



Abstract—Automatic high precision assembly of millimeter
sized objects is a challenging task. Traditional methods for
precision assembly rely on explicit programming with real robot
system, and require complex parameter-tuning work. In this
paper, we realize deep reinforcement learning of precision
insertion skill learning, based on prioritized dueling deep
Q-network (DQN). The Q-function is represented by the long
short term memory (LSTM) neural network, whose input and
output are the raw 6D force-torque feedback and the Q-value,
respectively. According to the Q values conditioned on the
current state, the skill model selects a 6 degree-of-freedom
action from the predefined action set. To accelerate the learning
process, the data from demonstrations is used to pre-train the
model before the DQN starts. In order to improve the insertion
efficiency and safety, insertion step length is modulated based
on the instant reward. Our proposed method is validated with
the peg-in-hole insertion experiments on a precision assembly
robot. The reusability of the skill model is also investigated with
different types of insertion tasks.

I. INTRODUCTION

Precision assembly robots are widely applied in industrial
automation fields, such as the assembly of
microelectromechanical systems (MEMS), biotechnology and
micro-optical device [1-3]. For high-precision assembly tasks
with micrometers leveled precision, traditional industrial
robots based on position teaching are difficult to accomplish
the tasks well [4]. In the case of complex tasks, especially
when the robot is in contact with the environment or the
working object, the traditional robot teaching method cannot
meet the assembly task requirements. Under traditional
position control, small deviations between industrial robots
and the environment or work objects may cause assembly
failure, and even cause hazardous contact forces to cause
damage to the equipment.

Reinforcement learning (RL) can endow robots with the
ability to learn new tasks by actively learning without explicit
teaching. The robot learns from trial-and-error, by exploring
the environment and own body. RL has already been applied
to a wide range of robotics problems, the work [5] has already
shown the potential to learn compliance control on the
peg-in-hole problem and in [6] control policies for robots can
be learned directly from camera inputs in the real world. In

This work is supported by Science Challenge project

(No.TZ2018006-0204-02), and in part by the National Natural Science
Foundation of China under Grant 61673383. Authors are with the Research
Center of Precision Sensing and Control, Institute of Automation, Chinese
Academy of Sciences, Beijing 100190, China, and School of Artificial
Intelligence, University of Chinese Academy of Science, Beijing 100049,
China. (wuxiapeng2017@ia.ac.cn; dapeng.zhang@ia.ac.cn)

fact, these algorithms typically require a huge amount of data
by trial and error before the task had been successfully learned
on real robots. An alternative approach to enabling RL on
robots is learning in simulation and then transferring to the
real system [7], but it required considerable engineering effort
to tune the simulator to match the physical system. In many
cases, it is still difficult to obtain a precise model of the
physical interaction between two objects [8], the simulator of
some contact-rich tasks is difficult to establish. For assembly
tasks, the robot frequently interacts directly with environment
without efficiency and will cause wear and tear on the robot
machinery. In many real-world settings of RL, we have access
to data of the system being previously operated by human
controller, but we do not have access to an accurate simulator
of the system. Therefore, we want the robot to learn an initial
policy from the demonstration data before running on the real
system. Recently, demonstration data has been shown to help
in difficult exploration problems in RL [9] and allow neural
network controllers to be trained efficiently [10]. Under these
circumstances, RL offers some additional advantages to make
the robot learn from good initial demonstrations and gradually
refine it.

In this paper, we propose an insertion skill learning
approach for precision assembly, based on RL and neural
network. 1) We train a LSTM neural network with prioritized
dueling DQN algorithm, whose input is the raw 6-axis
force/torque feedback. The output Q-values are used to
determine which action is optimal among all the predefined
actions. Besides, the skill model does not rely on accurate
system calibration. RL improves the robotic skill’s adaptive
ability, and requires few prior knowledge and little human
labor. 2) To accelerate the skill learning process, the neural
network model is firstly pre-trained on a few demonstrations.
The pre-training reduces the risky random trials of robot. 3) To
improve the safety and efficiency of insertion process, the
insertion step length is modulated by the instant reward. 4) In
the experiments, the effectiveness of insertion skill learning is
verified on a precision assembly system. In addition, the
learned skill model is tested on different objects, so as to
demonstrate the flexibility, robustness and generalization
performance of the learned skill.

The rest of the paper is organized as follows. Section II
shows the robot system configuration. The preliminary of
reinforcement learning is described in Section III. Our
approach is given in Section IV. Section V presents the
experiments and results. Finally, this paper is concluded in
Section VI.

Deep Reinforcement Learning of Robotic Precision Insertion Skill
Accelerated by Demonstrations

Xiapeng Wu, Dapeng Zhang, Fangbo Qin, De Xu, Senior Member, IEEE

II. PRECISION ASSEMBLY ROBOT CONFIGURATION

The robot system shown in Fig. 1 is designed to realize
precision assembly. It mainly consists of a 3-DOF
(degree-of-freedom) manipulator, a 4-DOF adjusting
platform, three microscopic cameras, a high precision force
sensor, a lighting system, and a host computer. The light
system and other mechanical parts are not shown in Fig. 1.

Camera1

Camera2

Camera3

Adjusting
Platform

Manipulator

Force Sensor

Fig. 1. Structure diagram of the precision assembly robot.

The 3-DOF manipulator with three translation DOFs can

move along the Xw, Yw and Zw axis to align peg to hole in
position. Its gripper’s orientation can be manually adjusted to
initialize the peg’s attitude. The 4-DOF adjusting platform
has three rotation DOFs around Xw, Yw and Zw axis,
respectively, and a translation DOF along the Zw axis. The
manipulator is employed for position alignment. The
adjusting platform is used for attitude alignment. The sensing
system includes three microscopes and a force sensor. The
three microscopes are mounted approximately orthogonal to
observe objects from different directions. Real-time forces
and torques information from a force/torque sensor is
essential to guides the contact-rich insertion. The host
computer is used to control the whole assembly procedure.

The coordinates are established, as shown in Fig. 1. The
world coordinates {W} and the manipulation coordinates
{M1} are established on the adjusting platform. Manipulation
coordinates {M2} is established on the manipulator.

III. PRELIMINARY

Markov decision process (MDP) [11] is the foundation of
reinforcement learning. MDP is defined as a tuple {S, A, R, P,
}, where S represents a finite set of states, A represents a finite
set of actions, R(s,a) is a reward function with the state s and
action a as input, P is a transition probability function, and  is
a discount factor used to calculate the cumulative reward.

For each state s, the robot selects an action a to interact with
the environment. After action a is executed, the robot receives
the environment’s state information and reaches a new state
determined by transition probability P, and the environment
will give a scalar reward signal to the robot. A major aspect of
RL is the ability to learn optimal decisions under various states
for a given task. A common goal is to learn a strategy π that
maximizes the expected sum of discounted rewards kR :

2 -k

1 2 1... n
k k k k n k kR r r r r r R             



where rk is the instant reward at step k. The policy π maps state
to action. The value Q(s,a) of a given state-action pair {s,a} is
an estimate of the expected future reward following policy .
The function Q*(s,a) provides optimal maximum values in all
states, and is determined by solving the Bellman equation:

* *

' '
(,) (,) (' | ,)max (,)

s a
Q s a E R s a P s s a Q s a    (2)

The optimal policy is *() arg max (,)a As Q s a  .

Deep Q-Network (DQN) [12] approximates the value
function Q(s, a) with a deep neural network that involves two
techniques: experience replay [13] and target network. First,
experience replay memory stores transitions in a replay buffer,
enabling the RL agent to sample from buffer online, and store
demonstration data. Second, it uses a separate target network
that is updated to match the regular network after a fixed
number of steps, which can stabilize the training of action
values. The DQN loss is

2

(,) (,) max (, ;) (, ;)
a

J R s a Q s a Q s a    


        (3)

where  labels the parameters of the target network. θ labels
the parameters of the regular network that outputs a set of
action values Q(s, a;) for a given state inputs. s and a are the
next state and action, respectively.

Dueling DQN is a variant of DQN, whose architecture
decomposes the Q-function into the state-value function V(s)
and the advantage function A(s,a). A(s,a) represents the
relative advantage of action by A(s,a)=Q(s,a)-V(s). Dueling
DQN benefits from a uniform baseline for the state in the form
of V(s), and it is easier to learn relative values in the form of
A(s,a)[14].The combination of the dueling DQN with
prioritized experience replay is the state-of-the-art technique
in discrete action settings [15]. In traditional DQN, experience
transitions are uniformly sampled from the replay memory,
regardless of the significance of experiences. Prioritized
experience replay can sample the important transitions more
frequently from its replay buffer, which improves the
sampling efficiency and makes learning more efficient.

IV. APPROACH

Our approach is based on dueling DQN. We pre-train the
neural network from the demonstration data before interacting
with the assembly environment. After the pre-training, the
robot starts interacting with the environment with its initial
policy.

Before RL starts, the demonstration data is stored into the
replay memory pool. By sampling from a mix of
demonstration and trial-generated data, the robot updates its
network and continues improving its performance. The
following interaction takes place between the network and the
robot at each time step during training. State vector containing
force-torque and pose information is input to the network,
whose output was used to select the optimal control action for
the given input. Then, the action is executed by the robot,
resulting in the motion of the objects and different contact

situation. The network’s output is then evaluated based on the
new peg position and the contact forces. The reward is
computed to evaluate the selected action by the robot. Using
this evaluation, the robot adjusts its actions iteratively and the
cycle is repeated.

A. Pre-training with Demonstration Data

The robot learns an initial skill model from the
demonstration data before running automatically. During this
pre-training, the robot samples mini-batches from the
demonstration data and optimizes the network. Algorithm1
shows the pseudo code of the pre-training. The pre-training
loss function is a combination of the three losses: the DQN
loss J, a supervised large margin classification loss JE, and an
L2 regularization loss on weights,

2

1 2P EJ J J w    (4)

where 1 and 2 are weighting parameters. The DQN loss
ensures that the network satisfies the Bellman equation. The
supervised loss forces the values of the other actions and those
of the demonstrator’s action have a large margin [10], namely,

max[(,) (,)] (,)E D D
a A

J Q s a l a a Q s a


   (5)

where aD is the action the demonstrator takes under state s and
l(aD, a) is a margin function that is 0 when a=aD and positive
otherwise. L2 regularization loss is applied to the weights of
the network to prevent over-fitting on the relatively small
demonstration dataset.

Algorithm1: Pre-training with demonstration data

1: Inputs M0: replay buffer with demonstration data
  : random weights for regular network
 : random weights for target network
  : frequency of target network update
 k: number of pre-training steps
2: for step t {1,2,...k} do
3: Sample a mini-batch of n transitions from the

demonstration data
4: Calculate loss JP using target network
5: Perform a gradient descent step to update θ
6: if t % =0 then   end if
7: end for

B. RL Based Insertion Skill Learning

The RL based insertion skill learning framework is shown
in Fig. 2. The robot learning module is responsible for training
the LSTM neural network by using RL to select the right
action based on a given system state. In addition, the robot
learning module also sends action command to the robot
controller in order to align and insert the peg into a hole.

Fig. 2. The framework of insertion skill learning. The switch only turns on
during pre-training stage.

As shown in Fig. 3, we use dueling DQN formed by LSTM
layers to approximate the Q-function. In dueling architecture
used in our implementation, LSTM outputs are converted to Q
values via a fully-connected layer [16], and the LSTM layer is
followed by two streams of FC layers, to estimate value
function and advantage function separately and then combine
the two streams to estimate action value. LSTM has a memory
of the historical sensed data and is suitable to deal with the
time series data having intervals and delays.

The current state s of robot is defined as:

[, , , , , ,]x y z x y z zs F F F M M M P 

where F and M are the force and moment obtained from the
force-torque sensor, and their subscript x, y, z denotes the
components aling Xw, Yw and Zw axes. The position Pz is the
relative position indicating the insertion depth.

The network selects an action a with the form,

 [, , ,]x y z x ya d d d    

where dx, dy are the translation of the manipulator along the
axis Xw, Yw to align peg to hole in position and peg is moved
along the axis Zw with the step length dz in order to insert it
into hole.x, y are the rotation angles around Xw, Yw axis,
respectively.

Fig. 3. Network structure using dueling DQN

In addition, we realize the modulation of insertion step
length for smooth and efficient insertion. Forces along the Xw
and Yw axis are required to be less than a threshold during
insertion. Furthermore, under the premise of safety, the task is
also required to be completed with fewer steps for time

efficiency. To satisfy this requirement, we design the K value
used to modulate the reasonable step length for the current
state. In practice, K value is computed by the exponential
relationship K=er, which is related to the reward r. In sum, the
modulation of insertion step length can improve the safety and
efficiency of insertion. When the force along the Xw or Yw axis
exceeds the threshold, the robot gets a negative reward, so that
robot should be more careful to adjust the insertion step length
for safety. If the radial force is smaller, the robot gets a
positive reward value means the K value is relatively large, the
step length of each insertion can be relatively increased.

We design the following reward function for our
experiments. In order to protect the objects and improve the
assembly quality, the robot adjusts the pose of objects to
reduce the force. Therefore, in the insertion process, the radial
force is used to compute the reward r，

m in(log(1))

m ax(log (1))

T
R T

R

R
R T

T

F
F F

F
r

F
F F

F

 

 


  

 
   


1, ,

-1,- ,

 


Where FT is the threshold value of the radial force. FR denotes
the actual radial force and is obtained by 2 2sqrt()R x yF F F  ,

Fx and Fy are the forces along the axis Xw and Yw. When FR is
larger than FT, a negative reward was given. Otherwise, a
positive reward was given. The logarithmic operation keeps
the rewards over a reasonable scale for the neural network to
learn. In addition, the reward is clipped to 1.  is a proximity
threshold.  is a scaling parameter.

In order to make action and learning simultaneous, the
proposed method uses two threads: an action thread and a
learning thread. Algorithm 2 shows the pseudo code of the
action thread. The episode ends when we successfully finish
the phase, or a safety violation occurs, i.e., excessive force.
Each step, the robot stores experience transitions in a replay
memory and selects an action according to the neural network
output.

Algorithm 2: Action thread

1: Allocate a replay memory pool Mreplay with capacity N
2: Load the demonstration data into Mreplay
3: For episode e{1,…, Em } do
4: Copy latest network weights θ from learning thread
5: Reset the initial state s0

6: While the current state s is not a termination state
7: Select an action randomly with probability ε,

 otherwise select argmax (,)k aa Q s a

8: Execute ak and calculate the reward kr , observe the

next state sk+1, 1ks s 

9: Store transition (sk, ak, rk, sk+1) in Mreplay, k=k+1
10: end while
11: end for
12: Send a termination signal to the learning thread

Algorithm 3 shows the learning thread. It updates the
network with a mix of demonstration and trial-generated data.
In practice, we also use prioritized replay mechanism to
automatically tune the ratio between demonstration and
trial-generated data while sampling from replay memory,

Algorithm 3: Learning thread

1: Initialize the learning network with the weights of the
pre-training result

2: Repeat
3: if current episode e is greater than Ethreshold then
4: Sample mini-batch with size Bbatch randomly from

Mreplay with prioritization

5: Calculate the loss  21(, '; ') (, ;)k kJ r Q s a Q s a    

6: Perform a gradient descent step to update θ
7:  ←
8: end if
9: until Receive a termination signal from action thread

V. EXPERIMENTS AND RESULTS

The robotic assembly skill had two phases: pose alignment
phase and peg-in-hole insertion phase. In the pose alignment
phase, the image Jacobian based visual controller was used to
align the two objects in position and attitude. In the insertion
adjustment phase, the robot inserted the peg into the hole
smoothly and effectively. The proposed method was
evaluated with objects that had narrow clearance. The
experiment system was set up as shown in Fig. 4.

Camera3

Camera2

Camera1

Manipulator

Force sensor

Gripper

Adjusting platform

Light source

Fig. 4. Experimental system

The rotating resolution of the adjusting platform was 0.02,
and the translation resolution was 1m. The force sensor was
fixed at the end of the adjusting platform, which had a
measuring range of 18N and the resolution of force was
1/128N. The forces were filtered by a Butterworth low-pass
filter. The manipulator had the translation resolution of 1m.
The clearance between the peg and hole is shown in Table I.

TABLE I. Peg-Hole Dimensions
Type Shape Material Height

(mm)
Radius
(mm)

Clearance

Peg1 round plastic 4.00 6.005 15m (to hole 2)

Peg2 round plastic 4.00 6.000 10m (to hole 2)
Peg3 round plastic 4.00 5.990 8m (to hole 1)
Hole1 round plastic 3.00 5.982 -
Hole2 round plastic 3.00 5.990 -

The experimental platform was controlled by a host

computer with the 4.0GHz Intel Core i7 CPU and the Nvidia
GTX1080 GPU.

A. Pose Alignment Phase

The pose alignment was implemented by the methods in
[17]. Firstly, the attitude alignment were executed with the
adjusting platform, based on the angle errors observed in
images. After the attitude alignment was finished, the position
of hole was adjusted by the manipulator according to the
position errors observed in images. Fig. 5 showed the images
of the two objects before and after pose alignment.

To demonstrate that the insertion skill model can adapt to
small pose misalignment, we used a template matching
method to extract the pose features from raw image, which
was fast and easy to configure, but had lower precision than
the specified image feature extraction algorithm in [17]. Thus
a small pose error ranging within 50m and 1 degree still
existed after the pose alignment phase.

 (a) (b) (c) (d)

Fig. 5. Images before and after pose alignment in the views of camera 2 and 3.
(a, b) before alignment, (c, d) after alignment.

B. Pre-training Skill Model with Demonstration Data

We collected the demonstration data via manually
operating the insertion by a human demonstrator. In each
demonstration step, the demonstrator selected an action from
the predefined action set, according to the current state. Thus,
the demonstration data format would be compatible with the
following RL frame work. We firstly used this demonstration
data to pre-train the neural network for insertion tasks. After
demonstration, we collected 16 episodes of data in total. For
pre-training, we chose Adam optimizer [18] with the epsilon
1e−6 to perform gradient descent optimization.

C. RL Based Insertion Skill Learning

The RL based insertion skill learning was executed after
pre-training. Peg was moved up by the adjustment platform.
An episode was terminated if Fz was larger than the threshold
800mN, which meant that the vertical contact was solid and
the insertion was finished. For safety, the episode was also
immediately terminated if the case of excessive force or
jammed in narrow clearance.

The neural networks were trained through trial and error of
RL after pre-training. Note that the input

[, , , , , ,]x y z x y z zs F F F M M M P were linearly rescaled before

fed to the neural network. To execute insertion, the DQN
output was chosen from the following five actions:

1)[0, 0, -dz, 0, 0]
2)[+dx, 0, -dz, -x, 0]
3)[-dx, 0, -dz, +x, 0]
4)[0, +dy, -dz, 0, -y]
5)[0, -dy, -dz, 0, +y]

The action parameters were set as: dx=3µm, dy=3µm, dz
=70µm, x=0.2, y=0.2.The neural network in Fig. 3 was
formed by LSTM layers with h=20 hidden units. For
computing the reward in (8), we set the threshold value of
radial force as FT =100mN and =20mN. The parameters
shown in Algorithm 2 and Algorithm 3 were set as: N=10000,
Em=200, Bbatch=64, Ethreshold=20. The initial exploration rate 0
for the network was set to 1.0 and progressively decay until it
reached 0.1. The Adam optimizer with the epsilon 1e−6 is also
used in RL. The discount factor γ was set as 0.5.

1) Influence of Pre-training

As is shown in Fig.6, the y-axis indicates the score, i.e., the
cumulative sum of reward at each step. It clear at the end of
each episode. The score curve over RL training steps shows
the skill learning efficiency. By comparing Fig. 6(a) and Fig.
6(b), it is found that the RL score curve with pre-training was
positive and increased significantly after 500 steps. However,
RL score curve without pre-training had negative values
initially and increased significantly after 1000 steps.
Therefore, the RL with demonstration based pre-training
showed accelerated learning process. The parameters used for
pre-training were set as: λ1= 1.0, λ3 = 10−4, k=8000,  =500,
l(aD, a) = 0.8.

 (a) (b)

Fig. 6. Score curve over RL training steps: (a) with pre-training. (b) without
pre-training.

2) Insertion Skill Learning Performance

To test the performance of the proposed method, we
conducted experiments with different combinations of a peg
and a hole for different clearances defined in Table I.

Fig. 7 shows the learning progress in the case of a clearance
of 15µm. As is shown in Fig. 7(a), the reward obtained by
robot grew progressively as the insertion episode number
increased. As is shown in Fig. 7(b), the action correctness
rate is defined to evaluate the ratio of correct actions among
all executed actions. Here the correct action means the action
that provides a positive reward. Every time the robot took an
action step and optimize once, the action correctness rate was
calculated based on all the recorded historical actions. In the
beginning of the RL learning, the actions of random
exploration were more frequently executed, so the action
correctness rate was low. As the RL learning steps increased,
the action correctness rate became larger gradually, which
meant that the robotic insertion skill was improved by
selecting correct actions. The force curve was shown in Fig.
7(c), forces along the Xw and Yw axis were limited to a small
range, so that the insertion is very compliant.

(a) (b)

(c)

Fig. 7. Performance of the proposed method during learning insertion with
clearance of 15µm (a) Reward, means and 90% confidence bounds in moving
window of 10 episodes. (b) Action correctness rate, (c) force curve during
insertion.

3) Influence of Modulation of Insertion Step Length
After the neural network training, we compared the

performances with and without modulation of insertion step
length, determined by K value. The network selected action
from the following five actions with K value:

1)[0, 0, -Kdz, 0, 0]
2)[+dx, 0, -Kdz, -x, 0]
3)[-dx, 0, -Kdz, +x, 0]
4)[0, +dy, -Kdz, 0, -y]
5)[0, -dy, -Kdz, 0, +y]
The set of comparison experiments were carried out. The

insertion method in [17] was the comparative method. In the
comparative experiments, the setup of the method in [17] was
the same as those of the proposed method. To evaluate the
performance of the proposed method, 50 insertion trials with
the peg and hole were carried out for each method. Insertion
was executed under the condition that the initial pose of the
peg and hole was manually tuned to the same setting, so that
the pose variation did not affect the comparison result. Three
group of experiments are taken with the two settings: A: initial
positional error of 150 µm, orientation error of 0.5◦ and
clearance of 10µm. B: initial positional error of 100µm,
orientation error of 1.0◦ and clearance of 8µm. The results are
given in Table II.

According to Table II, firstly, for the two different pose
settings, the proposed method could reliably complete these
insertion tasks, and is robust to the variation of clearance and
pose alignment errors. Secondly, Table II also shows the robot
can complete insertion within fewer steps by adjusting
insertion step length with K value. Thirdly, the proposed
method finished the insertion with a narrower clearance of
8µm, while its performance had tiny reduction. The result
shows that more robust and efficient skills can be acquired by
the proposed method, compared to the traditional insertion
method in [17].

TABLE II. COMPARATIVE RESULTS BASED ON 50 TRIALS

Method

Setting

Average
insertion
steps

Average
insertion
time (s)

Proposed method
without modulation of
insertion step length

A 33 25.5

B 36 27.3

Proposed method with
modulation of insertion

step length

A 28 21.0

B 30 22.8

Method in [17]
A 54 45.9
B 65 56.5

D. Insertion Skill Reusability

To test whether the insertion skill learned could be reused
for insertion of similar but different objects, we evaluated it
through a series of peg-in-hole experiments with different
shape and material, as shown in Fig. 8. The different types of
pegs and holes are introduced in Table III. The friction
properties between these materials are significantly different
with the plastic peg and hole used in the previous experiments.
50 insertion experiments were conducted. When the model
learned from plastic cylindrical peg-hole was used to metal
cylindrical peg-hole with 15m clearance, the insertion could
be finished successfully with the 100% success rate. When
the insertion skill model was even used for square pegs-holes,
the success rate of 75% still indicated some degree of
reusability.

(a) (b)

Fig. 8. Objects with different shape and material. (a) plastic square peg-hole,
(b) metal cylindrical peg-hole.

TABLE III. Two Types of Peg-Hole Dimensions

Shape Material Height
(mm)

Diameter
(mm)

Side
(mm）

Clearance

round metal 4.0 4.00 - 15m
square plastic 4.0 - 4.00 15m

VI. CONCLUSION

This paper proposes a deep reinforcement learning
approach for precision insertion skill, which enables the robot
to learn and optimize its insertion skill without relying on
explicit and complex programming. The LSTM neural
network is utilized to approximate the Q-function in the
prioritized dueling DQN framework. Pre-training is utilized
to accelerate the skill learning. The modulation of insertion
step length is realized based on the instant reward. The
experiments demonstrate the feasibility of the proposed
method with peg-in-hole tasks. The skill model presents the
robustness and the improvement over time, and even can be
reused on objects that have different types.

REFERENCES

[1] E. Avci, K. Ohara, C. N. Nguyen, et al., “High-speed automated
manipulation of microobjects using a two-fingered microhand,” IEEE
Trans. Ind. Eletron., vol. 62, no. 2, pp. 1070-1079, 2015.

[2] F. Qin, F. Shen, D. Zhang, et al., “Contour primitives of interest
extraction method for microscopic images and its application on pose
measurement,” IEEE Trans. Syst. Man Cybern. Syst., vol. 48, no. 8,
2018.

[3] S. Bargiel, K. Rabenorosoa, et al., “Towards micro-assembly of hybrid
MOEMS components on a reconfigurable silicon free-space
micro-optical bench,” J. Micromech. Microeng., vol. 20, no. 4, pp.
679-692, 2010.

[4] J. Zhang, D. Xu, Z. T. Zhang, and W. S. Zhang, “Position/force hybrid
control system for high precision alignment of small gripper to ring
object,” Int. J. Autom. Comput., vol.10, no.4, pp.360–367, Aug.2013.

[5] V. Gullapalli, A. G Barto, et al., “Learning admittance mappings for
force guided assembly,” in IEEE International Conference on Robotics
and Automation, 1994, pp. 2633–2638.

[6] Levine, Sergey, et al., “Learning hand-eye coordination for robotic
grasping with deep learning and large-scale data collection, ” The
International Journal of Robotics Research, 37(4-5), 421-436.2018.

[7] J. Matas, S. James, et al., “Sim-to-Real Reinforcement Learning for
Deformable Object Manipulation,” in Conference on Robot Learning,
pp. 734-743, 2018.

[8] C. Bouchard, M. Nesme, et al., “6D frictional contact for rigid
bodies,” in Graphics Interface Conference. Canadian Information
Processing Society, pp.105–114,2015

[9] Subramanian, K., Isbell Jr, et al., “Exploration from demonstration for
interactive reinforcement learning,” in International Conference on
Autonomous Agents & Multiagent Systems, pp.447–456,2016

[10] H, T, et al. “Deep Q-learning from demonstrations,” Conference on
Artificial Intelligence, 2018.

[11] R. S. Sutton, A. G. Barto, “Introduction to reinforcement learning,”
Cambridge: MIT Press, vol.10,1998.

[12] M. V, K. K, Silver D, et al., “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529, 2015.

[13] L. J. Li, “Self-improving reactive agents based on reinforcement
learning, planning and teaching,” Machine learning, vol. 8.3, no. 4
293-321, 1992

[14] Z. Wang, N. D. Freitas, et al., “Dueling Network Architectures for
Deep Reinforcement Learning,” in International Conference on
Machine Learning, pp. 1995-2003, 2016.

[15] T. Schaul, J. Quan, et al., “Prioritized Experience Replay,” In
International Conference on Learning Representations, 2016.

[16] M. Hausknecht and P. Stone, “Deep Recurrent Q-Learning for Partially
Observable MDPs,” AAAI Fall Symposium on Sequential Decision
Making for Intelligent Agents, 2015.

[17] S. Liu, D. Xu, D. Zhang, and Z. Zhang, “High precision automatic
assembly based on microscopic vision and force information,” IEEE
Trans. Autom. Sci. Eng., vol. 13, no. 1, pp. 382–393, Jan. 2016.

[18] K. D, Ba. J，“Adam: A Method for Stochastic Optimization,” Computer
Science, 2014.

