings and Objective

We train the DRN in an end-to-end manner, and the
pretrained VGG-16 model on ImageNet [18] is employed.
The other parameters in DRN are initialized with “xavier”
method [19]. L2 normalization is used to scale norms of
Conv4 3,Conv5 3 to 10 and 8, respectively. Additionally, we
add batch normalization (BN) [20] in VGG-16 and extra
layer for effective training. In terms of optimization, SGD
optimizer with 0.9 momentum and 0.0005 weight decay is
employed to train the whole network. The initial learning rate
is set as 0.001, which is divided by 10 at the 130th and by
100 at the 170th epoch. The total iteration is 190 epochs.
For better generalization ability, some data augmentation
strategies are used to train a robust model, e.g., random
clipping, flipping, expansion, photometric distortion. [8].

We design a multi-task objective to train DRN including
two localization losses Lloc−arm,Lloc−odm and a confidence
loss Lconf ,

L =
1

Narm
Lloc−arm +

1

Nodm
(Lloc−odm + Lconf ), (7)

where N is the number of positive boxes in ARM and ODM.
The Lloc and Lconf are consistent with original SSD [8].

B. Inference

In ARM, VGG-16 and extra layers extract visual features
for anchor refinement as well as feature offset refinement.
Then, key features are transformed to ODM with FPN
pipeline and transfer blocks. The ODM takes over refined
anchors as well as feature offsets, and outputs confident
object candidates (confident scores > 0.01) in the man-
ner of anchor-offset detection and multi-deformable head.
Subsequently, these candidates are processed by NMS with
0.45 jaccard overlap per class, and we retain top 200 high
confident objects as the final detections.

V. EXPERIMENT

Our models are trained and evaluated on VOC2007,
VOC2012, and ImageNet VID datasets, and we demonstrate
a better accuracy vs. speed trade-off.

A. Runtime Performance

Our method is implemented under the PyTorch framework.
The training and experiments are carried out on a workstation
with an Intel 2.20 GHz Xeon(R) E5-2630 CPU, NVIDIA
TITAN-X GPUs, CUDA 8.0, and cuDNN v7.

With 320 × 320 input image, the DRN can run at
55.2, 56.0, 40.5 FPS on VOC2007, VOC2012 test sets and
VID validaton set, respectively, which is considerably supe-
rior to two-stage methods and surpasses most single-stage
detectors. Only YOLO is slightly faster than ours, but our
method is fairly prominent on detection accuracy. In terms
of 512×512 input, our approach achieves 32.2, 33.6 FPS on
VOC2007 and VOC2012 test sets.

TABLE I
EFFECTIVENESS OF VARIOUS DESIGNS. ALL MODEL ARE TRAINED ON

VOC2007 AND VOC2012 TRAINVAL SET, AND VALIDATED ON

VOC2007 TEST SET. THE BASELINE IS 79.1%.

Component DRN320
multi-deformable head? X X

feature offset refinement? X X X X
deformable detection head? X X X X X

BN for VGG&extra? X X X

mAP(%) 78.3 79.8 80.5 81.1 81.7 82.0

B. Ablation Studies on VOC2007

We use PASCAL VOC2007 to study proposed models
in detail, which has 20 object categories. Following most
methods, we train the model on the union set of VOC2007
and VOC2012 trainval set (16, 551 images) and evaluate
on VOC2007 test set (4, 592 images). We use mAP as
the criterion of detection accuracy. For the convenience of
comparison, the RefineDet without negative filtering [11] is
adopted as the baseline, and we obtain 79.1% mAP based
on our re-produced PyTorch implementation (Note that it is
79.5% original Caffe implementation). The changes of mAP
are listed in Table I.

1) Anchor-Offset Detection: Anchor-offset detection is
composed of anchor refinement, feature offset refinement,
and deformable detection head, where the anchor refinement
has been studied in RefineDet [11]. Thus, we analyze the
latter two components in this section. At first, deformable
convolution is employed as the detection head, and we
obey original deform pipeline [13], i.e., the offsets are
computed with ODM features (formulated by (3)). However,
this strategy can not make an improvement and leads 0.8%
drop in mAP (i.e., 78.3% vs. 79.1%). The shortage of this
tactic is evident, i.e., the refined anchors are given by ARM
while the offsets are predicted by ODM features, so they are
not tightly associated. Thus, the deformed grid can hardly
adapt to refined anchors without extra supervision, and it
even trails original regular grid.

Therefore, the feature offset refinement is of crucial im-
portance in DRN. In our method, the feature offset is highly
correlated with refined anchors, and the network is benefited
from the proposed anchor-offset detection. Finally, we find
that mAP rises by 0.7% (i.e., 79.8% vs. 79.1%).

2) Multi-Deformable Head: The effect of various multi-
deformable designs is shown in Table II. At first, 1× 1 grid
is employed to utilize shrunken region-level features, but we
find it incurs negligible effectiveness. The 1× 1 grid should
have focused on most suitable local parts for detection, but
feature offsets are computed with refined anchors in our
pipeline, ignoring suitable local parts. Then, 3× 3 grid with
dilation is devised as one of the detection paths, but it leads
to 0.4% drop in mAP. Although it expands the receptive
field, the dilated 3×3 grid splits features, failing to describe
objects effectively. To cover the shortage, we deem that
5× 5 grid without dilation could work more effectively, and
experimentally, it invites 0.7% rise in mAP (i.e., 80.5% vs.
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TABLE II
EFFECTIVENESS OF VARIOUS MULTI-DEFORMABLE HEAD DESIGNS. WE

USE DIFFERENT KERNEL SIZE (k) AND DILATION (d) TO VALIDATE THE

EFFICACY OUR DESIGNS.

k = 5× 5, d = 1? X X
k = 3× 3, d = 2? X
k = 1× 1, d = 1? X X X
k = 3× 3, d = 1? X X X X X

mAP(%) 79.8 79.8 79.4 80.5 80.3

79.8%) because more contextual information is involved. In
addition, we remove the 1 × 1 detection path and find this
more efficient design still can reach 80.3% mAP, so this
design is used for subsequent experiments. In addition, these
comparisons also indicate that the improvement of multi-
deformable head comes from above-analyzed reasons rather
than increasing parameter size.

3) Discussion: BN is an effective tactic that solves van-
ishing and exploding gradient problem [20], so we try to
introduce this trick for more efficient training. Experimen-
tally, the model performs better when BN layers are added in
the feature extractor (i.e., the VGG-16 and extra layer), and
it sees a significant improvement in accuracy, i.e., 81.1%
mAP. Subsequently, the anchor-offset detection and multi-
deformable head further boost the performance. Referring to
Table I, removing multi-deformable head leads to 0.3% drop
in mAP, and removing anchor-offset detection invites another
0.6% mAP drop. Finally, the DRN results in the state-of-the-
art detection performance with such a small input size, i.e.,
82.0% mAP and 320× 320 input.

C. Results on VOC2007

Referring to Table III, the DRN is compared with state-
of-the-art methods. Using 320× 320 input image, the DRN
achieves 82.0% mAP without bells and whistles, which
surpasses all methods with such small inputs. With 82.8%
mAP for 512 × 512 input size, the DRN outperforms all
compared approaches. Although the CoupleNet [5] has a
similar mAP to ours, it uses ResNet-101 [16] as its backbone,
and its results come with larger input size (i.e., 1000×600).
Considering both mAP and FPS, we can draw a conclusion
that the DRN achieves a better accuracy vs. speed trade-off.

D. Results on VOC2012

More challenging VOC2012 dataset is employed to eval-
uate our proposed method, and we use the union set of
VOC2007 and VOC2012 trainval sets plus VOC2007 test
set (21, 503 images) for training in this experiment, and test
trained model on VOC2012 test set (10, 991 images).

As shown in Table III, our model obtains 79.3%, 80.6%
mAP with 320× 320 and 512× 512 input size, respectively.
The 320 × 320 result surpasses all the compared methods
with similarly small input size and the 512 × 512 result is
highest in Table III, which validate the effectiveness of our
developed approaches again.

TABLE III
DETECTION RESULTS ON PASCAL VOC DATASET. THE FPS IS FOR

VOC2007, AND THE MAP IS DEMONSTRATED IN THE FORM OF

“VOC2007/VOC2012”.

Method Backbone Input size FPS mAP(%)
two-stage

Fast RCNN [2] VGG-16 1000× 600 0.5 70.0/68.4

Faster RCNN [3] VGG-16 1000× 600 7 73.2/70.4

HyperNet [21] VGG-16 1000× 600 0.9 76.3/71.4

ION [22] VGG-16 1000× 600 1.3 76.5/76.4

Faster RCNN [3] ResNet-101 1000× 600 2.4 76.4/73.8

R-FCN [4] ResNet-101 1000× 600 9 80.5/77.6

CoupleNet [5] ResNet-101 1000× 600 8.2 82.7/80.4

single-stage
YOLO [6] GoogleNet 448× 448 45 63.4/57.9

YOLOv2 [7] Darknet-19 544× 544 40 78.6/73.4

RON384 [12] VGG-16 384× 384 15 75.4/73.0

SSD300 [8] VGG-16 300× 300 46 77.2/75.8

SSD512 [8] VGG-16 512× 512 19 79.8/78.5

SSD321 [9] ResNet-101 321× 321 11.2 77.1/75.4

SSD513 [9] ResNet-101 513× 513 6.8 80.6/79.4

DSSD321 [9] ResNet-101 321× 321 9.5 78.6/76.3

DSSD513 [9] ResNet-101 513× 513 5.5 81.5/80.0

RefineDet320 [11] VGG-16 320× 320 40.3 80.0/78.1

RefineDet512 [11] VGG-16 512× 512 24.1 81.8/80.1

DRN320 VGG-16 320× 320 55.2 82.0/79.3

DRN512 VGG-16 512× 512 32.2 82.8/80.6

aeroplane:0.99

aeroplane:0.96person:0.99 car:0.62 chair:1.0

chair:0.98
chair:0.98chair:0.98chair:0.56diningtable:0.98

diningtable:0.74
person:0.97person:0.95

person:0.86
person:0.83person:0.5

diningtable:1.0

person:1.0person:1.0
person:1.0

person:0.97
person:0.94

bird:1.0

bird:0.95
bird:0.95bird:0.84

motorbike:0.95

motorbike:0.75motorbike:0.59

motorbike:0.53

person:0.99person:0.98

person:0.98

person:0.97

person:0.89

person:0.77person:0.58

bird:1.0

boat:0.99

bicycle:0.94
bicycle:0.84

car:0.95person:1.0 person:0.99person:0.91

Fig. 3. Detection examples on VOC2012 test set. We draw all detected
boxes with > 0.5 confidence score. Our model works well with occlusions,
truncations, inter-class interference, etc.

Intuitively, we demonstrated typical detection results in
Fig. 3. It is shown that the DRN performs well in terms
of challenging scenes, e.g., i) The chairs and tables are
disordered; ii) The car in the second sub-figure is quite small,
and another car in the last sub-figure suffers from serious
occlusion or truncation; and iii) The bicycles and persons
encounter motion blur. Despite these challenges, the DRN is
able to localize and classify them accurately.

E. Results on ImageNet VID

We use ImageNet VID dataset to validate video detection
performance of the DRN, which contains 30-class targets.
Following [29], we train the DRN with VID and DET (only
using the data from the 30 VID classes; 81, 830 images in
total), and test it on VID validation set (176, 126 images).
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TABLE IV
COMPARISON OF THE DRN AND SEVERAL PRIOR AND CONTEMPORARY

APPROACHES ON IMAGENET VID VALIDATION SET.

Method Backbone Real-time? mAP(%)
temporal methods
Closed-loop [24] VGG-M 50.0
Seq-NMS [25] VGG-16 52.2

LSTM-SSD [26] MobileNet [30] X 54.4
TCNN [27] DeepID+Craft 61.5
TSSD [28] VGG-16 X 65.4
TPN [29] GoogLeNet [23] 68.4
D&T [31] ResNet-101 79.8

static methods
Faster RCNN [3] GoogLeNet 63.0

SSD300 [8] VGG-16 X 63.0
RefineDet320 [11] VGG-16 X 66.7

DRN320 VGG-16 X 69.4

For high video detection speed, we use 320× 320 image as
the input.

As shown in Table IV, we compare the DRN with some
temporal and static detection methods. The results of SSD
and Faster RCNN are reported in [28], [29] while the result
of RefineDet is based on our re-produced implementation.
Although it ignores temporal information in video, our
approach achieves 69.4% mAP and 40.5 FPS, which is
superior to all compared methods except for the D&T [31].
However, the D&T result (i.e., 79.8% mAP) is induced by
a two-stage detector and a tracking method, which also lead
to considerable amount of computational cost. Therefore, the
DRN also shows great potentials in temporal detection, and
it can be employed for real-world tasks.

VI. CONCLUSION

In this paper, a novel DRN is designed for the purpose of
real-time accurate object detection. Differing from existing
approaches, the DRN inherits the merits of both single-stage
and two-stage detectors, so it simultaneously has accurate
detection performance and fast inference speed. In particular,
an anchor-offset detection, including an anchor refinement,
a feature offset refinement, and a deformable detection head,
is proposed to migrate two effectiveness of region proposal
to the single-stage detector. More specifically, to leverage
both region-level features and contextual information for
detection, we devise a multi-deformable head with multiple
detection paths. As a result, the DRN achieves a considerably
enhanced accuracy vs. speed trade-off on PASCAL VOC and
ImageNet VID datasets.

In the future, we plan to further improve the temporal
detection performance.
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