
  

 

Abstract—Automatic high precision assembly of millimeter 
sized objects is a challenging task. Traditional methods for 
precision assembly rely on explicit programming with real robot 
system, and require complex parameter-tuning work. In this 
paper, we realize deep reinforcement learning of precision 
insertion skill learning, based on prioritized dueling deep 
Q-network (DQN). The Q-function is represented by the long 
short term memory (LSTM) neural network, whose input and 
output are the raw 6D force-torque feedback and the Q-value, 
respectively. According to the Q values conditioned on the 
current state, the skill model selects a 6 degree-of-freedom 
action from the predefined action set. To accelerate the learning 
process, the data from demonstrations is used to pre-train the 
model before the DQN starts. In order to improve the insertion 
efficiency and safety, insertion step length is modulated based 
on the instant reward. Our proposed method is validated with 
the peg-in-hole insertion experiments on a precision assembly 
robot. The reusability of the skill model is also investigated with 
different types of insertion tasks. 

I. INTRODUCTION 

Precision assembly robots are widely applied in industrial 
automation fields, such as the assembly of 
microelectromechanical systems (MEMS), biotechnology and 
micro-optical device [1-3]. For high-precision assembly tasks 
with micrometers leveled precision, traditional industrial 
robots based on position teaching are difficult to accomplish 
the tasks well [4]. In the case of complex tasks, especially 
when the robot is in contact with the environment or the 
working object, the traditional robot teaching method cannot 
meet the assembly task requirements. Under traditional 
position control, small deviations between industrial robots 
and the environment or work objects may cause assembly 
failure, and even cause hazardous contact forces to cause 
damage to the equipment. 

Reinforcement learning (RL) can endow robots with the 
ability to learn new tasks by actively learning without explicit 
teaching. The robot learns from trial-and-error, by exploring 
the environment and own body. RL has already been applied 
to a wide range of robotics problems, the work [5] has already 
shown the potential to learn compliance control on the 
peg-in-hole problem and in [6] control policies for robots can 
be learned directly from camera inputs in the real world. In 
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fact, these algorithms typically require a huge amount of data 
by trial and error before the task had been successfully learned 
on real robots. An alternative approach to enabling RL on 
robots is learning in simulation and then transferring to the 
real system [7], but it required considerable engineering effort 
to tune the simulator to match the physical system. In many 
cases, it is still difficult to obtain a precise model of the 
physical interaction between two objects [8], the simulator of 
some contact-rich tasks is difficult to establish. For assembly 
tasks, the robot frequently interacts directly with environment 
without efficiency and will cause wear and tear on the robot 
machinery. In many real-world settings of RL, we have access 
to data of the system being previously operated by human 
controller, but we do not have access to an accurate simulator 
of the system. Therefore, we want the robot to learn an initial 
policy from the demonstration data before running on the real 
system. Recently, demonstration data has been shown to help 
in difficult exploration problems in RL [9] and allow neural 
network controllers to be trained efficiently [10]. Under these 
circumstances, RL offers some additional advantages to make 
the robot learn from good initial demonstrations and gradually 
refine it. 

In this paper, we propose an insertion skill learning 
approach for precision assembly, based on RL and neural 
network. 1) We train a LSTM neural network with prioritized 
dueling DQN algorithm, whose input is the raw 6-axis 
force/torque feedback. The output Q-values are used to 
determine which action is optimal among all the predefined 
actions. Besides, the skill model does not rely on accurate 
system calibration. RL improves the robotic skill’s adaptive 
ability, and requires few prior knowledge and little human 
labor. 2) To accelerate the skill learning process, the neural 
network model is firstly pre-trained on a few demonstrations. 
The pre-training reduces the risky random trials of robot. 3) To 
improve the safety and efficiency of insertion process, the 
insertion step length is modulated by the instant reward. 4) In 
the experiments, the effectiveness of insertion skill learning is 
verified on a precision assembly system. In addition, the 
learned skill model is tested on different objects, so as to 
demonstrate the flexibility, robustness and generalization 
performance of the learned skill.  

The rest of the paper is organized as follows. Section II 
shows the robot system configuration. The preliminary of 
reinforcement learning is described in Section III. Our 
approach is given in Section IV. Section V presents the 
experiments and results. Finally, this paper is concluded in 
Section VI.  
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II. PRECISION ASSEMBLY ROBOT CONFIGURATION 

The robot system shown in Fig. 1 is designed to realize 
precision assembly. It mainly consists of a 3-DOF 
(degree-of-freedom) manipulator, a 4-DOF adjusting 
platform, three microscopic cameras, a high precision force 
sensor, a lighting system, and a host computer. The light 
system and other mechanical parts are not shown in Fig. 1. 
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Fig. 1. Structure diagram of the precision assembly robot. 

 
The 3-DOF manipulator with three translation DOFs can 

move along the Xw, Yw and Zw axis to align peg to hole in 
position. Its gripper’s orientation can be manually adjusted to 
initialize the peg’s attitude. The 4-DOF adjusting platform 
has three rotation DOFs around Xw, Yw and Zw axis, 
respectively, and a translation DOF along the Zw axis. The 
manipulator is employed for position alignment. The 
adjusting platform is used for attitude alignment. The sensing 
system includes three microscopes and a force sensor. The 
three microscopes are mounted approximately orthogonal to 
observe objects from different directions. Real-time forces 
and torques information from a force/torque sensor is 
essential to guides the contact-rich insertion. The host 
computer is used to control the whole assembly procedure. 

The coordinates are established, as shown in Fig. 1. The 
world coordinates {W} and the manipulation coordinates 
{M1} are established on the adjusting platform. Manipulation 
coordinates {M2} is established on the manipulator. 

III. PRELIMINARY 

Markov decision process (MDP) [11] is the foundation of 
reinforcement learning. MDP is defined as a tuple {S, A, R, P, 
}, where S represents a finite set of states, A represents a finite 
set of actions, R(s,a) is a reward function with the state s and 
action a as input, P is a transition probability function, and  is 
a discount factor used to calculate the cumulative reward.  

For each state s, the robot selects an action a to interact with 
the environment. After action a is executed, the robot receives 
the environment’s state information and reaches a new state 
determined by transition probability P, and the environment 
will give a scalar reward signal to the robot. A major aspect of 
RL is the ability to learn optimal decisions under various states 
for a given task. A common goal is to learn a strategy π that 
maximizes the expected sum of discounted rewards kR : 
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where rk is the instant reward at step k. The policy π maps state 
to action. The value Q(s,a) of a given state-action pair {s,a} is 
an estimate of the expected future reward following policy . 
The function Q*(s,a) provides optimal maximum values in all 
states, and is determined by solving the Bellman equation: 
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The optimal policy is *( ) arg max ( , )a As Q s a  . 

Deep Q-Network (DQN) [12] approximates the value 
function Q(s, a) with a deep neural network that involves two 
techniques: experience replay [13] and target network. First, 
experience replay memory stores transitions in a replay buffer, 
enabling the RL agent to sample from buffer online, and store 
demonstration data. Second, it uses a separate target network 
that is updated to match the regular network after a fixed 
number of steps, which can stabilize the training of action 
values. The DQN loss is  
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where  labels the parameters of the target network. θ labels 
the parameters of the regular network that outputs a set of 
action values Q(s, a;) for a given state inputs. s and a are the 
next state and action, respectively. 

Dueling DQN is a variant of DQN, whose architecture 
decomposes the Q-function into the state-value function V(s) 
and the advantage function A(s,a). A(s,a) represents the 
relative advantage of action by A(s,a)=Q(s,a)-V(s). Dueling 
DQN benefits from a uniform baseline for the state in the form 
of V(s), and it  is easier to learn relative values in the form of 
A(s,a)[14].The combination of the dueling DQN with 
prioritized experience replay is the state-of-the-art technique 
in discrete action settings [15]. In traditional DQN, experience 
transitions are uniformly sampled from the replay memory, 
regardless of the significance of experiences. Prioritized 
experience replay can sample the important transitions more 
frequently from its replay buffer, which improves the 
sampling efficiency and makes learning more efficient.  

IV. APPROACH 

Our approach is based on dueling DQN. We pre-train the 
neural network from the demonstration data before interacting 
with the assembly environment. After the pre-training, the 
robot starts interacting with the environment with its initial 
policy. 

Before RL starts, the demonstration data is stored into the 
replay memory pool. By sampling from a mix of 
demonstration and trial-generated data, the robot updates its 
network and continues improving its performance. The 
following interaction takes place between the network and the 
robot at each time step during training. State vector containing 
force-torque and pose information is input to the network, 
whose output was used to select the optimal control action for 
the given input. Then, the action is executed by the robot, 
resulting in the motion of the objects and different contact 



  

situation. The network’s output is then evaluated based on the 
new peg position and the contact forces. The reward is 
computed to evaluate the selected action by the robot. Using 
this evaluation, the robot adjusts its actions iteratively and the 
cycle is repeated.   

A. Pre-training with Demonstration Data 

The robot learns an initial skill model from the 
demonstration data before running automatically. During this 
pre-training, the robot samples mini-batches from the 
demonstration data and optimizes the network. Algorithm1 
shows the pseudo code of the pre-training. The pre-training 
loss function is a combination of the three losses: the DQN 
loss J, a supervised large margin classification loss JE, and an 
L2 regularization loss on weights, 
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where 1 and 2 are weighting parameters. The DQN loss 
ensures that the network satisfies the Bellman equation. The 
supervised loss forces the values of the other actions and those 
of the demonstrator’s action have a large margin [10], namely, 

max[ ( , ) ( , )] ( , )E D D
a A

J Q s a l a a Q s a


            (5) 

where aD is the action the demonstrator takes under state s and 
l(aD, a) is a margin function that is 0 when a=aD and positive 
otherwise. L2 regularization loss is applied to the weights of 
the network to prevent over-fitting on the relatively small 
demonstration dataset. 

 
Algorithm1:  Pre-training with demonstration data 
 

1: Inputs M0: replay buffer with demonstration data 
               : random weights for regular network  
                : random weights for target network 
                 : frequency of target network update 
             k: number of pre-training steps  
2: for step t {1,2,...k} do  
3:     Sample a mini-batch of n transitions from the 

demonstration data 
4:     Calculate loss JP using target network  
5:     Perform a gradient descent step to update θ  
6:     if t % =0 then       end if  
7: end for 
 

B. RL Based Insertion Skill Learning 

The RL based insertion skill learning framework is shown 
in Fig. 2. The robot learning module is responsible for training 
the LSTM neural network by using RL to select the right 
action based on a given system state. In addition, the robot 
learning module also sends action command to the robot 
controller in order to align and insert the peg into a hole. 

 
Fig. 2. The framework of insertion skill learning. The switch only turns on 
during pre-training stage.  
 

As shown in Fig. 3, we use dueling DQN formed by LSTM 
layers to approximate the Q-function. In dueling architecture 
used in our implementation, LSTM outputs are converted to Q 
values via a fully-connected layer [16], and the LSTM layer is 
followed by two streams of FC layers, to estimate value 
function and advantage function separately and then combine 
the two streams to estimate action value. LSTM has a memory 
of the historical sensed data and is suitable to deal with the 
time series data having intervals and delays.  

The current state s of robot is defined as:  

[ , , , , , , ]x y z x y z zs F F F M M M P  

where F and M are the force and moment obtained from the 
force-torque sensor, and their subscript x, y, z denotes the 
components aling Xw, Yw and Zw axes. The position Pz is the 
relative position indicating the insertion depth. 

The network selects an action a with the form, 

 [ , , , ]x y z x ya d d d    

where dx, dy are the translation of the manipulator along the 
axis Xw, Yw  to align peg to hole in position and peg is moved 
along the axis Zw with the step length dz  in order to insert it 
into hole.x, y are the rotation angles around Xw, Yw axis, 
respectively. 
 

 
Fig. 3.  Network structure using dueling DQN 

 
 

In addition, we realize the modulation of insertion step 
length for smooth and efficient insertion. Forces along the Xw 
and Yw axis are required to be less than a threshold during 
insertion. Furthermore, under the premise of safety, the task is 
also required to be completed with fewer steps for time 



  

efficiency. To satisfy this requirement, we design the K value 
used to modulate the reasonable step length for the current 
state. In practice, K value is computed by the exponential 
relationship K=er, which is related to the reward r. In sum, the 
modulation of insertion step length can improve the safety and 
efficiency of insertion. When the force along the Xw or Yw axis 
exceeds the threshold, the robot gets a negative reward, so that 
robot should be more careful to adjust the insertion step length 
for safety. If the radial force is smaller, the robot gets a 
positive reward value means the K value is relatively large, the 
step length of each insertion can be relatively increased. 

We design the following reward function for our 
experiments. In order to protect the objects and improve the 
assembly quality, the robot adjusts the pose of objects to 
reduce the force. Therefore, in the insertion process, the radial 
force is used to compute the reward r， 
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Where FT is the threshold value of the radial force. FR denotes 
the actual radial force and is obtained by 2 2sqrt( )R x yF F F  , 

Fx and Fy are the forces along the axis Xw and Yw. When FR is 
larger than FT, a negative reward was given. Otherwise, a 
positive reward was given. The logarithmic operation keeps 
the rewards over a reasonable scale for the neural network to 
learn. In addition, the reward is clipped to 1.  is a proximity 
threshold.  is a scaling parameter. 

In order to make action and learning simultaneous, the 
proposed method uses two threads: an action thread and a 
learning thread. Algorithm 2 shows the pseudo code of the 
action thread. The episode ends when we successfully finish 
the phase, or a safety violation occurs, i.e., excessive force. 
Each step, the robot stores experience transitions in a replay 
memory and selects an action according to the neural network 
output.  
 

Algorithm 2: Action thread  
 

1: Allocate a replay memory pool Mreplay with capacity N 
2: Load the demonstration data into Mreplay 
3: For episode e{1,…, Em } do 
4:   Copy latest network weights θ from learning thread 
5:   Reset the initial state s0 

6:   While the current state s is not a termination state 
7:         Select an action randomly with probability ε,  

 otherwise select argmax ( , )k aa Q s a   

8:       Execute ak  and calculate the reward kr , observe the 

next state sk+1, 1ks s   

9:       Store transition (sk, ak, rk, sk+1) in Mreplay, k=k+1  
10:   end while 
11: end for  
12: Send a termination signal to the learning thread 
 

Algorithm 3 shows the learning thread. It updates the 
network with a mix of demonstration and trial-generated data. 
In practice, we also use prioritized replay mechanism to 
automatically tune the ratio between demonstration and 
trial-generated data while sampling from replay memory, 
 
Algorithm 3: Learning thread 
 

1: Initialize the learning network with the weights of the 
pre-training result 

2: Repeat 
3:   if current episode e is greater than Ethreshold  then 
4:      Sample mini-batch with size Bbatch randomly from 

Mreplay with prioritization 

5:      Calculate the loss  21( , '; ') ( , ; )k kJ r Q s a Q s a      

6:      Perform a gradient descent step to update θ  
7:       ← 
8:   end if 
9: until Receive a termination signal from action thread 

 

V. EXPERIMENTS AND RESULTS  

The robotic assembly skill had two phases: pose alignment 
phase and peg-in-hole insertion phase. In the pose alignment 
phase, the image Jacobian based visual controller was used to 
align the two objects in position and attitude. In the insertion 
adjustment phase, the robot inserted the peg into the hole 
smoothly and effectively. The proposed method was 
evaluated with objects that had narrow clearance. The 
experiment system was set up as shown in Fig. 4.  
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Fig. 4. Experimental system  

 

The rotating resolution of the adjusting platform was 0.02, 
and the translation resolution was 1m. The force sensor was 
fixed at the end of the adjusting platform, which had a 
measuring range of 18N and the resolution of force was 
1/128N. The forces were filtered by a Butterworth low-pass 
filter.  The manipulator had the translation resolution of 1m. 
The clearance between the peg and hole is shown in Table I.  
 

TABLE I. Peg-Hole Dimensions 
Type Shape Material Height 

(mm) 
Radius 
(mm) 

Clearance 

Peg1 round plastic 4.00 6.005 15m (to hole 2) 

Peg2 round plastic 4.00 6.000 10m (to hole 2) 
Peg3 round plastic 4.00 5.990 8m (to hole 1) 
Hole1 round plastic 3.00 5.982 - 
Hole2 round plastic 3.00 5.990 - 



  

 
The experimental platform was controlled by a host 

computer with the 4.0GHz Intel Core i7 CPU and the Nvidia 
GTX1080 GPU. 

A. Pose Alignment Phase 

The pose alignment was implemented by the methods in 
[17]. Firstly, the attitude alignment were executed with the 
adjusting platform, based on the angle errors observed in 
images. After the attitude alignment was finished, the position 
of hole was adjusted by the manipulator according to the 
position errors observed in images. Fig. 5 showed the images 
of the two objects before and after pose alignment.  

To demonstrate that the insertion skill model can adapt to 
small pose misalignment, we used a template matching 
method to extract the pose features from raw image, which 
was fast and easy to configure, but had lower precision than 
the specified image feature extraction algorithm in [17]. Thus 
a small pose error ranging within 50m and 1 degree still 
existed after the pose alignment phase.  
 

 
 (a)                         (b)                           (c)                     (d) 

Fig. 5. Images before and after pose alignment in the views of camera 2 and 3. 
(a, b) before alignment, (c, d) after alignment.  
 

B. Pre-training Skill Model with Demonstration Data 

We collected the demonstration data via manually 
operating the insertion by a human demonstrator. In each 
demonstration step, the demonstrator selected an action from 
the predefined action set, according to the current state. Thus, 
the demonstration data format would be compatible with the 
following RL frame work. We firstly used this demonstration 
data to pre-train the neural network for insertion tasks. After 
demonstration, we collected 16 episodes of data in total. For 
pre-training, we chose Adam optimizer [18] with the epsilon 
1e−6 to perform gradient descent optimization. 

C. RL Based Insertion Skill Learning 

The RL based insertion skill learning was executed after 
pre-training. Peg was moved up by the adjustment platform. 
An episode was terminated if Fz was larger than the threshold 
800mN, which meant that the vertical contact was solid and 
the insertion was finished. For safety, the episode was also 
immediately terminated if the case of excessive force or 
jammed in narrow clearance. 

The neural networks were trained through trial and error of 
RL after pre-training. Note that the input 

[ , , , , , , ]x y z x y z zs F F F M M M P  were linearly rescaled before 

fed to the neural network. To execute insertion, the DQN 
output was chosen from the following five actions: 

1)[0,   0, -dz,   0,   0]  
2)[+dx, 0, -dz, -x, 0] 
3)[-dx, 0, -dz, +x, 0] 
4)[0, +dy, -dz, 0, -y] 
5)[0, -dy, -dz, 0, +y] 

The action parameters were set as: dx=3µm, dy=3µm, dz 
=70µm, x=0.2, y=0.2.The neural network in Fig. 3 was 
formed by LSTM layers with h=20 hidden units. For 
computing the reward in (8), we set the threshold value of 
radial force as FT =100mN and =20mN. The parameters 
shown in Algorithm 2 and Algorithm 3 were set as: N=10000, 
Em=200, Bbatch=64, Ethreshold=20. The initial exploration rate 0 
for the network was set to 1.0 and progressively decay until it 
reached 0.1. The Adam optimizer with the epsilon 1e−6 is also 
used in RL. The discount factor γ was set as 0.5.  

 
1) Influence of Pre-training 

As is shown in Fig.6, the y-axis indicates the score, i.e., the 
cumulative sum of reward at each step. It clear at the end of 
each episode. The score curve over RL training steps shows 
the skill learning efficiency. By comparing Fig. 6(a) and Fig. 
6(b), it is found that the RL score curve with pre-training was 
positive and increased significantly after 500 steps. However, 
RL score curve without pre-training had negative values 
initially and increased significantly after 1000 steps. 
Therefore, the RL with demonstration based pre-training 
showed accelerated learning process. The parameters used for 
pre-training were set as: λ1= 1.0, λ3 = 10−4, k=8000,  =500, 
l(aD, a) = 0.8. 
 

 
     (a)                                                            (b) 

Fig. 6. Score curve over RL training steps: (a) with pre-training. (b) without 
pre-training. 
 
2) Insertion Skill Learning Performance 

To test the performance of the proposed method, we 
conducted experiments with different combinations of a peg 
and a hole for different clearances defined in Table I. 

Fig. 7 shows the learning progress in the case of a clearance 
of 15µm. As is shown in Fig. 7(a), the reward obtained by 
robot grew progressively as the insertion episode number 
increased. As is shown in Fig. 7(b), the action correctness 
rate is defined to evaluate the ratio of correct actions among 
all executed actions. Here the correct action means the action 
that provides a positive reward. Every time the robot took an 
action step and optimize once, the action correctness rate was 
calculated based on all the recorded historical actions. In the 
beginning of the RL learning, the actions of random 
exploration were more frequently executed, so the action 
correctness rate was low. As the RL learning steps increased, 
the action correctness rate became larger gradually, which 
meant that the robotic insertion skill was improved by 
selecting correct actions. The force curve was shown in Fig. 
7(c), forces along the Xw and Yw axis were limited to a small 
range, so that the insertion is very compliant.  

 
 



  

 
(a)                                                             (b) 

 
(c) 

Fig. 7. Performance of the proposed method during learning insertion with 
clearance of 15µm (a) Reward, means and 90% confidence bounds in moving 
window of 10 episodes. (b) Action correctness rate, (c) force curve during 
insertion. 
 

3) Influence of Modulation of Insertion Step Length 
After the neural network training, we compared the 

performances with and without modulation of insertion step 
length, determined by K value. The network selected action 
from the following five actions with K value:  

1)[0,  0, -Kdz, 0,  0]  
2)[+dx, 0, -Kdz, -x, 0] 
3)[-dx, 0, -Kdz, +x, 0] 
4)[0, +dy, -Kdz, 0, -y] 
5)[0, -dy, -Kdz, 0, +y] 
The set of comparison experiments were carried out. The 

insertion method in [17] was the comparative method. In the 
comparative experiments, the setup of the method in [17] was 
the same as those of the proposed method. To evaluate the 
performance of the proposed method, 50 insertion trials with 
the peg and hole were carried out for each method. Insertion 
was executed under the condition that the initial pose of the 
peg and hole was manually tuned to the same setting, so that 
the pose variation did not affect the comparison result. Three 
group of experiments are taken with the two settings: A: initial 
positional error of 150 µm, orientation error of 0.5◦ and 
clearance of 10µm. B: initial positional error of 100µm, 
orientation error of 1.0◦ and clearance of 8µm. The results are 
given in Table II. 

According to Table II, firstly, for the two different pose 
settings, the proposed method could reliably complete these 
insertion tasks, and is robust to the variation of clearance and 
pose alignment errors. Secondly, Table II also shows the robot 
can complete insertion within fewer steps by adjusting 
insertion step length with K value. Thirdly, the proposed 
method finished the insertion with a narrower clearance of 
8µm, while its performance had tiny reduction. The result 
shows that more robust and efficient skills can be acquired by 
the proposed method, compared to the traditional insertion 
method in [17]. 

 

TABLE  II. COMPARATIVE  RESULTS BASED ON 50 TRIALS  

 
Method 

 
Setting 

 

Average 
insertion 
steps 

Average 
insertion 
time (s) 

Proposed method 
without modulation of 
insertion step length 

A 33 25.5 

B 36 27.3 

Proposed method with 
modulation of insertion 

step length 

A 28 21.0 

B 30 22.8 

Method in [17] 
A 54 45.9 
B 65 56.5 

D. Insertion Skill Reusability  

To test whether the insertion skill learned could be reused 
for insertion of similar but different objects, we evaluated it 
through a series of peg-in-hole experiments with different 
shape and material, as shown in Fig. 8. The different types of 
pegs and holes are introduced in Table III. The friction 
properties between these materials are significantly different 
with the plastic peg and hole used in the previous experiments. 
50 insertion experiments were conducted. When the model 
learned from plastic cylindrical peg-hole was used to metal 
cylindrical peg-hole with 15m clearance, the insertion could 
be finished successfully with the 100% success rate. When 
the insertion skill model was even used for square pegs-holes, 
the success rate of 75% still indicated some degree of 
reusability.  

 

         
(a)                                                    (b) 

Fig. 8. Objects with different shape and material. (a) plastic square peg-hole, 
(b) metal cylindrical peg-hole.  

 
TABLE III. Two Types of Peg-Hole Dimensions 

Shape Material Height 
(mm) 

Diameter  
(mm) 

Side 
(mm） 

Clearance 

round metal 4.0 4.00 - 15m 
square plastic 4.0 - 4.00 15m 

 

VI. CONCLUSION 

This paper proposes a deep reinforcement learning 
approach for precision insertion skill, which enables the robot 
to learn and optimize its insertion skill without relying on 
explicit and complex programming. The LSTM neural 
network is utilized to approximate the Q-function in the 
prioritized dueling DQN framework. Pre-training is utilized 
to accelerate the skill learning. The modulation of insertion 
step length is realized based on the instant reward. The 
experiments demonstrate the feasibility of the proposed 
method with peg-in-hole tasks. The skill model presents the 
robustness and the improvement over time, and even can be 
reused on objects that have different types. 
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