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Abstract— Temporal object detection has attracted significant
attention, but most popular methods can not leverage the rich
temporal information in video or robotic vision. Although many
different algorithms have been developed for video detection
task, real-time online approaches are frequently deficient. In
this paper, based on attention mechanism and convolutional
long short-term memory (ConvLSTM), we propose a temporal
single-shot detector (TSSD) for robotic vision. Distinct from
previous methods, we aim to temporally integrate pyramidal
feature hierarchy using ConvLSTM, and design a novel struc-
ture including a high-level ConvLSTM unit as well as a low-level
one (HL-LSTM) for multi-scale feature maps. Moreover, we
develop a creative temporal analysis unit, namely, ConvLSTM-
based attention and attention-based ConvLSTM (A&CL), in
which the ConvLSTM-based attention is specially tailored
for background suppression and scale suppression while the
attention-based ConvLSTM temporally integrates attention-
aware features. Finally, our method is evaluated on ImageNet
VID dataset. Extensive comparisons on detection performance
confirm the superiority of the proposed approach, and the
developed TSSD achieves a considerably enhanced accuracy
vs. speed trade-off, i.e., 64.8% mAP vs. 27 FPS.

I. INTRODUCTION

With rapid development of computer vision, the robot
is competent in visually perceiving environments gradually.
For example, Nguyen et al. designed an affordances detec-
tion method to help a robot plan grasp [1]. On the other
hand, object detection is one of the important vision tasks.
However, recent works have largely focused on detecting in
static images, so they are not suited to temporally concordant
visual tasks. Thus, it is essential to develop an approach
to integrate spatial features with temporal information for
robot’s intelligent perception.

Taking advantage of convolutional neural network (CNN),
existing detection methods can be divided into two cate-
gories, i.e., two-stage and one-stage detectors. The former
is represented by RCNN family [2]–[5] and RFCN [6], all
of which detect objects based on region proposal. On the
other hand, regression and classification are computed simul-
taneously in one-stage pipelines, e.g., YOLO [7], SSD [8],
RetinaNet [9], etc. In particular, making use of convolution
features more effectively, SSD is one of the first methods
that adopt the pyramidal feature hierarchy for detection.
Considering the two-stage detectors have better detection
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Fig. 1. Toy example. This is a changing video snippet containing a hamster.
With large temporal fluctuations in terms of detection score, SSD’s results
contain the false positive and false negative, whereas the performance of
TSSD is more stable and accurate.

accuracy and their region proposal part can be generalized to
process consecutive frames, researchers tend to apply two-
stage detection methods to video detection task. However,
one-stage approaches have advantageous inference speed.
Therefore, it is necessary to study temporal performance of
one-stage detectors to take into account accuracy vs. speed
trade-off for robotic applications.

Recurrent neural network (RNN) has achieved great suc-
cess in sequence processing tasks, and typically, long short-
term memory (LSTM) is proposed for longer sequence
learning [10]. Recently, Shi et al. developed convolutional
LSTM (ConvLSTM) to associate LSTM with spatial struc-
ture [11]. However, the total amount of convolution features
for detection is very huge, especially when pyramidal feature
hierarchy is adopted. Thus, a temporal model for multi-scale
feature maps is becoming urgently necessary. Moreover,
since background takes up most of an image, only a small
part of visual features devote themselves to detecting targets.
Thus, the feature selection is a pivotal step. Fortunately,
attention mechanism is an exciting idea which imitates hu-
man’s cognitive patterns, promoting CNN concern something
essential. For example, Mnih et al. proposed a recurrent
attention model to find the most suitable local feature for
classification [12]. Nevertheless, attention model for image-
sequence detection has not yet been widely studied.

In this paper, aiming at detecting objects in consecutive
vision, we propose a temporal detection model based on
SSD, namely, temporal single-shot detector (TSSD), whose
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toy example is illustrated in Fig. 1. To integrate visual
features through time, ConvLSTM is employed for temporal
information. Due to the pyramidal feature hierarchy for
multi-scale detection, SSD always generates a large body
of visual features for static regression and classification, so
a ConvLSTM is hard to integrate these multi-scale feature
maps. Then, if ConvLSTMs were utilized for each feature
map, the dramatically increasing parameters could heavily
raise model complexity. Thus, we design a new structure
including a high-level ConvLSTM unit as well as a low-
level one (HL-LSTM) for multi-scale features. Furthermore,
according to above analyses, a more crucial problem is that
only a small part of visual features are related to targets.
Thereby, we propose a creative module to integrate spa-
tiotemporal information, namely, ConvLSTM-based attention
and attention-based ConvLSTM (A&CL), in which overfull
useless information (i.e., multi-scale background features) is
prevented from being fed to ConvLSTM. Finally, facilitated
by HL-LSTM and A&CL, the TSSD achieves considerable
accuracy vs. speed trade-off. The contributions made in this
paper are summarized as follows:

• To temporally integrate pyramidal feature hierarchy, we
design an HL-LSTM structure to effectively propagate
multi-scale visual features through time.

• We propose an A&CL module as a temporal analysis
unit, in which redundant information is reduced.

• We achieve a considerably improved result on ImageNet
VID dataset, i.e., a mean average precision (mAP) of
64.8%, and an average inference speed of 27 frames pre
second (FPS).

II. RELATED WORK

At the beginning, static detection and post-proposing
methods were combined to counteract video detection task
[13]–[15]. They statically detected in each video frame, then
comprehensively delt with multi-frame results. Kang et al.
developed TCNN based on tubelet (i.e., temporally prop-
agative bounding boxes) using still-image object detection,
multi-context suppression, motion guided propagation, and
temporal tubelet re-scoring [13], [14]. Taking inspiration
from non-maximum suppression (NMS), Han et al. proposed
SeqNMS to suppress temporally discontinuous bounding
boxes [15]. However, due to complex post-processing, the
time efficiency decreases, and such methods did not improve
the performance of detector.

Faster RCNN used region proposal network (RPN) for
coarse localization [4], so some approaches for videos
tried to enhance RPN with temporal information [16]–[18].
Galteri et al. designed a closed-loop RPN to fuse current
object proposal with previous detection results. This method
effectively reduced the number of invalid region, but it could
also make the proposed regions excessively concentrated.
Kang et al. developed tubelet proposal networks (TPN)
to propose tubelets rather than bounding boxes. Then, an
encoder-decoder LSTM is used for classification. Such meth-
ods were extended from two-stage detectors, so they still
suffered from low time efficiency.

Object tracking is able to localize targets in a video
with the prior knowledge of the initial position. Feichten-
hofer et al. combined RFCN detector with correlation-filter-
based tracker to detect objects in videos, called D&T [19].
Thanks to the tracking method, D&T achieved high detection
accuracy, but obviously, the RFCN in D&T is not capable of
temporal analysis. Moreover, correlation filters could hardly
work in real time, especially for numerous objects.

Object detector and RNN have been applied compre-
hensively in recent years [20], [21]. Ning et al. proposed
ROLO for tracking based on YOLO and LSTM. The YOLO
was responsible for static detection, and the visual features
and positions of high-score objects were fed to LSTM for
temporally modeling. Lu et al. employed SSD for static
detection, and similarly, temporal relations of high-score
objects were modeled using association LSTM. Although
they were unified in such methods, RNN merely worked as
a post-processing for detection results.

III. APPROACH

A. Architecture

Extending form SSD with VGG-16 [22] as the backbone,
we build a temporal single-shot detector for robotic vision.
Fully connected layers fc6, fc7 in original VGG-16 are
converted to convolutional layers, namely, Conv6, Conv7.
The network predicts bounding boxes and corresponding
classification scores, followed by NMS for final detection.
Additionally, as illustrated in Fig. 2, the novel HL-LSTM
and A&CL are designed for temporal information.

1) HL-LSTM: There are six-scale pyramidal features in
SSD model, whose sizes are 38× 38× 512, 19× 19× 512,
10× 10× 512, 5× 5× 256, 3× 3× 256, and 1× 1× 256.
Creatively, we group the multi-scale feature maps according
to the order of different convolutional layers, i.e., high-level
and low-level features (shown in gold and red in Fig. 2).
Further, we use the same two structures to integrate them
temporally, called HL-LSTM. We aim to address two prob-
lems with the HL-LSTM: i) Avoiding redundant parameters.
For example, the original SSD contains 2.6 M parameters,
and SSD with HL-LSTM has 4.9 M parameters. However, if
six ConvLSTMs are employed, the parameter size increases
to 15.5 M; ii) Simplifying training process. As reported
in [21], the highest- and lowest-level feature maps make
relatively less contribution to detection. That is, there are
a small amount of data for oversized or tiny-size objects.
Thus, if six-scale ConvLSTMs were employed, the highest-
and lowest-level ConvLSTM would be hard to train.

2) A&CL: In object detection task, most features are relat-
ed to background, and additionally, feature maps in different
scales contribute to detection in different degrees. Therefore,
it is inefficient when a ConvLSTM handles background or
aforementioned small-contributed multi-scale feature maps.
In this paper, we propose A&CL for background suppression
and scale suppression, including ConvLSTM-based attention
and attention-based ConvLSTM. Attention module selects
object-related features for ConvLSTM, and in turn, the Con-
vLSTM provides attention module with temporal information
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Fig. 2. The proposed TSSD architecture. For better visualization, we only display the layers used for detection. The high-level features share a temporal
analysis unit and low-level features do so, namely, HL-LSTM. An attention module and ConvLSTM jointly integrate the temporal features in A&CL.
Finally, the hidden state will be used for multi-box regression and classification.

to improve attention precision. As shown in Fig. 2, one
of the low-level feature maps serves as the input of low-
level A&CL. Instead of computing attention map using the
current feature, we firstly concatenate the input with previous
information, followed by the produce of a temporal attention
map. Subsequently, ConvLSTM integrates current attention-
aware feature with previous information more effectively, and
the current hidden state will be used for multi-box regression
and classification. As a temporal analysis unit, A&CL can
be formulated as follows:

at = σ(Wa ∗ [x, ht−1])
it = σ(Wi ∗ [at ◦ x, ht−1] + bi)
ft = σ(Wf ∗ [at ◦ x, ht−1] + bt)
ot = σ(Wo ∗ [at ◦ x, ht−1] + bo)
ct = tanh(Wc ∗ [at ◦ x, ht−1] + bc)
st = (ft � st−1) + (it � ct)
ht = ot � tanh(st),

(1)

where ∗ denotes convolution operation; [·, ·] is concatenation;
� is element-wise multiplication; and ◦ represents that a one-
channel map multiplies with each channel in a multi-channel
feature map. At time step t, at, ht, it, ft, ot, ct, st are
attention map, hidden state, input gate, forget gate, output
gate, LSTM’s new information, and memory, respectively. σ
represents sigmoid activation function.

In detail, referring Fig. 3, the A&CL is designed with CNN
and RNN. Current feature map (x) and previous hidden state
(h) serve as the input of ConvLSTM-based attention. After
three-layer convolution, a one-channel temporal attention
map (a) is generated, which contains pixel-wise positions for
object-related features. For feature selection, each channel in
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Fig. 3. Implementation detail of A&CL, including ConvLSTM-based
attention and attention-based ConvLSTM. The symbol system follows (1).

current feature map multiplies this attention map pixel-by-
pixel, and the attention-aware feature (a◦x) can be obtained.

The attention-aware feature and previous hidden state are
concatenated as the input of attention-based ConvLSTM.
Different from traditional LSTM, gates (i, f , o) and incoming
information (c) are computed with convolution operation.
Subsequently, controlled by the gates, the temporal memory
(s) is updated, and new hidden state is generated for multi-
box regression and classification.
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B. Training

1) Basic setting: At first, we train an SSD model fol-
lowing [8]. Then, the TSSD is trained based on well-trained
SSD. In particular, the ConvLSTM is trained with RMSProp
optimizer while the rest of TSSD is trained using SGD
optimizer. The initial learning rate is 10−4 for the first 40
epochs, and we use 10−5 for another 20 epochs.

Moreover, the TSSD should be trained with a frame
sequence, but it should not be trained frame by frame for
better generalization. Instead, we only choose seq len frames
in a video for back propagation in an iteration. The seq len
frames should be chosen uniformly based on the start frame
(sf ) and skip (sp),

sp = R[1, v/seq len]

sf = R[1, v − seq len ∗ sp+ 1],
(2)

where v is the frame number in a video, and R[min,max]
represents the operation of selecting an integer randomly
between min and max. Finally, the uniform seq len frames
are chosen with sf as the start frame and sp as the skip. In
this paper, seq len = 8.

2) Objective: We design a multi-term objective to train
the TSSD, including a localization loss Lloc, a confidence
loss Lconf , and an attention loss Latt,

L =
1

N
(αLloc + βLconf ) + γLatt, (3)

where N is the number of positive boxes, and Lloc and Lconf

are inherited from SSD [8].
We also supervise the generation of attention maps using

cross entropy. At first, we construct the ground truth attention
map Ag , in which elements locating within ground truth
boxes equal to 1 and others are assigned to 0. Then, six-
scale attention maps Aps

is unified to the same resolution
as the input image through bilinear upsampling, followed by
the produce of Aup

ps
. Hence, Latt can be given as

Latt =

6∑
s=1

µ(−Aup
ps

log(Ag)− (1−Aup
ps
) log(1−Ag)), (4)

where µ averages all elements of a matrix. The hyper
parameters α = 1, β = 1, γ = 0.5 are selected based on
the performance of validation set.

3) Inference: At inference phase, the netowrk regresses
and classifies objects frame by frame with HL-LSTM and
A&CL, and outputs confident object candidates (confident
scores > 0.01). Subsequently, these candidates are processed
by NMS with 0.45 jaccard overlap pre class and retain top
200 high confident objects as the final detections.

IV. EXPERIMENT

A. Dataset

We evaluate the TSSD on the ImageNet dataset for object
detection from video (VID) [23], which requires algorithms
detect 30-class targets in consecutive frames. There are 4000
videos in the training set, containing 1, 181, 113 frames. On
the other hand, the validation set compasses 555 videos,

(a
)
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frame:1
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)

frame:20
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)
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)

(f)

frame:1

(g
)

frame:20
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Fig. 4. Multi-scale attention maps. There are two video snippets containing
airplanes or watercraft. (a),(b),(e),(f) are generated by traditional module,
whereas (c),(d),(g),(h) are produced by ConvLSTM-based attention module.
(a)–(d) are attention maps for airplanes; (e)–(h) are attention maps for
watercraft. In above 4 pairs maps, the former is for the first frame while the
latter is with respect to the 20th frames. Each line is multi-scale attention
maps, and higher-level maps are displayed on the righter.

including 176, 126 frames. We measure performance as mAP
over the 30 classes on the validation set following [4], [8].

In addition, ImageNet DET dataset is employed as training
assistance. The 30 categories in VID dataset are a subset of
the 200 categories in the DET dataset. Therefore, following
[13], [14], [18], [19], we sample at most 2, 000 images
per class from DET (only using the data from the 30 VID
classes), and select 10 frames in each VID video for SSD
training. Then, the TSSD is trained using the whole VID
training set.

B. Run Time Performance

Our method is implemented under the PyTorch 1 frame-
work. The training and experiments are carried out on a
workstation with an Intel 2.20 GHz Xeon(R) E5-2630 CPU,
a NVIDIA TITAN-Xp GPU, and 64 GB of RAM. As a result,
our proposed TSSD reaches 27 FPS on VID validation set,
so it is capable of real-work applications.

C. Results

1) Attention Results: As shown in Fig. 4, the comparison
of ConvLSTM-based attention and traditional attention mod-
ule are presented. Note that the traditional attention module
only uses current feature map as the input. In presented
heat maps, crimson means a higher probability of being a
target, whereas mazarine indicates ignorable pixel position
in feature maps. Moreover, multi-scale attention maps are

1https://pytorch.org
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TABLE I
AP LIST ON IMAGENET VID VALIDATION SET BY THE PROPOSED METHOD AND COMPARED METHODS.

Method airplane antelope bear bicycle bird bus car cattle dog d.cat elephant
SSD 82.01 72.67 71.62 60.19 65.54 68.77 56.86 59.79 47.69 63.88 72.48

SSD+Attention 81.74 75.69 72.24 58.71 62.46 67.40 57.38 65.64 48.41 63.92 69.94
SSD+ConvLSTM 79.86 75.06 68.75 62.60 63.38 69.08 59.78 58.34 48.96 63.66 69.97

TSSD 82.16 76.03 68.88 61.57 66.26 70.04 59.39 67.07 49.18 63.29 71.55
Method fox g.panda hamster horse lion lizard monkey m.bike rabbit r.panda sheep

SSD 77.47 79.04 89.04 61.53 26.43 61.34 41.78 73.58 49.20 20.96 58.99
SSD+Attention 74.57 78.78 89.34 62.81 21.80 57.21 40.70 75.69 55.39 35.57 53.67

SSD+ConvLSTM 80.61 78.03 90.12 62.53 28.17 62.15 41.25 75.69 54.33 44.90 56.19
TSSD 80.85 80.71 90.18 63.36 30.21 64.61 41.50 75.81 56.00 39.85 57.26

Method snake squirrel tiger train turtle w.craft whale zebra FPS mAP(%)
SSD 47.95 47.11 80.71 76.98 69.07 61.61 63.54 83.34 ∼45 63.04

SSD+Attention 51.90 45.62 79.28 76.92 69.71 62.30 57.16 82.29 ∼32 63.14
SSD+ConvLSTM 46.41 45.95 81.18 76.03 70.33 62.56 58.65 83.96 ∼38 63.95

TSSD 49.34 46.41 82.45 77.68 71.49 62.02 54.58 83.20 ∼27 64.76

generated in TSSD, the righter maps response higher-level
features. For the ease of observation, the multi-scale attention
maps have been unified to the same resolution as the input
image through bilinear upsampling.

As shown in Fig. 4(a), (b), (e), (f), the original attention
method is not able to handle these two scenes. That is,
although the targets are focused roughly, the background
and small-contributed multi-scale feature maps are not sup-
pressed effectively. On the contrary, as illustrated in Fig. 4(c),
(d), (g), (h), ConvLSTM-based attention performs better. The
proposed attention method not only localizes the targets more
accurately, but also suppresses the background more effi-
ciently. Further, our method is effective for scale suppression
(see Fig. 4(d)). In addition, the performance of proposed
approach improves along with the accumulation of temporal
information. For example, in Fig. 4(g), (h), the lowest-level
attention map can hardly find the watercraft in the first frame,
but it is focused without overmuch background in the 20th
frame. Moreover, if attention maps for the first frame are
compared, a conclusion can be drawn that ConvLSTM-based
attention is better even though the temporal information has
not generated owing to more effective training.

2) Results on ImageNet VID Dataset: We evaluate our
method with VID validation dataset using mAP. At first,
SSD is employed as the baseline. Then, we employ Con-
vLSTM following HL-LSTM and denote the result as “SS-
D+ConvLSTM”. Subsequently, attention module is adopted
alone, where the attention-aware feature is utilized for regres-
sion and classification, followed by the result being called
“SSD+Attention”. Finally, the result of proposed TSSD
including HL-LSTM and A&CL are presented.

As shown in Table I, SSD achieves 63.04% mAP, and if
the attention module or ConvLSTMs is added, the mAP for
detection will increase (i.e., 63.14% and 63.95%). Further,
if A&CL works, a better performance is obtained by the
TSSD, i.e., 64.76% mAP. Moreover, AP for particular classes
increase dramatically. For example, AP for “lion” raises by
about 4 points. Since SSD’s AP for “lion” is quite low, we
deem this phenomenon is caused by imbalanced data. That
is, the amount of training data for “lion” is relatively small,
so it is likely to be assigned to other categories with similar

features by the static detector. If the temporal information is
considered, this phenomenon is relieved to some extent. On
the other hand, a small part of classes lose AP. For example,
the AP for “whale” decreases by about 9%. Since whales
successively emerge and submerge from the water, temporal
information may mislead the detector about their appearance
and disappearance. Some typical temporal detection results
are shown by our supplemental video 2.

We also compare the TSSD against several prior and
contemporary approaches. As shown in Table II, their com-
ponents and performances have been summarized. Most
methods are based on two-stage detector with RPN. In
addition, few approaches successfully adopt attention or
LSTM for temporal coherence, especially ConvLSTM. On
the other hand, tracking employed in TCN [13], TCNN
[14], and D&T [19] is a good idea for high recall rate, but
it affects time efficiency and model complexity. In terms
of perfoemance, few methods can run in real time, and
additionally, the TPN uses previous and further frames for
current frame detection, so it is not an online detector. Thus,
the real-time online TSSD is able to temporally detect targets
for robotic applications.

D. Discussion

The TSSD achieves a great improvement in terms of
temporal inference speed, but its mAP is modest when
compared to state-of-the-art approaches. The main reason
is two-fold: 1) the two-stage methods with RPN are more
precise than one-stage detector, and 2) tracking employed in
TCNN [14] and D&T [19] is in favor of recall rate. For high
computational efficiency, aforementioned two advantageous
processes can not been employed in the TSSD, but in our
opinion, adding loss function in an inter-frame manner to
model object association could further enhance the accuracy.

Furthermore, besides object detection, object identification
is also imperative for robotic application. Therefore, tracking
by detection should be further studied, and the TSSD is well
suited to serve as the detection component owing to its real-
time online characteristic. Then, the detection results should

2https://youtu.be/A6Z8A6NF6nc
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TABLE II
COMPARISON OF THE TSSD AND SEVERAL PRIOR AND CONTEMPORARY APPROACHES.

Method Components Performances
One stage Two stage Optical flow Tracking Attention LSTM Real-time Online mAP

Closed-loop [16] X X 50.0
Seq-NMS [15] X 52.2

TCN [13] X X X 47.5
T-CNN [14] X X X X 61.5

TPN [18] X X 68.4
D&T [19] X X X 79.8

TSSD(propsed) X X X X X 64.8

be associated through time, but current real-time multi-object
tracking methods (e.g., SORT [24]) can hardly leverage
within-class-similar features in detector for identification.
However, in our opinion, multi-scale attention maps in the
TSSD are suitable for this task, because they are individual-
aware and computationally inexpensive.

V. CONCLUSION

This paper has aimed at temporally detecting objects
in real time for consecutive vision, and a creative TSSD
approach has been proposed. Differing from existing video
detection methods, the TSSD is a temporal one-stage de-
tector, and it can perform well in terms of both detection
accuracy and speed. To efficiently integrate pyramidal feature
hierarchy, an HL-LSTM is proposed, in which high-level and
low-level features share their respective ConvLSTM units.
For background suppression and scale suppression, attention
mechanism is employed to reduce information redundan-
cies. Thereby, we design A&CL as a temporal analysis
unit, where ConvLSTM-based attention is responsible for
selecting object-related features for attention-based ConvL-
STM. As a result, the TSSD achieves considerably enhanced
accuracy vs. speed trade-off on ImageNet VID dataset.
Furthermore, owing to its real-time online characteristic, the
TSSD is well-suited to robot’s intelligent perception.

In the future, objects in a video will be identified, and
the TSSD will be used for robotic visual navigation under
dynamic environments.
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