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Abstract: Bioluminescence tomography (BLT) is an effective molecular
imaging (MI) modality. Because of the ill-posedness, the inverse problem
of BLT is still open. We present a trust region method (TRM) for BLT
source reconstruction. The TRM is applied in the source reconstruction
procedure of BLT for the first time. The results of both numerical simu-
lations and the experiments of cube phantom and nude mouse draw us to
the conclusion that based on the adaptive finite element (AFE) framework,
the TRM works in the source reconstruction procedure of BLT. To make
our conclusion more reliable, we also compare the performance of the
TRM and that of the famous Tikhonov regularization method after only
one step of mesh refinement of the AFE framework. The conclusion is that
the TRM can get faster and better results after only one mesh refinement
step of AFE framework than the Tikhonov regularization method when
handling large scale data. In the TRM, all the parameters are fixed, while in
the Tikhonov method the regularization parameter needs to be well selected.
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1. Introduction

Among many molecular imaging modalities, optical imaging, especially bioluminescence
imaging, has attracted remarkable attention for its unique advantages in probing capabilities,
sensitivity, specificity, and cost-effectiveness [1, 2, 3] in cancer research [4] and drug devel-
opment [5]. By utilizing the surface light distribution of an object, BLT can reconstruct the
bioluminescent light source distribution inside, which is called the inverse source problem of
partial differential equations (PDE) [6]. The inverse problem of BLT is an ill-posed problem.

Till now, the inverse problem of BLT is still open. A common way to overcome the ill-posed
property is the regularization. The Tikhonov regularization strategy is usually used [7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. Given a suitable regularization parameter, the Tikhonov
method can get excellent results. But it is difficult to choose a proper regularization parameter.
Here we want to introduce a new kind of method into the reconstruction procedure of BLT
problem, the trust region method with all involved parameters fixed.

As of the origin of the TRM, the work by Levenberg [21] in 1944 are the mostly cited among
the papers related to TRM. And a more direct link to TRM is the work by Marquardt in 1963
[22]. Based on the work of Levenberg and Marquardt, Powell derives the first trust region algo-
rithm in 1970s [23, 24]. After Powell’s work, TRM becomes prosperous. The convergence and
regularity of the standard trust region method when applying it to ill-posed problems has also
been studied by Yanfei Wang and Yaxiang Yuan [25]. Comparing with the Tikhonov method,
the advantages of TRM are that it can get better results after only one step of mesh refinement
process in the AFE framework, it is faster when handling large scale data and the parameters in
TRM are all fixed while in the Tikhonov method the regularization parameter has to be properly
selected. So we introduce the TRM to solve the BLT inverse problem.

The paper is organized in the following sequence. In section 2, we firstly formulate the BLT
forward problem. Then after a brief introduction of the AFE framework that the TRM works in
for the inverse problem, we will focus on the TRM for the regularization and optimization pro-
cedure. In section 3, the results of both numerical simulations and physical experiments on cube
phantom and nude mouse can draw us to the conclusion that TRM can work in solving BLT
inverse problem in the AFE framework comparing with the Tikhonov regularization method.
Finally, we will give our comments and conclude the paper in section 4.
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2. Method

2.1. Diffusion model for forward problem

In bioluminescence imaging, biological entities, such as tumor cells, genes and compounds of
drug, are tagged with luciferase enzymes. When the luciferase is combined together with the
substrate luciferin, oxygen and ATP, a biochemical reaction occurs that transforms part of the
chemical energy into the bioluminescent photons with a wavelength of about 600nm [26]. The
radiative transfer equation (RTE) [27, 28, 29] can describe the photon propagation. However,
the directly solving of RTE is very costly. In near infrared light spectrum, photon scattering
predominates over absorption in the biological tissue, the photon propagation can be described
by the following steady-state domain (SSD) diffusion equation (DE) depending on the light
wavelength λ :

−∇·(D(x,λ )∇Φ(x,λ )
)
+ μa(x,λ )Φ(x,λ ) = S(x,λ ) (x ∈ Ω) (1)

where Ω is the problem domain; Φ(x,λ ) is the photon flux density [ Watts/mm2 ]; S(x,λ ) is the
bioluminescent source density [ Watts/mm3 ]; μa(x,λ ) is the absorption coefficient [ mm−1 ];
D(x,λ ) = 1/(3(μa(x,λ )+μ ′

s(x,λ ))) is the optical diffusion coefficient [ mm ]; μ ′
s(x,λ ) = (1−

g)μs(x,λ ) is the reduced scattering coefficient; μs(x,λ ) is the scattering coefficient [ mm−1 ]
and g is the anisotropy parameter.

When the bioluminescence imaging experiment is performed in a totally dark environment,
that is to say no external photon travels into Ω through the boundary ∂Ω, we can get the bound-
ary condition (Robin boundary condition) for DE [30, 31].

Φ(x,λ )+2A(x;n,n′)D(x,λ )
(
v(x)·∇Φ(x,λ )

)
=0 (x ∈ ∂Ω) (2)

where ∂Ω is the boundary of the problem domain and v is the unit outer normal on ∂Ω. As
the experiment is usually carried out with the surrounding medium Ω being air, n′ is approx-
imately 1. So the index mismatch parameter A(x;n,n′) can be approximated by A(x;n,n′) ≈
(1 + R(x))/(1−R(x)) to incorporate diffuse boundary reflection arising from a refractive in-
dex mismatch between the problem domain Ω and the surrounding medium, where R(x) is a
parameter governing the internal reflection at the boundary ∂Ω and can be approximated with
R(x)≈ 1.4399n−2 +0.7099n−1 +0.6681+0.0636n [30]. The measured quantity is the outgoing

photon density on ∂Ω [31]: Q(x,λ ) = −D(x,λ )
(
v(x)·∇Φ(x,λ )

)
= Φ(x,λ )

2A(x;n,n′) (x ∈ ∂Ω).

2.2. Adaptive finite element framework for inverse problem

According to the finite element theory [32], in the Sobolev space H1(Ω), we can get the weak
solution of the flux density Q(x,λ ) through Eqs. (1) and (2):

∫

Ω

(
D(x,λ )

(
∇Φ(x,λ )

)·(∇Ψ(x,λ )
)
+ μa(x,λ )Φ(x,λ )Ψ(x,λ )

)
dx+

∫

∂Ω

1
2A(x;n,n′)

Φ(x,λ )Ψ(x,λ )dx =
∫

Ω
S(x,λ )Ψ(x,λ )dx

(∀Ψ(x,λ ) ∈ H1(Ω)
) (3)

According to the adaptive finite element framework introduced by Lv et al. [7], we can get the
matrix form of Eqs. (3) for the l-th level of the mesh refinement process: ([Kl ]+[Cl ]+[Bl ])Φl =
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MlΦl =FlSl where the components of the matrices Kl ,Cl ,Bl are obtained by
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k(l)
i j =

∫
Ω D(x)

(
∇ϕ(l)

i (x)
)·(∇ϕ(l)

j (x)
)
dx

c(l)
i j =

∫
Ω μa(x)ϕ(l)

i (x)ϕ(l)
j (x)dx

b(l)
i j =

∫
∂Ω ϕ(l)

i (x)ϕ(l)
j (x)/

(
2A(x;n,n′)

)
dx

s(l)
i j =

∫
Ω s(l)

i ϕ(l)
i (x)ϕ(l)

j (x)dx

k(l)
i j ,c(l)

i j ,b(l)
i j and s(l)

i j are the elements of K(l),C(l),B(l) and S(l) with the row number i and col-

umn number j, respectively. ϕ(l)
i (x) and ϕ(l)

j (x) are the interpolation basis functions. s(l)
i is

the source density at i. Ml is a symmetric positive-definite matrix. After applying the permissi-
ble source region method [33], the linear relationship between the boundary measured photon
flux density Φmeas

l and the unknown source density in the permissible source region SP
l can be

obtained:
Φmeas

l = AlS
P
l (4)

where Al can be got by retaining those columns of M−1
l Fl corresponding to SP

l and those rows
corresponding to Φmeas

l . Then, the objective function f l(x) of the l-th level can be obtained as

f l(SP
l ) = ‖AlS

P
l −Φmeas

l ‖2
2 (5)

The inverse problem of BLT is to reconstruct a 3D bioluminescent source distribution inside
an object, such as a mouse or phantom, given the surface bioluminescence distribution of the
object. Mahtematically, BLT is to reconstruct the source distribution SP

l in Eq. 5 according to
the measured surface distribution Φmeas

l .

2.3. Trust region method

The optimization procedure is the minimization problem

min
x

f (x) =
{
‖Ax−b‖2

2

}

where f (x), A , x and b stand for f l(SP
l ), Al ,SP

l and Φmeas
l respectively in Eq. (5) for short.

Since the inverse problem of BLT is ill-posed, hence regularization is necessary. The trust
region method is usually posed for well-conditioned problems. The reason of applying trust
region method to ill-posed inverse problems is that TRM was proved to be a regularization
method [25]. Now, we will give the detailed description of TRM introduced by Wenyu Sun
and Yaxiang Yuan [34]. The basic idea of TRM is to approximate the objective function f (x)
around xk by choosing a quadratic model of the form

qk(s) = f (xk)+gT
k s+

1
2

sT Gks,

where k denotes the k-th iteration of the calculation in TRM, gk = AT Axk −AT b,Gk = AT A and
use the minimizer sk of qk(s) to modify xk,

xk+1 = xk + sk.

Then, we define a region around the current iterate

Ωk = {x : ‖x− xk‖ ≤	k},
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where	k is the radius of Ωk, where the model is trusted to be adequate to the objective function.
Then we choose a step to be the approximate minimizer of the quadratic model in the trust-
region, such that xk + sk is the approximately best point on the generalized sphere

{xk + s | ‖s‖ ≤	k}
with center xk and radius 	k. If the step is not acceptable, the size of the trust-region will be
reduced and we will continue to find a new minimizer. Since the step is restricted by the trust
region, it is also called the restricted step method.

The model subproblem of the trust-region method can be formatted as

min qk(s) = f (xk)+gT
k s+ 1

2 sT Bks
s.t. ‖s‖ ≤ 	k

(6)

where 	k > 0 is the trust-region radius, Bk is symmetric and approximate to the Hessian Gk.
In Eq. (6), we set Bk = Gk and the method is called a Newton-type trust-region method. In
general, when there is good agreement between the model qk(s) and the objective function
value f (xk + s), one should select 	k as large as possible. Let

Aredk = f (xk)− f (xk + sk)

which is called the actual reduction, and let

Predk = qk(0)−qk(sk)

which is called the predicted reduction. Define the ratio

rk =
Aredk

Predk
,

which measures the agreement between the model function q(k) and the objective function
f . The ratio rk plays an important role in selecting new iterate xk+1 and updating the trust-
region radius 	k. If rk is close to 1, it means there is good agreement, and we can expand the
trust-region for the next iteration; if rk is close to zero or negative, we shrink the trust-region;
otherwise, we do not alter the trust-region. The following is the trust-region algorithm:

Step 1. Given initial point x0, 	, 	0 ∈ (0,	), ε ≥ 0, 0 < η1 ≤ η2 < 1
and 0 < γ1 < 1 < γ2, k := 0.

Step 2. I f ‖gk‖ ≤ η , stop.
Step 3. Approximately solve the subproblem Eq. (6) f or sk.
Step 4. Compute f (xk + sk) and rk. Set

xk+1 =
{

xk + sk, i f rk ≤ η1,
xk, otherwise.

Step 5. I f rk < η1, then 	k+1 ∈ (0, γ1	k];
I f rk ∈ [η1, η2), then 	k+1 ∈ [γ1	k, 	k];
I f rk ≥ η2 and ‖sk‖ = 	k, then 	k+1 = min

(
γ2	k, 	

)
;

else 	k+1 = θ‖sk‖.
Step 6. Generate Bk+1, update qk, set k := k + 1, go to Step 2.

In the above algorithm, 	 is an overall bound for all 	k. The iterations for which rk ≥ η2

and thus for which 	k+1 ≥	k, are said to be very successful iterations; the iterations for which
rk ≥ η1 and thus for which xk+1 = xk + sk, are said to be successful iterations; otherwise the
iterations for which rk < η1 and thus for which xk+1 = xk, are said to be unsuccessful iterations.
Sometimes, the iterations in the first two cases are said to be successful iterations.
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2.4. Relevant application issues

All the AFE framework and the Tikhonov regularization method are implemented in C++ code
and the TRM is implemented in Matlab. The reconstruction procedure is performed on an In-
tel(R) Core(TM)2 Duo E4600 CPU(2.4GHz) platform with 2GB memory.

The processing speed of AFE framework is increased by using the multi-thread ZSM tech-
nology [35] when generating Al in Eq. (4).

All the parameters of the AFE framework and Tikhonov regularization method are the same
as those used in literature [7] except the refinement threshold that is responsible for controlling
the mesh quality during the mesh refinement procedure. The smaller the refinement threshold
is set, the finer and more dense mesh is generated. In another way, bigger refinement threshold
will result in more coarse mesh. A modified Newton method is used to solve the minimization
problem in the Tikhonov regularization procedure.

As of the parameters of TRM, we set 	 = 0.25, η1 = 0.01, η2 = 0.75, γ1 = 0.5, γ1 = 2,
	0 = 1

10‖g0‖ and η = 1×10−50. We use

θ =
− g′ksk

2[ f (xk + sk) − f (xk) − g′ksk]′

to update 	k+1 in Step 5. We use the ”TRUST” function that is supplied by Matlab tool box to
solve the trust region subproblem of Eq. (6).

In order to analyze the algorithms more reasonably, we define the Distance Error of the
distance between the actual source position and the reconstructed source position and Relative
Error of the density between the actual source position and the reconstructed source position
as:

DistanceError =
√

(x − x0)2 + (y − y0)2 + (z − z0)2,

RelativeError =
| Sreconstruct −Sreal |

Sreal

where (x, y, z) is the center coordinate of the reconstruction source with the maximum density
and (x0, y0, z0) is that of the actual source center, Sreconstruct and Sreal are density of reconstruc-
tion source and actual source, respectively.

3. Experiments

3.1. Numerical simulation

We designed a heterogeneous cylindrical phantom of 30mm in height and 10mm in radius. The
phantom consisted of four ellipsoids and one cylinder to represent muscle, lungs, heart, bone
and liver, as shown in Fig. 1(a). The phantom was dis The optical parameters were all obtained
from the literature [36] and listed in Table 1.

Table 1. Optical parameters of different tissues of the heterogeneous cylindrical phantom

Material Muscle Lung Heart Bone Liver
μa[mm−1] 0.010 0.350 0.200 0.002 0.035
μs[mm−1] 4.000 23.000 16.000 20.000 6.000

g 0.900 0.940 0.850 0.900 0.900

Since Monte Carlo (MC) method remained a gold standard for photon transportation simula-
tion because of its accuracy and flexibility [37, 38], when carrying out numerical experiments,
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Fig. 1. Heterogeneous cylindrical numerical phantom with single source (a), consisted of
muscle (white), bone (black), heart (pink), lungs (green), liver (yellow) and a ball source
(blue) in the right lung. Homogeneous cube phantom with single source (b) and double
sources (c). Those blue cylinders in sub figures (b) and (c) denote the light source.

we used the MC method based molecular optical simulation environment (MOSE) [39] that
could take 2D/3D analytical models, micro-CT and micro-MRI slices to define the object ge-
ometry to get the surface photon distribution data. Besides, MC method could avoid the inverse
crime problem. In the MOSE simulation, the source was sampled by 106 photons and was
assumed to obey the uniform distribution. The aforementioned heterogeneous phantom was
discretized into 34072 triangles and 11499 surface measurement points with an average ele-
ment diameter of about 0.5mm for MOSE simulation, while in the reconstruction procedure,
the aforementioned heterogeneous phantom was discretized into 1537 points and 6878 tetrahe-
drons with an average element diameter of about 2mm.

A solid sphere source of 1mm in radius and 0.238nano−Watts/mm3 in power density was
centered at (3,5,15) inside the right lung as shown in Fig. 1(a). To reduce the ill-posedness of
the BLT inverse problem, we incorporated the permissible source region of

PS = { (x, y, z) | 13 < z < 17, (x, y, z) ∈ Right Lung}

as a priori information, according to the surface light distribution. The refinement threshold
was set to 7×10−3. The matrix A used in the last reconstruction procedure was 677×487. After
one step of mesh refinement procedure of the AFE framework, we got the reconstruction results
as shown in Fig. 2 and Table 2. Sub figures (a) to (d) in Fig. 2 were the views of Tikhonove
method, while (e) to (l) were the views of TRM. The reconstructed power density of Tikhonov
method was 0.088 with a relative error of 0.630. The reconstructed power density of TRM
method was 0.271 with a relative error of 0.133. The reconstruction time of both the methods
in the last mesh refinement procedure were shown in Table 2.

Table 2. Reconstruction results comparison between Tikhonov method and TRM in single
source heterogeneous cylindrical numerical phantom case.

Method Tikhonov TRM
Reconstructed Position (mm) (-0.923, 4.305, 16.961) (-3.316, 4.816, 13.432)

Error Distance (mm) 4.523 0.570
Time (s) 2.656 10.094
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Fig. 2. Reconstruction results comparison between Tikhonov method (sub figures (a) to
(d)) and TRM (sub figures (e) to (l)) in single source heterogeneous cylindrical numerical
phantom case. Sub figures (a), (e) and (i) are 3D views; (b), (f) and (j) are front views; (c),
(g) and (k) are side views; (d), (h) and (l) are top views. Sub figures (i) to (l) are zoom in
images of sub figures (e) to (h) around the real source, respectively. The blue ball in each
sub figure denotes the real source and the red tetrahedron denotes the reconstructed source
with the maximum density. For concision, only the real source and the reconstructed source
are displayed.

3.2. Physical experiments

3.2.1. Experimental setup

In our imaging system [8] as shown in Fig. 3, a liquid-nitrogen-cooled back-illuminated charge
coupled device (CCD) camera (Princeton Instruments VersArray 1300B, Roper Scientific, Tren-
ton, NJ) was adopted to collect the transmitted and scattered near-infrared photons on the sur-
face of the phantom, and the CCD array could generate 1340×1300 pixels and 16 bits dynamic
range images with 20mm×20mm sized pixel. The dark current of the camera could be reduced
largely through cooling the CCD chip down to −110◦C using liquid nitrogen for long expo-
sures. Furthermore, quantum efficiency (QE) of the CCD camera was greater than 80% for the
wavelength range between 500nm and 700nm. In addition, the optical parameters of the phan-
tom were determined by a time-correlated single photon counting (TCSPC) system specifically
constructed for the optical properties of the turbid medium[40]. The rotation stage was designed
to carry the imaging object, such as a phantom or a mouse, and rotate to different angles for
the CCD camera to take different views. The translation stage was designed to control the dis-
tance between the imaging object and the CCD camera. The camera holder was designed for
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modulating the height of the CCD camera.

Fig. 3. Overview of our imaging system that consists of a CCD camera, a camera holder, a
translation stage and a rotation stage [8].

3.2.2. Homogeneous cube phantom

In the phantom experiments, two cube resinous phantoms with 20mm in length were designed.
The two phantoms were both made from polyoxymethylene, and one or two small holes of
1.25mm in radius were drilled in the phantoms to emplace the light source respectively, as
shown in Fig. 1(b) and (c). Peroxide, ester compound and fluorescent dye were injected into
the holes in the phantoms after thorough mix, and then the red light whose central wavelength
located about 650nm was emitted due to the chemical reaction of the mixed resolutions. The
aforementioned red light served as the internal light source in the physical phantom experi-
ments. The phantoms were put in the imaging system as show in Fig. 3.

The final measured optical parameters of the phantom at the wavelength around 660nm were
listed as follows: the absorption coefficient ua≈0.0002mm−1 and the reduced scattering coef-
ficient u′s = (1−g)us≈1.0693mm−1. All the physical phantom experiments were performed in
a light-tight imaging chamber to avoid external disturbance and light leaking. Under the com-
puter control, the motorized rotation stage was used to rotate the phantom for acquisition of the
photon flux density on the four sides of the phantom. The photo data was then mapped to the
surface of the phantom for reconstruction. The aforementioned homogeneous cube phantom
was discretized into 1457 points and 6444 tetrahedrons with an average element diameter of
about 2mm for the reconstruction procedure.

3.2.3. Homogeneous cube phantom experiment with single source

A cylindrical source of 2.5mm in height and 1.25mm in radius was centered at
(12.5,12.5,11.25) as shown in Fig. 1(b). According to the surface light distribution, the per-
missible source region was set to

PS = { (x, y, z) | 6.5 < x < 14.5, 6.5 < y < 14.5, 6.5 < z < 14.5 }
The refinement threshold was set to 1× 10−3. The matrix A used in the last reconstruction
procedure was 681×3925. After one step of mesh refinement procedure of the AFE framework,
we got the reconstruction results as shown in Fig. 4 and Table 3. Sub figures (a) to (d) in Fig. 4
were the views of Tikhonov method, while (e) to (l) were the views of TRM. The reconstruction
time of both the methods in the last mesh refinement procedure were shown in Table 3.
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Fig. 4. Reconstruction results comparison between Tikhonov method (sub figures (a) to
(d)) and TRM (sub figures (e) to (l)) in single source homogeneous cube phantom case.
Sub figures (a), (e) and (i) are 3D views; (b), (f) and (j) are front views; (c), (g) and (k) are
side views; (d), (h) and (l) are top views. Sub figures (i) to (l) are zoom in images of sub
figures (e) to (h) around the real source, respectively. The blue cylinder in each sub figure
denotes the real source and the red tetrahedron denotes the reconstructed source with the
maximum density.

Table 3. Reconstruction results comparison between Tikhonov method and TRM in single
source homogeneous cube phantom case

Method Tikhonov TRM
Reconstructed Position (mm) (9.782, 6.184, 13.487) (11.538, 12.763, 11.532)

Error Distance (mm) 7.231 1.037
Time (s) 3530.032 1487.687

3.2.4. Homogeneous cube phantom experiment with double sources

Two cylindrical sources of 2.5mm in height and 1.25mm in radius were centered at
(6.25,6.25,11.25) and (13.75,13.75,11.25) respectively, as shown in Fig. 1(c). According to
the surface light distribution, the permissible source region was set to

PS = { (x, y, z) | 5 < x < 15, 5 < y < 15, 8 < z < 13 }

The refinement threshold was set to 6.5× 10−2. The matrix A used in the last reconstruction
procedure was 680×3082. After one step of mesh refinement procedure of the AFE framework,
we got the reconstruction results as shown in Fig. 5 and Table 4. Sub figures (a) to (d) in Fig. 5
were the views of Tikhonov method, while (e) to (l) were the views of TRM. The reconstruction
time of both the methods in the last mesh refinement procedure were shown in Table 4.
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Fig. 5. Reconstruction results comparison between Tikhonov method (sub figures (a) to (d))
and TRM (sub figures (e) to (l)) in double sources homogeneous cube phantom case. Sub
figures (a), (e) and (i) are 3D views; (b), (f) and (j) are front views; (c), (g) and (k) are side
views; (d), (h) and (l) are top views. Sub figures (i) to (l) are zoom in images of sub figures
(e) to (h) around the real source, respectively. The blue cylinder in each sub figure denotes
the real source and the red tetrahedron denotes the reconstructed source with the maximum
density.

Table 4. Reconstruction results comparison between Tikhonov method and TRM in double
sources homogeneous cube phantom case

Method Tikhonov TRM
Reconstruct Position 1 (mm) (9.573, 4.112, 9.237) (5.166, 5.244, 10.790)
Reconstruct Position 2 (mm) (9.735, 5.367, 9.173) (13.106, 12.566, 11.767)

Error Distance 1 (mm) 4.434 1.549
Error Distance 2 (mm) 9.525 1.444

Time (s) 6014.969 73.734

3.2.5. Mouse experiment

Besides the numerical simulation experiment and the real phantom experiment, we’d success-
fully carried out an experiment on a nude mouse. For getting better anatomical structure infor-
mation in Micro-CT scanning, 0.3ml Fenestra VC was injected intravenously into the lateral
tail vein of the nude mouse. A cylindrical light source with 3mm in length and 2mm in diam-
eter that was made of hollow plastic catheter filled with lightening material was sewed into
the epigastrix torso of the mouse. The mouse was put in a mouse holder that could keep the
mouse from moving during the data acquisition procedure. The mouse holder including the
mouse was then put in the rotation stage in Fig. 3. The rotation stage was then set to rotate
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to 0o, 90o, 180o and 270o for taking photos at those positions. At each position, one photo of
white light and one photo of bioluminescence light were taken. After acquiring the optical data,
the mouse was scanned by the Micro-CT system to incorporate the multi-modality informa-
tion [41] and the platform independent parameters of power, voltage, and exposure time were
set to 50W , 50Kvp, and 0.467s, respectively. The number of views was 360 with 1120×2344
pixel per view. The raw CT data was then reconstructed and the center of the real source was
(25.0,20.0,7.8). The dimension of the reconstructed CT data was 512×512×720. The voxel
of reconstructed CT data was 0.1mm× 0.1mm× 0.1mm. The reconstructed CT data was seg-
mented into 5 major tissues, including muscle, lungs, heart, liver and bone. The segmented CT
data was discretized into 4361 points and 22614 tetrahedrons for the reconstruction procedure
as shown in Fig. 6(a). Different from the mesh used in the numerical and cube phantom ex-
periments, the mesh used in the nude mouse experiment had to be generated from segmented
CT slices, as those mesh used in numerical and cube phantom experiments had regular shape,
which made it possible to be generated on computer, given the geometric information of the
object. The 2D photos were then mapped onto the surface of the mesh as shown in Fig. 6(b).
The optical parameters of the mouse were shown in Table 5. According to the surface light

Fig. 6. Sub figure (a) is the mesh used in the reconstruction procedure. The mesh consists
5 tissues, including the heart in blue, the bone in red the lung in yellow, the liver in green
and the muscle in gray. Sub figure (b) is the 3D bioluminescence mapping result from 2D
bioluminescence photos.

Table 5. Optical parameters of the nude mouse

Material Muscle Lung Heart Liver Bone
μa[mm−1] 0.0320 0.0710 0.0220 0.1280 0.0024
μ ′

s[mm−1] 0.5860 2.3050 1.1290 0.6460 0.9350

distribution, the permissible source region was set to

PS = { (x, y, z) | 18 < x < 27, 13 < y < 19, 3 < z < 11 }
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The refinement threshold was set to 1×10−3. The matrix A used in the last reconstruction pro-
cedure was 1457×4235. After one step of mesh refinement procedure of the AFE framework,
we got the reconstruction results as shown in Table 6 and Fig. 7. Sub figures (a) to (d) in Fig. 7
were the views of Tikhonov method, while (e) to (l) were the views of TRM. The reconstruction
time of both the methods in the last mesh refinement procedure were shown in Table 6.

Fig. 7. Reconstruction results comparison between Tikhonov method (sub figures (a) to
(d)) and TRM (sub figures (e) to (l)) in single source heterogeneous nude mouse case. Sub
figures (a), (e) and (i) are 3D views; (b), (f) and (j) are front views; (c), (g) and (k) are side
views; (d), (h) and (l) are top views. Sub figures (i) to (l) are zoom in images of sub figures
(e) to (h) around the real source, respectively. The blue cylinder in each sub figure denotes
the real source and the red tetrahedron denotes the reconstructed source with the maximum
density. For concision, only the real source and the reconstructed source are displayed.

Table 6. Reconstruction results comparison between Tikhonov method and TRM in single
source heterogeneous nude mouse case

Method Tikhonov TRM
Reconstructed Position (mm) (22.930, 15.720, 9.290) (25.015, 18.862, 9.474)

Error Distance (mm) 4.981 2.025
Time (s) 11371.970 3748.966

4. Discussions and conclusions

Based on the adaptive finite element framework, the trust region method has been proposed
the first time for BLT. In order to compare with the famous Tikhonov regularization method,
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we’ve carried out experiments both numerically and physically. The results could give us the
conclusion that TRM can work in solving BLT inverse problem.

Compared with the Tikhonov method, the TRM has the following advantages:
Firstly, the TRM can get better results after only one step of mesh refinement procedure in the

AFE framework by modifying the refinement threshold. In order to save more processing time,
we only perform one mesh refinement step in the AFE framework while usually more steps are
taken. Theoretically, the more the refinement steps are carried out, the better the reconstruction
results. However, the more processing time will surely be cost if more mesh refinement steps
are taken. In this way, we can take the advantages of the AFE framework and at the same time
save processing time.

Secondly, the TRM is more time efficient than the Tikhonov method when dealing with large
scale data. In the numerical experiment above, the permissible source region is restricted in the
right lung in order to compare with previous work. As a result, the dimensions of matrix A used
in the reconstruction procedure are relatively small. So the processing time of the TRM is longer
than that of the Tikhonov method. In physical cube phantom and nude mouse experiment cases,
the permissible source regions are all big compared with the one used in numerical experiment.
And the processing time of the TRM in the physical experiment cases is shorter than that of the
Tikhonov method when the dimensions of matrix A becomes large.

Thirdly, the TRM can eliminate the need of choosing regularization parameter as all the used
parameters are fixed in TRM while in the Tikhonov method the regularization parameter has an
important influence. And it is difficult to choose an appropriate regularization parameter.

We also discover that by modifying the refinement threshold of the AFE frame work, we can
get acceptable reconstruction results only after one mesh refinement procedure to save more
processing time. The influence of the refinement threshold is beyond the scope of this paper
and will be reported later.

The numerical experiment is designed to compare with previous work. The physical cube
phantom and real nude mouse experiments are designed to demonstrate that TRM can handle
large scale data acquired in real experiments. In the future, our work will be focused on the
mouse experiments of tumor model to show the biological application of the proposed TRM.
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