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Connecting Model-Based and Model-Free Control
With Emotion Modulation in Learning Systems
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Abstract—This article proposes a novel decision-making
framework that bridges a gap between model-based (MB) and
model-free (MF) control processes through only adjusting the
planning horizon. Specifically, the output policy is obtained by
solving a model predictive control problem with a locally optimal
state value as terminal constraints. When the planning horizon
decreases to zero, the MB control will transform into the MF
control smoothly. Meanwhile, inspired by the neural mechanism
of emotion modulation on decision-making, we build a biologi-
cally plausible computational model of emotion processing. This
model can generate an uncertainty-related emotional response
on the basis of the state prediction error and reward prediction
error, and then dynamically modulates the planning horizon in
the tasks. The simulation results demonstrate that the proposed
decision-making framework can produce better policies than tra-
ditional methods. Emotion modulation can shift the MB and MF
control well to improve the learning efficiency and the speed of
decision-making.

Index Terms—Brain-inspired computing, decision-making,
emotion modulation, emotion-cognition interactions, reinforce-
ment learning.

I. INTRODUCTION

HUMAN behaviors are often organized into goal-directed
and habitual processes, which are studied as model-

based (MB) and model-free (MF) decision-making systems,
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respectively. MB decision-making involves building a model
of the environment to predict the outcomes, and searching
an action that maximizes the return via dynamic program-
ming [1]. This process is generally data-efficient but expensive
in terms of computation time and working memory. On the
contrary, MF decision-making is to learn to estimate a long-
term utility and form a fixed state-action mapping based
on previous experience with reinforcing consequences during
interacting with the environment [2]. Compared with the MB
approach, this process usually has a faster speed of decision-
making, but requires a lot of practical training. Cooperative
working of these two processes are very important for sur-
vival of animals. For robotics, a huge challenge is to learn
how to reason about the underlying environmental dynamics
and learn how to make decisions quickly and accurately. One
feasible approach is to develop novel computational models
based on a coherent and comprehensive mapping of the key
neural mechanisms in human brain, such as [3]–[5].

In recent years, many computational approaches to decision-
making have been developed in the framework of reinforce-
ment learning and adaptive dynamic programming. For robotic
control, a series of MF algorithms have been proposed to
perform complex decision-making tasks. A prevalent archi-
tecture is actor-critic methods that consist of a parameterized
policy function as an actor and a parameterized value func-
tion as a critic. The goal of these methods is to learn an
actor that maximizes the critic, which is usually drawn into
optimal control [6]–[8]. At the same time, many promi-
nent methods integrated with deep learning have emerged,
such as trust-region policy optimization [9], deterministic
policy gradients (DPGs) [10], and hierarchical deep rein-
forcement learning [11]. However, most MF methods suffer
from a low data efficiency and need a lot of interac-
tions with the environment, which is unrealistic for general
robotic systems.

In order to improve the data efficiency, some researchers
adopt MB algorithms to control robotic systems, such as
PILCO [12] and guided policy search (GPS) [13], [14]. As
for PILCO, the uncertainty of model is explicitly incorporated
into long-term planning, which facilitates learning with a high
data efficiency. Unfortunately, at each iteration, large nonlinear
optimizations require expensive resources of computation and
memory. GPS can search deep visuomotor policies through
end-to-end supervised training with guide of MB dynamic pro-
gramming. This approach shows good performance in a range
of real-world manipulation tasks with visual input. In fact,
both above algorithms are related to the architecture of model
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predictive control (MPC), especially differential dynamic pro-
gramming (DDP) [15] or iterative LQR (iLQR) [16]. As a
typical MB method, MPC has been successfully applied to
the robotics and control systems. For example, an output feed-
back MPC with the integration of an extended state observer is
proposed to suppress disturbances and increase the robustness
against various model uncertainties in hydraulic systems [17].
In the work [18], an online MPC is designed handle the
robotic food-cutting task, learning controllers directly from
data. However, the error of model prediction has a huge impact
on searching the optimal policy, and MB planning is usually
time-consuming and only obtains a suboptimal solution. In
addition, most of above algorithms have ignored that MB and
MF learning systems operate in parallel among humans [19].

Emotion recently has become more attractive to improve
the learning efficiency of the agent, especially in the com-
munity of computer science and developmental robot. For
example, Belkaid et al. [20] introduced a conceptual model
named eMODEL that integrates emotional modulation into
the cognitive robots. Moerland et al. [21] reviewed the func-
tions of emotion in reinforcement learning agents and robots.
That work investigated various methods of affective modeling
for improving the learning efficiency of the agent, and com-
pared different evaluation methods from the aspects of emotion
elicitation, emotion type, emotion function, and test scenario.
Meantime, the authors consider that emotion may influence
the learning loop in four main aspects: 1) reward modification;
2) state modification; 3) meta-learning; and 4) action selection.
For instance, Huang et al. [22] built a novel model of emotion
generation to adjust the parameters of learning adaptively, as
a part of meta-learning. However, most methods reviewed in
that work are inspired by psychological theories of emotion,
which is not biologically plausible.

The motivation of this article is to improve the efficiency
of learning and speed up the decision-making in the robotic
control tasks. For this purpose, a unified decision-making
framework is built to bridge a gap between MB and MF con-
trol processes through adjusting the planning horizon. In this
framework, the greedy output policy is obtained by solving an
MPC problem with a locally optimal state value as terminal
constraints. During the optimization process, the sequence
of actions is guided by the output of parameterized policy
network, which ensures the stability of policy search. When
the planning horizon decreases to zero, the MB control will
transform into the MF control smoothly. Additionally, inspired
by the neural mechanism of emotion modulation between the
MB and MF decision-making, we build a biologically plausi-
ble computational model of amygdala to produce uncertainty-
related emotional responses that can dynamically influence the
planning horizon in the course of task. Specifically, if the state
prediction error (SPE) is large and the reward prediction error
(RPE) is small, the intensity of uncertainty-related emotional
response will increase such that more short-term MB planning
or MF policy will be adopted for a faster decision-making, and
vice versa. As a result, the proposed algorithm is significant
for robots to acquire the skills for performing some complex
tasks quickly and accurately, such as robotic manipulation,
locomotion and navigation. Besides, this article can promote

Fig. 1. Substrates of MF and MB decision-making. Abbreviation: Mb, model-
based; Mf, model-free; OFC, orbitofrontal cortex; mPFC, medial prefrontal
cortex; DMS, dorso-medial striatum; DLS, dorso-lateral striatum; VP, ventral
pallidum; VTA, ventral tegmental area; SNc, substantia nigra pars compacta;
and PPn, pedunculopontine nucleus.

the interdisciplinary integration of neuroscience and artificial
intelligence.

The rest of this article is organized as follows. First of all,
the neural mechanisms of decision-making systems and emo-
tion processing are investigated in Section II. In Section III,
some existing approaches are described to learn a probabilistic
dynamic model and an MF guiding policy. Then the uni-
fied framework for decision-making and the computational
model of emotion processing is described in Section IV. In
Section V, the proposed algorithms are implemented in the
inverted pendulum swing-up task and the robotic arm reach-
ing task, respectively. The experimental results are discussed
further. Finally, the conclusions are given in Section VI.

II. BIOLOGICAL BACKGROUND

A. Neural Substrates of Model-Free and Model-Based
Decision-Making

It has long been known that human behavior is controlled by
multiple competing systems in operant conditioning: a goal-
directed system and a habitual system [23], which are often
involved in a theory for distinct forms of decision-making,
namely MB and MF control. Neural substrates of the two
systems have been studied deeply for a long time and fruitful
results are achieved. Recently, some neuroscientists try to inte-
grate these two systems into a unified framework [24], [25].
According to the findings of these works, a rough picture of
neural computation for these two processes is drawn in Fig. 1.

A large amount of neuroscience literatures indicate that
the region of striatum plays a key role in the goal-directed
and habitual process. As a growing consensus, the striatum
is divided functionally into dorso-lateral (DLS), dorso-medial
(DMS), and ventral striatum (VS), each of which plays distinct
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functional roles within those broader behavioral computa-
tion [24]. For example, the DLS is considered as a central
substrate for MF learning and expression. During the course
of a conditioning task, habit behavior can make the single neu-
ron activity in DLS reorganize [26], [27], and lesions of the
DLS make animals obtain more goal-oriented behaviors [28].
Meanwhile, the DMS is mainly involved in MB learning and
expression [24], [29]–[31]. Animals with lesions of this region
maintain habitual behavior from the outset. The VS is associ-
ated with computation of rewards for MF and MB processes,
and also with learning the probability of action selection dur-
ing the transition of states, which acts like value function in
the machine learning theory. It is reflected in two aspects:
the core of VS may control the influence of reward values
in Pavlovian conditioning that learns to associate outcomes
to different stimuli directly [32]; the shell of VS may con-
trol the influence of reward values in Pavlovian-instrumental
transfer that uses those learned experience to infer instrumental
actions [32].

Besides striatum, the implementation of these two processes
is associated with many other regions, including OFC, mPFC,
and the natural reward circuitry, such as VTA, SNc, etc.
During the decision-making process, the assessment of the
outcomes derives from several aspects of cognition, especially
rational assessment and emotional valence [33]. OFC is able
to integrate stimulus-reward and context-reward information
(from amygdala and hippocampal system) to provide expected
reward information. Then, these information is projected into
downstream structures, such as VS, VTA and PPn [34]–[36].
In a similar way, the mPFC plays a significant role in
emotional decisions, which seemingly uses the emotional
reactions to model human behavior in certain social sit-
uations [2]. An important function of this pathway is to
compute the subjective value of choices [2]. Then this
information will be integrated in other brain areas associ-
ated with basal ganglia, such as striatum, VTA, and SN,
which perform further processing of reward signals. The
striatum and the VTA, as critical components of the motor
and reward systems, coordinate multiple aspects of motiva-
tion/reward cognition and reinforcement learning. Specifically,
neurons in these brain areas cannot only integrate reward
information (such as RPE) and code them into movement
activities, but also change their reward-related activities during
learning [37].

B. Modulatory Neural Circuits Between Emotion and
Decision-Making

According to the related researches in the field of affective
neuroscience and neuroeconomics, emotion play a modulatory
role throughout the decision-making process [2]. Actually, in
Fig. 1, the amygdala, the PFC, and other structures have been
thought as dominant neural substrates of emotion. Affect’s
modulation on decision-making is mainly reflected in two
aspects. The first one is that a specific affective state may alter
decisions through modulating some intermediate processes of
decision-making. For example, stress usually leads to a shift
from goal-directed to habitual behavior in human, which is

due to the fact that even mild stress can impair function
of the prefrontal cortex (PFC) and enhance amygdala func-
tion [38]–[40]. The second one is that emotional reactions may
be incorporated into the computation of subjective value dur-
ing making decisions. For instance, the amygdala, a central
component of emotion generation, contributes to value coding
in the striatum and the OFC/mPFC, and modulates learning
from reinforcement [41], [42]. This region plays a critical role
in associating aversive, threatening events with neural cues
(i.e., Pavlovian fear conditioning).

Notably, emotion may influence a shift between MB and
MF control. For example, some studies have demonstrated
that stress can influence the balance between PFC and stri-
atal contributions to decision-making, which are associated
with MB and MF reinforcement learning, respectively [19].
When stress occurs, one tends to attenuate MB actions and
increase habitual MF actions [38], [39]. Some authors also
conjecture that the brain uses a range of pre-programmed
control algorithms for survival, including MB and MF con-
trol. The output of them may link to a low-dimensional
core affective space, such as utility or valence (mediating
approach or withdrawal) and arousal (mediating invigoration
and inhibition) [1]. Particularly, in the work [19], [43], it has
been hypothesized that the uncertainty of state and reward
prediction can arbitrate the goal-directed and habitual systems
directly. While, empirical evidence indicates that the amyg-
dala plays a significant role in creating uncertainty-related
emotional responses [44].

III. PRELIMINARIES

In this section, some existing approaches are described to
learn a probabilistic dynamic model and generate an MF guid-
ing policy. The learned model of environment is used to predict
the coming states, which contributes to MB planning and
emotion processing. The MF learning is mainly used for train-
ing a global state-action value function offline and producing
a guiding policy that maps the state to the action directly.
They are necessary ingredients for the proposed MB control
in Section IV.

A. Probabilistic Dynamic Model Learning

Assume the dynamic system is probabilistic with uncer-
tainty, where the next state can be represented as a condi-
tional distribution given the current state and action. Here,
as in [45], an ensemble of forward probabilistic neural
networks is used to model the uncertain dynamics instead of
Gaussian regression model that has an expansive computa-
tional cost. Assume there are N probabilistic neural networks
with the same structure. Each of them, parameterized by φ,
encodes a Gaussian distribution for capturing aleatoric uncer-
tainty fφn(xt+1|xt, ut) = N (μφn

(xt, ut),�φn(xt, ut)). Aleatoric
uncertainty is a kind of random noise, such as observation
and process noise, which arises from inherent stochastic-
ity of a system [46]. During training, the mean of the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

negative log-likelihood loss of each subnetwork is mini-
mized as follows:

L = 1

N

N∑

n=1

[(
μφn

(xt, ut)− y
)T

�−1
φn

(
μφn

(xt, ut)− y
)

+ log det �φn(xt, ut)
]

(1)

where y represents the true next state xt+1. μφn
(·) and �φn(·),

as the mean and covariance of next state, are computed by nth
probabilistic neural network.

Single subnetwork can model aleatoric uncertainty success-
fully, but cannot model epistemic uncertainty that represents
subjective uncertainty about the dynamic function. Fortunately,
this kind of uncertainty can be estimated through analyzing
the activity of an ensemble of many networks. Due to lim-
ited experience, different subnetworks may output different
predictions of the next state. We first create M particles from
the distribution of current state p(xt), and assign them to each
subnetwork to predict plausible distribution of the next state.
Then the prediction is approximated further as a Gaussian dis-
tribution whose covariance �̄ = diag(σ̄ 2) and mean μ̄ are
computed by

μ̄(xt, ut) = 1

N

N∑

n=1

[
1

M

M∑

m=1

μφn

(
xm

t+1|xm
t , um

t

)
]

(2)

σ̄ 2(xt, ut) = 1

N

N∑

n=1

{
1

M

M∑

m=1

[
μ2

φn

(
xm

t+1|xm
t , um

t

)

+ σ 2
φn

(
xm

t+1|xm
t , um

t

)]
}
− μ̄2(xt, ut). (3)

The prediction of the next state is obtained by sampling
from the learned probabilistic dynamics model F : x̃t+1 ∼
N (μ̄(xt, ut), �̄(xt, ut)).

B. Model-Free Learning

The actor-critic algorithm is adopted to train a global state-
action value function and produce a guiding policy that maps
the observation to the action directly. At each timestep t, the
agent receives an observation xt ∈ X , takes an action ut ∈ U
and receives a scalar reward rt. The agent’s output of decision-
making is determined by a policy π , which maps states to
a probability distribution over the actions π : X → P(U).
Assume the environment is stochastic and subject to Gaussian
distribution. It is usually modeled as a Markov decision pro-
cess (MDP) with an initial state distribution p(x1), transition
dynamics p(xt+1|xt, ut), and reward function r(xt, ut). The
state value function is V(xt) = ∑∞

k=t γ
k−tr(xk, uk), where

γ ∈ [0, 1] is a discount factor. The state-action value func-
tion is usually introduced to associate with policy u = π(x)

directly as

Qπ (xt, ut) = r(xt, ut)+ γ Vπ (xt+1). (4)

The objective of reinforcement learning is to select a policy
that maximizes the value function, which obtains

V∗(xt) = max
π(·)

∞∑

k=t

γ k−tr(xk, π(xk)). (5)

The corresponding optimal Q function is defined as follows:

Q∗(xt, ut) = r(xt, ut)+ γ V∗(xt+1). (6)

The expected return of MF learning method is defined as

Ep(x1),π(ut|xt)t≥1,p(xt+1|xt,ut)t≥1

[ ∞∑

t=1

γ t−1r(xt, ut)

]

= Epχ (x),π(u|x)

[
Qπ (x, u)

]
(7)

where χ represents the state distribution that derives from the
policy π(u|x) and the true system dynamics. In actor-critic
framework, the policy is usually parameterized by a policy
network with parameter θ , and the state-action value func-
tion is usually estimated by value/critic network denoted by
Qϕ(x, u), whose parameter ϕ is learned such that Qϕ(x, u) ≈
Qπθ (x, u). And the parameter θ can be optimized through
solving the following problem:

θ∗ = arg max
θ

Epχ (x),πθ (u|x)[Q(x, u)]. (8)

The DPGs method [10] assumes the actor πθ is deterministic
for continuous control tasks, such that the parameters can be
updated as follows:

θ ← θ + ηπEpχ (x)

[∇θπθ (x)∇uQ(x, u)|u=πθ (x)

]
(9)

where the first-order information of critic is used to modify
the actor’s parameter, and ηπ is the learning rate. As for the
critic network, the parameter ϕ is updated by minimizing the
squared Bellman error, which is formalized as follows:

ϕ← ϕ − ηQ∇ϕEpχ (x),πθ (u|x),p(x′|x,u)

[(
Qϕ(x, u)− y

)2
]

(10)

where ηQ is the learning rate. The expected value y = r(x, u)+
γEπθ (u′|x′)[Qϕ′(x′, u′)] is obtained by the target critic function
Qϕ′(x′, u′), whose parameter ϕ′ is updated by running average
ϕ′ ← τϕ + (1 − τ)ϕ′. As suggested in [10], the target critic
network can improve the learning stability.

IV. PROPOSED APPROACH

In this section, a unified decision-making framework is
proposed to link the MB and MF control, and some important
properties of this method are analyzed. Then the computational
model of emotion-processing network is described, which is
used for producing the uncertainty-related emotional response
based on SPE and RPE, and modulating the planning horizon
in the decision-making process. The architecture is shown in
Fig. 2.

A. Model-Based Control

MB control has to build a set of beliefs about the struc-
ture of the environment and predict the outcome of each plan.
Based on these predictions, it can search a series of choices
in the form of dynamic programming [37]. MPC is a typical
MB theory in robotics and control systems. In MPC, a locally
optimal policy π̂(u|x) is computed based on the knowledge
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Fig. 2. Architecture of decision-making with modulation of emotion.

of the learned dynamics model. Generally, the optimization
objective of MPC problem is

max
π̂

Epν (x),π̂(u|x)

[
H−1∑

t=0

γ tr(xt, ut)+ γ Hrf (xH)

]
(11)

s.t. xt+1 ∼ F(xt, ut)

where ν denotes the state distribution that derives from the
learned dynamics F and the locally optimal policy π̂ . The
short-term discounted return is the sum of running reward
r and terminal reward rf . The running and terminal reward
function is often defined as a quadratic equation

r(xt, ut) =
(
xt − xg

t
)TQ

(
xt − xg

t
)+ uT

t Rut (12)

where xg
t is the target state. For a continuous MDP, iLQR

or DDP is an effective approach to optimize the local policy
π̂ : u0:H−1 in a closed loop as in [15], where a local dynamic
model is created based on a first or second-order linear approx-
imation of the learned dynamic model F . It is very efficient
for trajectory optimization in many robotic learning tasks.
However, the traditional iLQR or DDP uses a finite short-term
prediction of model to compute a locally optimal sequence of
actions, which generally leads to a suboptimal policy. While,
ADP adopts a value function to approximate a infinite-horizon
discounted return, which can generally obtain a better solution.
Whereas, compared with DDP, this method is not enough data-
efficient. Some works [47], [48] proposed to substitute the
terminal reward rf (xH) with an approximate value function
V(xH). But it is still not efficient enough for using a learned
value function to compute the optimal policy directly.

In this article, to bridge the gap between the MB and
MF learning processes, we propose two improvements: 1) the
locally optimal policy should be searched near the MF guiding
policy of actor network and 2) the terminal reward in MPC
is replaced by locally optimal value V(xH) that is computed
by optimizing the corresponding state-action value function
Q(xH, ·). Assume the greedy policy π̂ with respect to Q
is deterministic, then V(xH) = Q(xH, π̂(xH)). Formally, the
optimization problem can be expressed as follows:

max
π̂

Epν (x),π̂(u|x)

[
H−1∑

t=0

γ tr(xt, ut)+ γ HQ
(
xH, π̂(xH)

)
]

s.t. xt+1 ∼ F(xt, ut),

d
(
π̂(u|x), πθ (u|x)

) ≤ ε (13)

where d(·, ·) is a function that measures the closeness of two
policies, and ε is the neighborhood size.

On the first point, we suggest the initial action sequence
comes from the actor’s policy u0

0:H ∼ πθ (u|x0:H), instead of
being initialized randomly in the traditional methods. The MB
optimization can modify the original habitual policy. On the
second point, the terminal value V(xH) is estimated by opti-
mizing the corresponding state-action value function around
the MF policy πθ (xH). Since the terminal greedy policy π̂(xH)

is not taken into account in traditional algorithms, this policy
needs to be computed by maximizing the Q function. However,
it is impossible to globally search the optimal Q value that is
represented by a critic network in continuous space. Here,
the terminal value function is approximated through opti-
mizing the critic network with several information-theoretic
constraints. Assume the greedy policy is guided by MF policy,
then the optimization problem is formalized as follows.

max
π̂

Epν (xH),π̂(u|xH)[Q(xH, u)] (14)

s.t. Epν (xH)

[
KL

(
π̂(u|xH)‖πθ (u|xH)

)] ≤ ε

Epν (xH)

[
H

(
π̂(u|xH)

)] ≥ κ

Epν (xH),π̂(u|xH) = 1

where pν(xH) is the state distribution that complies with the
policy π̂(u|xH) and the learned dynamics. πθ(u|xH)) is the
guiding policy created by actor network parameterized by θ .
In order to make the optimization problem feasible, several
information-theoretic constraints are added. The first constraint
is the Kullback–Leibler (KL) divergence between new policy
and MF guiding policy, which can be used for limiting the loss
of information between policy updates and preventing unsta-
ble learning. The second constraint is the entropy constraint
of new policy that is crucial for controlling exploration and
exploitation. The final constraint represents the integral of joint
state-action probability is one.

1) Computation of the Terminal Value: The similar
optimization problem is described in [49] and [50]. This
optimization problem allows for a closed-form solution
through the method of Lagrangian multipliers. The solution
is given by

π̂(u|xH) ∝ πθ(u|xH)
η∗

η∗+ω∗ exp

[
Q(xH, u)

η∗ + ω∗

]
(15)

where η∗ ≥ 0 and ω∗ ≥ 0 are optimal dual variables of KL
and entropy constraints, respectively. These dual variables are
computed by minimizing the following dual function:

g(η, ω) = ηε − ωκ + (η + ω)

× Epν (xH)

[
log

∫
πθ (u|xH)

η
η+ω exp

(
Q(xH, u)

η + ω

)
du

]
.

(16)

The proof is given in the Appendix. When the greedy terminal
action ûH ∼ π̂(u|xH) is obtained, the terminal value function
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can be computed as follows:

V(xH) = Q
(
xH, ûH

)
(17)

Vx(xH) = ∇xQ
(
x, ûH

)|x=xH (18)

Vxx(xH) = ∇2
x Q

(
x, ûH

)|x=xH . (19)

Then the general iLQR algorithm is used to optimize the
initial sequences of actions u0

0:H further. When the control’s
bounds are taken into account, the control can be computed
by solving a quadratic program (QP) subject to the box
constraints, as mentioned in [15].

2) Impact of Value Approximation Error on the Model-
Based Policy: In this section, we aim to analyze how much
impact the approximation error in Q value has on the quality of
MB policy. Assume that the learned dynamics F is ideal, then
the following theorem bounds the performance of the policy.

Lemma 1: An approximate state-action value function Q
is obtained, and assume the approximate error is defined as:
||Q−Q∗||∞ ≤ ε. Let the terminal reward rf (xH) = V(xH), and
π̂ be the greedy policy with respect to Q. Then for all states
x, the performance of the MPC policy can be bounded as

V∗(x)− V(x) ≤ 2γ Hε

1− γ H
(20)

where ||Q||∞ = maxx,u |Q(x, u)|.
Proof: Let τ̂ and τ ∗ represents the trajectories generated

by greedy policy π̂ and optimal policy π∗, respectively,
on the MDP with planning horizon H. Define an opera-
tor BH

τ Q(xH, π(xH)) = Eτ [
∑H−1

t=0 γ trt + γ HQ(xH, π(xH))].
Since π̂ is the greedy policy with respect to Q and τ̂ is the
corresponding trajectory, then there is

BH
τ̂

Q
(
xH, π̂(xH)

) ≥ BH
τ∗Q

(
xH, π∗(xH)

)
. (21)

Starting from state x and using this condition, there is

V∗(x)− Q∗
(
x, π̂(x)

)

= BH
τ∗V
∗(xH)− BH

τ̂
Q∗

(
xH, π̂(x)

)

= BH
τ∗V
∗(xH)− BH

τ̂
Q

(
xH, π̂(xH)

)

+ BH
τ̂

Q
(
xH, π̂(xH)

)− BH
τ̂

Q∗
(
xH, π̂(xH)

)

≤ BH
τ∗V
∗(xH)− BH

τ̂
Q

(
xH, π̂(xH)

)+ γ Hε

= BH
τ∗Q
∗(xH, π∗(xH)

)− BH
τ̂

Q
(
xH, π̂(xH)

)+ γ Hε

≤ BH
τ∗Q
∗(xH, π∗(xH)

)− BH
τ∗Q

(
xH, π∗(xH)

)+ γ Hε

≤ 2γ Hε. (22)

Then there is

V∗(x)− V(x) = BH
τ∗V
∗(xH)− BH

τ̂
V(xH)

= BH
τ∗V
∗(xH)− BH

τ̂
Q∗

(
xH, π̂(xH)

)

+ BH
τ̂

Q∗
(
xH, π̂(xH)

)− BH
τ̂

V(xH)

≤ 2γ Hε + BH
τ̂

V∗(xH)− BH
τ̂

V(xH)

= 2γ Hε + γ H
Eτ̂

[
V∗(xH)− V(xH)

]

≤ 2γ Hε
(

1+ γ H + γ 2H + · · ·
)

≤ 2γ Hε

1− γ H
. (23)

Thus, the discount factor and the planning horizon are the
key variables for the performance of MB control if the learned
dynamics is accurate.

3) Accelerating Convergence of the Value Function: The
proposed MB control can accelerate convergence of the global
value function, which improves the data efficiency. Assume
that the learned dynamics F is ideal, then the value function
has the following contraction property.

Lemma 2: An approximate state-action value function
Q is obtained. Define an operator BH

τ Q(xH, π(xH)) =
Eτ [

∑H−1
t=0 γ trt+γ HQ(xH, π(xH))]. Let π̂ is the greedy policy

with respect to Q and τ̂ is the corresponding trajectory. Then
the value function satisfies the following contraction property:

||BH
τ̂

Q
(
xH, π̂(xH)

)− BH
τ̂

Q∗
(
xH, π̂(xH)

)||∞
≤ γ H||Q(

xH, π̂(xH)
)− Q∗

(
xH, π̂(xH)

)||∞. (24)

Proof: Assume that BH
τ̂

Q(xH, π̂(xH)) ≥ BH
τ̂

Q∗(xH, π̂(xH)),
then

BH
τ̂

Q
(
xH, π̂(xH)

)− BH
τ̂

Q∗
(
xH, π̂(xH)

)

= γ H[
Q

(
xH, π̂(xH)

)− Q∗
(
xH, π̂(xH)

)]

≤ γ H||Q(
xH, π̂(xH)

)− Q∗
(
xH, π̂(xH)

)||∞. (25)

In the same way, repeating this argument in case of
BH

τ̂
Q(xH, π̂(xH)) ≤ BH

τ̂
Q∗(xH, π̂(xH))

BH
τ̂

Q∗
(
xH, π̂(xH)

)− BH
τ̂

Q
(
xH, π̂(xH)

)

= γ H[
Q∗

(
xH, π̂(xH)

)− Q
(
xH, π̂(xH)

)]

≤ γ H||Q(
xH, π̂(xH)

)− Q∗
(
xH, π̂(xH)

)||∞. (26)

Thus there is

|BH
τ̂

Q
(
xH, π̂(xH)

)− BH
τ̂

Q∗
(
xH, π̂(xH)

)|
≤ γ H||Q(

xH, π̂(xH)
)− Q∗

(
xH, π̂(xH)

)||∞. (27)

Since the learned dynamic is assumed to be ideal, xH can
also represent the real state that is in the feasible region. For
all xH , taking the supremum over xH , the following result is
obtained further:

||BH
τ̂

Q
(
xH, π̂(xH)

)− BH
τ̂

Q∗
(
xH, π̂(xH)

)||∞
≤ γ H||Q(

xH, π̂(xH)
)− Q∗

(
xH, π̂(xH)

)||∞. (28)

In this article, iLQR with the constraint of terminal value
function provides an efficient method to compute the term
BH

τ̂
Q, which improves the performance of the policy due to

the smaller value error. Meanwhile, the good control results
cause a faster convergence of value function.

4) Impact of Model Approximation Error on the Value
Function: Both results mentioned above have a premise that
the learned dynamics F is ideal. But there must be errors
between the learned model and the true dynamics during learn-
ing. Inspired by the work [51], we find that the MB value using
the learned dynamics gradually tends to the global optimal
value as the model approximation error decreases. Specifically,
the following conclusion is drawn.
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Theorem 1: An approximate state-action value function
Q is obtained. Define an operator BH

τ̂ |M̂Q(x̂H, π̂(x̂H)) =
Eτ̂ [

∑H−1
t=0 γ trt + γ HQ(x̂H, π̂(x̂H))], where π̂ is the greedy

policy with respect to Q and τ̂ is the corresponding tra-
jectory based on the learned dynamics M̂. Similarly, define
an operator BH

τ̂ |M∗Q(x∗H, π̂(x∗H)) whose optimal trajectory is
based the true dynamics M∗. Let the reward function r be
Lr-Lipschitz over states x, and the value function Q be LQ-
Lipschitz over states x. Assume the model approximation
errors satisfy maxt∈[H] E[||x̂t−x∗t ||2] ≤ ε2 in an H-step rollout.
Then

E

(
BH

τ̂ |M̂Q− BH
τ̂ |M∗Q

)2 ≤
(

c2L2
r + 2γ HcLrLQ + γ 2HL2

Q

)
ε2.

(29)

Proof: According to the definition above, there is

E

[
BH

τ̂ |M̂Q
(
x̂H, π̂

(
x̂H

))− BH
τ̂ |M∗Q

(
x∗H, π̂

(
x∗H

))]2

= E

[(
R̂− R∗

)
− γ H(

Q
(
x̂H, π̂

(
x̂H

))− Q
(
x∗H, π̂

(
x∗H

)))]2

(30)

where R̂− R∗ =∑H
t=0 γ t r̂t −∑H

t=0 γ tr∗t .
For any L2 random variables A and B, E[(A − B)2] sat-

isfies the following inequality by using the Cauchy–Schwarz
inequality:

E

[
(A− B)2

]
= EA2 − 2E[AB]+ EB2

≤ EA2 + 2E
1
2 A2

E
1
2 B2 + EB2. (31)

Thus there is

E

[
BH

τ̂ |M̂Q
(
x̂H, π̂

(
x̂H

))− BH
τ̂ |M∗Q

(
x∗H, π̂

(
x∗H

))]2

≤ E

(
R̂− R∗

)2

+ 2γ H

√
E

(
R̂− R∗

)2
E

[
Q

(
x̂H, π̂

(
x̂H

))− Q
(
x∗H, π̂

(
x∗H

))]2

+ γ 2H
E

[
Q

(
x̂H, π̂

(
x̂H

))− Q
(
x∗H, π̂

(
x∗H

))]2
. (32)

Then all MB terms are bounded as follows:

E

(
R̂− R∗

)2 ≤
∑

i,j

γ 2(i+j)

√
E

(
r̂i − r∗i

)2
E

(
r̂j − r∗j

)2
. (33)

Since the reward function is Lr-Lipschitz over states x, ||r̂i−
r∗i || ≤ Lr||x̂i − x∗i ||. So

E

(
R̂− R∗

)2 ≤ c2L2
r ε

2 (34)

where c :=∑
i,j γ

2(i+j) ≤ min(H2, (1− γ 2)−2).
According to the above assumption d(π̂, πθ ) ≤ δ and the

value function is LQ-Lipschitz over states x, there is

E
[
Q

(
x̂H, π̂

(
x̂H

))− Q
(
x∗H, π̂

(
x∗H

))]2

≤ E

(
L2

Q||x̂H − x∗||2
)
= L2

Qε2. (35)

Taking all these results into consideration, the following
conclusion can be drawn:

E

[
BH

τ̂ |M̂Q
(
x̂H, π̂

(
x̂H

))− BH
τ̂ |M∗Q

(
x∗H, π̂

(
x∗H

))]2

≤
(

c2L2
r + 2γ HcLrLQ + γ 2HL2

Q

)
ε2. (36)

Obviously, with the model approximation error decreasing,
MB value using the learned dynamics gradually tends to the
optimal value.

It is worth noting that the MB control gradually transforms
into the MF control with the decrease of planning horizon H.
If H is relatively large, the MB control will obtain a high
learning speed, but the meantime, it will spend more time
to compute the policy at each step. Conversely, a smaller H
leads to a faster computing time for each decision-making
step, but causes a lower data-using efficiency. Particularly,
when H = 0, the policy search of MB control transform
into MF control called guide actor-critic (GAC) [50], where
the greedy policy is searched by maximizing the global state-
action value function around a guiding policy produced by the
policy network:

max
π̂

Epχ (x),π̂(u|x)[Q(x, u)] (37)

s.t. Epχ (x)

[
KL

(
π̂(u|x)‖πθ (u|x)

)] ≤ ε

Epχ (x)

[
H

(
π̂(u|x)

)] ≥ κ

Epχ (x),π̂(u|x) = 1.

As for the stability, the parameters of controlled plant play
a crucial role of the stability of the system. Because the output
policy is guided by the MF policy that is closely related to the
plant parameters [52]. If the system itself is uncontrollable, it
will be hard to control stably. From the point of basic algo-
rithms, both iLQR and reinforcement learning can guarantee
the stability under certain conditions [52], [53]. One of the key
factors is the design of reward function, where the matrices of
Q and R can influence the stability of the whole closed-loop
system directly.

The pseudo-code description of H-step MB control is
presented in Algorithm 1, where backward and forward passes
of iLQR refer to [15].

B. Computational Model of Emotion Processing

In this section, a computational model of amygdala is
built to simulate emotion processing. As mentioned above,
amygdala and PFC are the core regions in emotion process-
ing, which integrate lots of sensory information to acquire,
maintain, and regulate a variety of emotions. Anatomically,
the amygdala consists of four major components: 1) lateral
amygdala (LA); 2) basal amygdala (BA); 3) central amygdala
(CeM); and 4) the intercalated (ITC) cell clusters [54], [55],
whose connections are shown in Fig. 3. These four nuclei
have different properties and serve distinct roles in emotion
processing. More specifically, the LA can receive and process
some conditioned or unconditioned stimuli at the beginning,
and then project them to the BA and dorsal ITC neurons
(ITCd) that connect to ventral ITC cells (ITCv) further. The
BA cells mainly send excitatory inputs to the ITC neurons and
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Algorithm 1 H-Step MB Control
Inputs: Observation x0 ← xt, the dynamic model Fφ(·),

the reward function r(·), the critic function Qϕ(·) and the
policy function πθ (·).

Outputs: Action ut.
for k = 0, . . . , H − 1 do

Select action uk = πθ (xk).
Predict the next state xk+1 ∼ Fφ(xk, uk).
Store transition (xk, uk)→ τ k

end for
for i = 0, . . . , Niter do

Compute the difference set D, where the terminal value
is obtained by optimize the critic function Qϕ :
D = diff (τ 0:H−1, r, Qϕ, πθ ).
Run the backward pass of iLQR:
I, K = backward(τ 0:H−1,D).
Run the forward pass of iLQR to update the trajectory:
τ̂ 0:H−1 = forward(τ0:H−1, I, K)

end for
return ut ← û0

Fig. 3. Amygdala circuitry for processing conditioned fear [54].

CeM neurons, while the cells located in ITC are responsible
for generating inhibitory singles to depress the activities of
the CeM cells. These two paths serve an opponent processing
to balance the response of emotion. Meanwhile, the amygdala
receives some mediating information from the infralimbic (IL)
cortex located in vmPFC that is implicated in extinction of
conditioned fear responses. The studies of neuroscience show
that the IL mainly projects these excitatory signals to the ITC.

Based on the anatomical structure of amygdala and its
extended circuits, an emotion-processing network is presented
to simulate simple cognitive-emotional interactions follow-
ing [56]. The schematic is shown in Fig. 4. The activity
of each neuron follows the shunting dynamics, which was
developed based on the dynamics of membrane voltage
proposed by Hodgkin and Huxley [57] and Grossberg [58].
The activity of each node is analogous to short-term memory
(STM) and adaptive weights between nodes are regarded
as long-term memory (LTM). Formally, the dynamics of
the ith neuron can be written as the following shunting
STM equation:

τx
dxi

dt
= −Axi + (B− xi)S

+
i − (C + xi)S

−
i (38)

where each STM trace is bounded within an interval [−C, B],
and S+i and S−i correspond to the excitatory and inhibitory

Fig. 4. Schematic of emotion-processing network based on the amygdala
circuitry and the interaction between amygdala and vmPFC.

TABLE I
EXCITATORY AND INHIBITORY INPUTS TO EACH NETWORK COMPONENT

inputs, respectively. A is a passive decay rate, and τx is the
time constant of neural integration.

Table I specifies the excitatory and inhibitory inputs to
each network component. N denotes the number of cells,∑

(·) = ∑N
k=1(·), and [ · ]+ is rectified linear unit. W is a

synaptic weight between two neurons. To train the synap-
tic weights to form LTM, a novel Oja-like learning rule
is proposed to integrate active forgetting and reinforcement
processes, which demonstrates effectiveness in classical fear-
conditioning simulation. Specifically, all weights but WITCv

ITCd
can be modified based on reinforcing signal, and presynaptic
and postsynaptic neural activities. There are two cases to be
discussed.

Case 1: When the weights is updated at each time step, the
learning rule is defined as follows:

�Wt = �t

τW

(
−DWt + Rt

[
xpost

t

]+([
xpre

t
]+)T − R2

t Wt

)
(39)

where D is a passive decay rate, and −DWt term drives the
active forgetting process. �t is the step size in simulation, and
τW is the constant of integration. Rt[x

post
t ]+([xpre

t ]+)T − R2
t Wt

term is inspired by Oja learning rule. If xpre and xpost are
activated simultaneously, and the teaching signal Rt is positive,
the Rt[x

post
t ]+([xpre

t ]+)T term will be strengthened. The R2
t Wt

is a reward-related forgetting term, which prevents the weights
from growing unlimitedly.

Case 2: If the teaching signal is sparse, and the reward
is only received at the end of each episode, the weights is
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updated via the following learning rule:

�Wn = �t

τWT

(
−DWn +

(
Rn − R̄n

) T∑

t=1

[
xpost

t

]+([
xpre

t
]+)T

− (
Rn − R̄n

)2
Wn

)
(40)

where R̄ represents the average reward baseline at the nth
episode. A simple approach to estimate this baseline is to
compute a moving average of actual rewards:

R̄n = (1− α)R̄n−1 + αRn (41)

where 0 < α < 1.
To evaluate this computational network of amygdala, the

classical fear conditioning is used as a test case. This behav-
ioral paradigm is a type of classical conditioning that involves
associating an aversive unconditional stimulus (US, such as
an electric shock) with either a conditional stimulus (CS,
such as a tone). It exhibits flexible acquisition and extinc-
tion of stimulus-triggered emotional responses (such as fear),
and shows an implicit emotional learning process. The learn-
ing process usually includes four epochs: 1) fear acquisition;
2) fear extinction; 3) fear retrieval; and 4) extinction retrieval.
At the first epoch, the CS always co-occurs with the US, and
the animal will express conditional fear (such as the freezing
response in rodents) in case of CS after training. But at the
second epoch, only CS is repeated in absence of US, which
causes fear extinction gradually. The third epoch is the same as
the first epoch, the conditional fear will be aroused rapidly. The
last epoch is the same as the second epoch, the fear response
will extinct again.

In the simulation, the parameters of neural dynamics are
set to the same value in each subnetwork, with N = 20, A =
10, B = 2, C = 0, and τx = 0.1. The simulation is run
for 10 000 time steps, with step size of �t = 0.001. Each
epoch lasts for 2500 time steps. In fact, the characteristics
of the synaptic weights have a significant impact on the
performance of network. Assume that synaptic decay is much
faster in the near-output subnetwork. Specifically, we choose
τW = 0.4, DLA

E = 0.01, DBA
LA = 0.01, DITCd

LA = 0.8, DITCv
BA =

0.8, DCeM
BA = 1.2, DCeM

ITCv = 1.2, fL = 5, and fC = 10. During
training, when the US is present, the weights WBA

LA , WITCd
LA , and

WCeM
BA receive a positive reinforcing signal with R+ = 1. While

WITCv
BA and WCeM

ITCv is assumed to receive a complementary rein-
forcing signal R− = (1− R+), due to the inhibition from the
activation of ITCv. The weights are updated following (39).

Fig. 5 shows the output of cell xCeM. The blue line rep-
resents the change of conditional fear without high-level
cognitive regulation (EILd = 0 and EILv = 0), while the
red line shows the emotional response with EILd = 0 and
EILv = 10. Obviously, similar emotional changes occur in both
cases. After repeated pairings of CS and US between 0–2.5 s,
the animal gradually learns to fear the CS signal. As the US
disappears at the second epoch, the fear fades away due to
the active forgetting of synaptic weights. When the US co-
occurs with the CS again between 5–7.5 s, the fear memory

Fig. 5. Simulation of classical fear conditioning, including fear acquisition,
extinction, fear retrieval, and extinction. The first and second panels show the
signal of conditioned and unconditioned stimulus, respectively. The activity
of output cell is recorded in the last panel.

is recalled faster than one at the first epoch. Meanwhile, high-
level modulation from ILv can bias the intensity of fear. A
high EILv input increases inhibition onto the activity of CeM,
which leads to a relatively low response in fear acquisition
and a faster extinction of fear. Hence, it may be an important
path for top-down cognitive control of emotional response and
learning. According to the neural dynamics mentioned above,
the ITCd, ITCv, and CeM cell reach the following equilibrium
value in response of CS when C = 0:

x̄ITCd
i =

B
(∑

WITCdi
LAk

[
xLA

k

]+ + EILd

)

A+∑
WITCdi

LAk

[
xLA

k

]+ + EILd

(42)

x̄ITCv
i =

B
(∑

WITCvi
BAk

[
xBA

k

]+ + EILv

)

A+∑
WITCvi

BAk

[
xBA

k

]+ + EILv +WITCvi
ITCdi

[
xITCd

i

]+ (43)

x̄CeM = B
∑

WCeM
BAk

[
xBA

k

]+

A+∑
WCeM

BAk

[
xBA

k

]+ + fC
∑

WCeM
ITCvk

[
xITCv

k

]+ (44)

where
∑

(·) =∑N
k=1(·).

It is easy to see that the increasing excitatory input EILd can
enhance the fear-related responses to some extent due to the
inhibitory effect of ILd to ITCv. On the contrary, the input EILv

plays an important role to suppress the emotional responses
and accelerate the extinction of emotion.

In this article, the uncertainty-related response mainly
results from three basic factors: 1) SPE; 2) RPE; and
3) episodic reinforcing signal (ERS). The SPE is fed into the
network as input, and the RPE is used as high-level regulatory
factors EILv. The ERS is used to change the synaptic weights
at the end of each episode. SPE directly reflects the accuracy
of understanding the external environment, which is highly
related to some affective states such as surprise and curiosity.
The smaller the SPE is, the more reliable long-horizon MB
control is. The RPE is usually reported by dopamine neurons
in animal learning theory, which can trigger a series of reward-
related emotional reactions such as positive/negtive emotion
(pleasure and desire). This term is strongly associated with
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the performance of value network that estimates the discount
returns in the future. If the RPE is smaller, more short-term
MB or MF planning is encouraged. Except for these immedi-
ate signals, some long-term feedback also bias the emotional
state, and then influence decision-making. Herein, the ERS
is introduced to modify the weights of emotion processing
network.

In this article, SPE and PRE are defined based on the
predictions of state and reward. Assume each state is subject
to Gaussian distribution p(x) = N (μx,�x) and the predicted
states p(x̂) = N (μ̂x, �̂x). The KL divergence between the
predicted state and real state is applied to quantify the SPE

SPE = KL
(
p
(
x̂
)‖p(x)

)
. (45)

The SPE signal is further bounded in (0, 1) through a sigmoid-
type function. In like manner, the RPE is the difference
between a return that is being received and the return that
is predicted to be received. The loss of critic network is used
to compute this value, which is also constrained within (0, 1)

by a sigmoid-type function

RPE = [
Q(x, u)− (

r(x, u)+ γ Q′
(
x′, πθ

(
x′

)))]2
. (46)

The ERS is the cumulative rewards R = ∑T
t=1 rt after each

episode, and the average reward baseline is updated by accord-
ing to (40). The episodic reward error R − R̄ is activated by
tanh-type function so that it is segmented to form excitatory
or inhibitory signal.

Finally, the activation of output cell xCeM represents the
intensity of emotional response that implies the uncertainty of
long-term MB policy (or the certainty of short-term policy).
The planning horizon is a deceasing function of the this emo-
tional variable. If the SPE is large and the RPE is small, the
uncertainty of the long-term planning is high, which lead to
the decrease of H. Conversely, if the SPE is small and the
RPE is large, the uncertainty is low so that more long-term
planning is encouraged. Formally, the horizon is defined as
follows:

H = min (0,<Hmax − ke>) (47)

where e denotes the intensity of uncertainty-related emotional
response, and k is a gain. < ·> is the round function.

V. SIMULATIONS

The proposed algorithm is integrated into the control archi-
tecture of two simulated systems. First, the swing-up task of
inverted pendulum is conducted to verify the effectiveness.
Then, the reaching task is performed with a simulated robotic
arm that has higher state dimensions.

A. Inverted Pendulum Swing-Up Task

In this task, the cart slides freely along a rod bounded in
range [−1, 1] as shown in Fig. 6, aiming to swing up the
pole with as little energy as possible. There are five dimen-
sions of the sensory observation x = [x, v, θ̇ , cos θ, sin θ ], that
refer to the position and velocity of cart, the swinging angle
and angular speed of pole, respectively. The control command

Fig. 6. Scene of the inverted pendulum swing-up task.

includes one continuous variable u = [u], where u ∈ (−1, 1),
that represents the input of motor actuator.

During interacting with the environment, the agent learns a
probabilistic transition dynamic model from sequential sensory
observations and actions. Here, a ensemble of five probabilis-
tic neural networks is used to predict the next state. Each
neural network is fed with twenty particles sampling from
the distribution of current state p(x), which is for capturing
the aleatoric uncertainty. Additionally, each subnetwork is a
multilayer perceptron with two layers, and each of them con-
sists of 200 neurons. In all simulations, the actor network
has two layers, and each of them consists of 128 neurons.
The critic network has the same structure but with a larger
learning rate ηQ = 1 × 10−3 than the one in actor network
ηπ = 1 × 10−4. The target state is set as xg = [0, 0, 0, 1, 0]
that implies the swinging angle is zero. In the reward func-
tion, Q is a matrix that is filled with 0 but Q(4, 4) = 1, and
R = [0.01].

For comparing the performance of the different approaches,
four sets of experiments are designed. The first one is using
traditional iLQR control. Then our proposed H-step MB con-
trol is used to control the cart, where the planning horizon
is set to 0, 2, 4, and 6, respectively. When H = 0, the
controller corresponds to the GAC algorithm [50]. The auto-
differentiation function in PyTorch is adopted to obtain the
gradient of learned dynamics model with respect to state x
and action u. During optimization, The parameter of KL con-
straint is chosen as δ = 1 × 10−4. The lower bound of the
policy entropy is set as κ = 0.05. L-BFGS-B algorithm is
used to optimize the dual function for computing the dual
variables η∗ and ω∗. The final one is integrating MB and MF
control with emotion modulation. The parameters are the same
as in simulation above, expect A = 20 for a faster responding.
During training, the weights WBA

LA , WITCd
LA , and WCeM

BA receive
a positive reinforcing signal with dR+ = R− R̄. While WITCv

BA
and WCeM

ITCv is assumed to receive a complementary reinforcing
signal dR− = −dR+.

In the experiment, the whole learning process lasts 50
episodes, and each of them contains 200 time steps. The plan-
ning horizon of iLQR is chosen as 25 here, and a shorter
horizon results in a very poor performance. The cumulative
rewards are summarized in Fig. 7. Obviously, the iLQR has the
highest data efficiency in the early stage, which benefits from a
short-term planning with the certain reward function. However,
this algorithm usually leads to a suboptimal strategy in the
later stage so that the cumulative reward is relatively low. By
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Fig. 7. Cumulative rewards of iLQR and our proposed MB control with
different horizons.

Fig. 8. Cumulative rewards of MF, six-step MB, and emotion-modulated
control.

contrast, the proposed method aims to maximize the infinite-
horizon discount returns so that a better policy is obtained.
But different planning time has a significant impact on the
performance in H-step control. Theoretically, the longer the
planning horizon, the better the performance in terms of learn-
ing efficiency. But, generally, the accuracy of model prediction
decreases with the increasing planning horizon. Thus, the
longer planning horizon can improve learning efficiency within
a limited range. This is also verified by the results in Fig. 7.
When the H = 0, the MB control transforms into the MF GAC
control that is not data-efficient obviously. As the horizon H
increases, the proposed MB control enables a faster learning.

After that, the performance of the MB, MF and emotion-
modulated control are compared further. The cumulative
rewards are shown in Fig. 8. Obviously, the emotion-
modulated method reaches to a higher reward value with
less time, which shows a higher data efficiency. Emotion-
modulated control can change the planning horizon adaptively
according to the uncertainty of long-term MB planning. The
6th, 26th, and 46th epoch are selected, respectively, to show
the change of emotional response as in Fig. 9. At each epoch,
if the SPE is large and the RPE is small, the intensity of
uncertainty-related emotional response will increase, such that
more short-term MB planning or MF policy will be adopted for
a faster decision-making. On the contrary, if the SPE is small
and the RPE is large, the intensity of emotional response is low

Fig. 9. Change of emotional response and the corresponding planning
horizon.

Fig. 10. Scene of the Jaco reaching task in V-REP.

such that more long-term planning is encouraged to produce
more accurate control.

As skills become more proficient, certainty of the short-term
MB planning or MF policy increases due to the reinforcing
effect of positive rewards to the weights of emotion-processing
network. In the early stage, with the accumulation of envi-
ronmental knowledge, the agent makes more decisions from
long-term MB planning. While, in the later stage, more short-
term controls are accepted and MF habitual controls come into
being. According to (40) and (41), the average reward baseline
represents the expected reward based on previous experience.
If the received reward is better than this baseline, the synap-
tic weights will be strengthen, and vice versa. This kind of
plasticity regulates the slow change of certainty-related emo-
tional response, which is significant to accelerate the speed of
decision-making.

B. Jaco Reaching Task

For more complex control problems, the effectiveness of
our proposed method is investigated in a reaching task with
a simulated robotic arm in V-REP (Fig. 10). The physical
Jaco assistive robotic arm, developed by Kinova Robotics, is
assisting people with limited or no upper limb mobility to
do something safely. This arm has six joints that can be con-
trolled by a position, velocity or torque controller through ROS
packages. Herein, torque control is adopted to implement more
flexible and faster manipulations, where each motor command
represents the desired torque of the corresponding joint.
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Fig. 11. Cumulative rewards of iLQR and our proposed MB control with
different horizons in the reaching task.

Fig. 12. Cumulative rewards of MF, four-step MB, and emotion-modulated
control in the reaching task.

Reaching process is very important in many robotic manip-
ulations, such as variant grasp and assembly tasks. In the
experiment, the robotic arm aims to control its hand to reach
the red goal located at [−0.2,−0.37, 0.95] from the initial
position, as shown in Fig. 10. There are 21 dimensions of the
sensory observation x ∈ R

21, including angle, angular velocity
of all joints and position of end effector. The motor command
consists of six continuous variables u ∈ R

6, which represents
the desired torque of motor actuators.

All settings of this experiment is similar to the above
inverted pendulum swing-up task expect for the size of
networks and parameters of emotion module. More specifi-
cally, the structure of probabilistic ensemble neural network
for model learning is also composed of five subnetworks with
three layers, each of which consists of 200 neurons. The size
of both actor and critic network is set as [128, 128]. In the sim-
ulation, the robotic arm interacts with environment for totally
50 times, and each trial includes 50 time steps. After five tests,
the cumulative rewards are shown in Figs. 11 and 12.

As a result, all algorithms have no problem to find
an optimal sequence of actions to control the actuators.
Traditional iLQR policy has the highest learning efficiency,
meanwhile, the suboptimality of the strategy does not show up
in this task. However, the planning horizon of iLQR is cho-
sen as 25 here, and a shorter horizon results in a very poor
performance. Hence, the higher data efficiency results from
long-term dynamic programming at the expense of computing

Fig. 13. Change of emotional response and the corresponding planning
horizon in the reaching task.

Fig. 14. Trajectories of end effector produced by iLQR and emotion-
modulated control.

time. On the contrary, MF control is able to make decisions
quickly, but learns slowly obviously. Additionally, the increas-
ing H can improve the learning efficiency, but reduce the
accuracy of model prediction as well. As reflected in Fig. 11,
due to the complexity of real dynamics, the error of six-step
model prediction has a worse impact on the performance of
learning than two- or four-step predictions.

In the emotion-modulated control, the hyper-parameters are
set as Hmax = 4 and k = 5×10−3. The learning result is shown
in Fig. 12, where the emotion-modulated control has a better
efficiency of learning. Emotion modulation can shift the MB
and MF processes adaptively in the course of skill acquisition.
Early in training, the large errors of state and reward prediction
awaken an uncertainty-related emotional response that facili-
tates more short-term planning or MF control. As the training
continues, the decreasing SPE strengthens the certainty-related
emotion, which is conducive to improve the accuracy through a
long-term planning. With over-training, the RPE also decreases
so that certainty of the short-term decision gradually increases.
More short-term planning or MF control becomes dominant
again and the habitual behavior is gradually formed. The
change of the emotional response and planning horizon are
drawn in Fig. 13 at the 1st, 21st, and 41st epoch, respectively.

After training, the trajectories of end effector are drawn
in Fig. 14, where the traditional iLQR control and emotion-
modulated control are used to generate the strategies of
motion, respectively. As shown in the figure, the emotion-
modulated decision system outperforms the pure iLQR control
in terms of uncertainty of learned policy, which may result
from the suboptimality of the locally MB strategy.
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The reaching process is a part of robotic manipulation,
which is relatively easy if the goal is fixed. In the future,
some new brain-inspired integration framework of MB and MF
control will be required to perform more complex decision-
making tasks, such as tracking [59], grasp [60], and assem-
bly [61]. Especially, it is a significant research direction of
high-level decision-making that using the underlying environ-
mental knowledge to reason out control strategies. Therein,
more key neural mechanisms in human brain will be incorpo-
rated into the computational models of perception, cognition,
and decision for intelligent robots.

VI. CONCLUSION

According to the accumulating neural evidence, human
behaviors are often separated into by two decision systems:
1) a deliberative MB system for guiding goal-directed behav-
iors and 2) a reflexive MF system for driving habitual behav-
iors. And emotion is one of the most important factors in
modulating these two paths. In this article, a computational
model of decision-making process with modulation of emotion
is proposed to improve the efficiency of learning and speed
up the decision-making in the robotic control tasks. Two main
contributions have been made.

1) A novel decision-making framework is proposed to
build a bridge between MB and MF decision-making
processes through adjusting the planning horizon.

2) A biologically plausible computational model is built
to simulate emotion processing and modulating the
planning horizon based on the intensity of uncertainty-
related emotional response. The emotional response is
aroused by the SPE and RPE in the course of tasks.

The experimental results show two conclusions.
1) The new proposed MB reasoning can improve efficiency

and stability of learning compared with MF approaches.
Meanwhile, it allows for better policies beyond local MB
solutions.

2) Emotion modulation can shift these two parts of
decision-making systems well in terms of the learning
efficiency and the speed of decision-making.

APPENDIX

The closed-form solution of the terminal policy is obtained
by optimizing the problem as (14). The Lagrangian function
of this problem is

L(
π̂ , η, ω, ν

) = Epν (xH),π̂(u|xH)[Q(xH, u)]

+ η
(
ε − Epν (xH)

[
KL

(
π̂(u|xH)‖πθ (u|xH)

)])

+ ω
(
Epν (xH)

[
H

(
π̂(u|xH)

)]− κ
)

+ ν
(
Epν (xH),π̂(u|xH) − 1

)
. (48)

The partial derivative with respect to π̂ is

∂L
∂π̂
= Epν (xH)

[∫
Q(xH, u)− (η + ω) log π̂(u|xH)

− η log πθ (u|xH)+ (ν − η − ω)du
]
. (49)

Let (∂L/∂π̂) = 0, we have

π̂(u|xH) = πθ(u|xH)
η

η+ω exp

(
Q(xH, u)

η + ω

)
exp

(
−η + ω − ν

η + ω

)

∝ πθ(u|xH)
η

η+ω exp

(
Q(xH, u)

η + ω

)
. (50)

In order to obtain the solution in a closed form, assume that
the MF policy is subject to a Gaussian distribution

πθ(u|xH) = N (
u|μθ (xH),�θ (xH)

)
. (51)

Additionally, the critic Q(xH, u) can be locally estimated
through Taylor series expansion up to the second order.
The Taylor’s approximation at an arbitrary action u0
is given by

Q(xH, u) ≈ Q(xH, u0)+ (u− u0)
Tg0(xH)

+ 1

2
(u− u0)

TH0(xH)(u− u0)+O
(
‖u‖3

)
(52)

where g0(x) = ∇uQ(xH, u)|u=u0 is the gradient of the critic
w.r.t u at u0, and H0(xH) = ∇2

u Q(xH, u)|u=u0 is the Hessian.
The auto-differentiation function in PyTorch is adopted to
obtain this gradient and Hessian matrix.

While assume the higher-order term O(‖u‖3) is too small
to be ignored, the Taylor’s approximation is rewritten as a
quadratic form as follows:

Q0(xH, u) = 1

2
uTH0u+ uTG0(xH)+ B0(xH) (53)

where G0(xH) = g0(xH) − H0(xH)u0 and B0(xH) =
(1/2)uT

0 H0(xH)u0 + uT
0 g0(xH) + Q(xH, u0). The local policy

is also a Gaussian distribution

π̂(u|xH) = N
(

u|μ̂(xH), �̂(xH)
)

(54)

where the mean and covariance are given by

μ̂(xH) = F(xH)L(xH), �̂(xH) = (
η∗ + ω∗

)
F(xH) (55)

where F(xH) = [η∗�−1
θ (xH) − H0(xH)]−1 and L(xH) =

η∗�−1
θ (xH)μθ (xH)+G0(xH),

We substitute the solution to the Lagrangian function. Then
there is

L(η, ω) = ηε − ωκ + Epν (xH)(η + ω − ν)

= ηε − ωκ + Epν (xH)

[−(η + ω) log π̂(u|xH)

+ η log πθ (u|xH)+ Q(xH, u)
]

= ηε − ωκ + Epν (xH)

[
η log πθ (u|xH)

− (η + ω) log π̂(u|xH)
]+ c

= ĝ(η, ω) (56)

where c is a constant.
Thus, the dual variables η∗ and ω∗ are obtained by mini-

mizing the following dual function:

ĝ(η, ω) = ηε − ωκ + (η + ω)Epν (xH )

[
log

√
|2π(η + ω)F(xH)|
|2π�θ (xH)| η

η+ω

]

+ 1

2
Epν (xH )

[
L(xH)T F(xH)L(xH)− ημθ (xH)T�−1

θ (xH)μθ (xH)
]

+ c. (57)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

This dual function is rewritten as

ĝ(η, ω) = ηε − ωκ + 1

2
Epν (xH)

[
(η + ω) log |2π(η + ω)F(xH)|

− η log |2π�θ (xH)| + L(xH)T F(xH)L(xH)

− ημθ (xH)T�−1
θ (xH)μθ (xH)

]
+ c. (58)

We have

∇ηF(xH) = −F(xH)�−1
θ (xH)F(xH)

∇ηL(xH) = �−1
θ (xH)μθ (xH). (59)

Then there is

∇η ĝ = ε + 1

2
Epν (xH )

[
log |2π(η + ω)F(xH)|

+
(

Nu − (η + ω)tr
(
�−1

θ (xH)F(xH)
))
− log |2π�θ (xH)|

+ L(xH)T∇ηF(xH)L(xH)+ 2L(xH)T F(xH)∇ηL(xH)

− μθ (xH)T�−1
θ (xH)μθ (xH)

]
(60)

∇ω ĝ = −κ + 1

2

[
1+ log |2π(η + ω)F(xH)|] (61)

where Nu represents the dimension of u.
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