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Abstract—Brain-inspired models have become a focus in arti-
ficial intelligence field. As a biologically plausible network, the
recurrent neural network in reservoir computing framework
has been proposed as a popular model of cortical computation
because of its complicated dynamics and highly recurrent con-
nections. To train this network, unlike adjusting only readout
weights in liquid computing theory or changing only internal
recurrent weights, inspired by global modulation of human
emotions on cognition and motion control, we introduce a novel
reward-modulated Hebbian learning rule to train the network
by adjusting not only the internal recurrent weights but also
the input connected weights and readout weights together, with
solely delayed, phasic rewards. Experiment results show that
the proposed method can train a recurrent neural network in
near-chaotic regime to complete the motion control and working-
memory tasks with higher accuracy and learning efficiency.

I. INTRODUCTION

In recent years, researches on biologically-inspired models

have become a hotspot. Many different types of brain-inspired

neural networks have been developed to solve complex cog-

nition, decision making and motor control problems [1]–

[3]. In our brain, neural networks in different parts of the

cerebral cortex generally perform a large variety of different

computations and pattern generation tasks in visual recognition

and motor control [4]. But it is still challenging for computers

to perform these tasks as effectively as human.

Many artificial neural networks have been designed to

mimic human behavior. However, many of them are not

biologically plausible, because (1) human brain is a highly

dynamical system rather than a feedforward neural network

with stable activation of neurons; (2) the connections be-

tween neurons are very complicated and highly recurrent, but

many artificial neural networks don’t have many recurrent

connections, which greatly influence the performance. On the

contrary, many recurrent neural networks (RNNs) are able to

produce a wide range of dynamical behaviors because their

recurrent connectivity gives them more internal states along

time to generate more complex activities of neurons. So far,

these neural networks could mimic activities of the brain to

some extent.

However, training these recurrent neural networks is gen-

erally difficult because of the encoded time information. To

train some simple networks, backpropagation through time

is a popular way to tune the weights in supervised learning

regime. But it generally requires a derivable cost function

and a constant supervisory signal, which is absent in most

actual cognitive and decision making tasks, especially in some

delayed-reinforcement tasks.

How to solve these problems may depend on the research

findings of neuroscience. In macroscopic view, according

to the related work in neuroscience, emotions are powerful

determinant factors of people’s perception, cognition, decision-

making and other behaviors. Emotion appraisal is considered

as one of the most important mechanisms that can mod-

ulate cognition, motion control and decision making [5]–

[7]. Meanwhile, in macroscopic view, it is well known that

populations of neurons play an important role in cognitive

computing and motor learning. Many recent experimental

studies suggest that the cortex can adapt its functions to

optimize performance during learning [8]–[10]. In this process,

several studies have shown that populations of neurons can

simulate animals behaviors quite well. For example, a delayed

matching-to-sample task drawn by [8] has demonstrated that

populations of neurons in the prefrontal cortex continually

changed their response properties during the visual learning

process. Adaptive and extended training of working memory

tasks can improve the performance of cognitive tasks, which

is associated with changes of population of neurons activities

in frontal cortex and basal ganglia [9]. In the work of [10],
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functional adaptation-related changes in the neurons of motor

cortex have been demonstrated. These neurons are found to

change their tuning properties with only feedback of move-

ment results.

Inspired by these neurobiological mechanisms, the REIN-

FORCE class of algorithms have been applied to train a neural

network, which enable it to fulfill the delayed-reinforcement

tasks [11]. The recurrent neural network is applied in the reser-

voir computing framework, which takes the advantages that

this recurrent neural network in near-chaotic regime exhibits

complex dynamics, highly reminiscent of neural activity, and

it can successfully implement flexible decision making, motor

control, associations and memory maintenances [12].

In this paper, a novel reward-modulated Hebbian learning

rule is introduced, which is able to adjust not only the internal

recurrent weights but also the input connected and readout

weights by a delayed reward signal. Based on the REIN-

FORCE class of algorithms, this method combines liquid com-

puting theory and node-perturbation Hebbian learning to train

the weights of each layer in the network, which enables further

parameter tuning to promote performance. After training, the

model is able to control a two-link robotic manipulator arm to

perform a center-out task with eight target points successfully,

and eventually reproduce the corresponding trajectories with

great accuracy in response to different inputs. In addition, the

trained network can also accomplish the delayed nonmatch-

to-sample tasks successfully, which indicates that this model

also has the ability to fulfill working-memory related tasks.

II. RELATED WORK

Recently, cortical computation in cognitive tasks has been

seen as a highly dynamic activity of populations of neurons

[13]–[16]. In some researches [17], [18], it is shown that mod-

els based on recurrent neural networks may capture similar

dynamics in higher cortical areas such as motor cortex. As

a result, such network models have been applied to perform

many cortical computation tasks, such as motor control [19]–

[21] and working memory [22].

A range of supervised RNN training methods have been

proposed from the classical BP to reservoir methods: (1)

Backpropagation Through Time [23], [24]; (2) Atiya-Parlos

recurrent learning [25]; (3) BackPropagation-DeCorrelation

[26]; (4) Echo State Networks (ESNs) [27]. In this list, the

focus of training gradually moves from the entire network

towards the output for faster convergence, and weights of

the networks are usually optimized by regression or gradient

descent method. ESN is a famous architecture and supervised

learning principle for RNNs, pertaining to liquid comput-

ing theory. When liquid computing theory is implemented

into these recurrent network models, specific computational

functions are acquired through modification of the weights

from a population of neurons to readout neurons [4]. Hence,

only weights of readout neurons are adjusted during learning

process. However, these methods based on supervised learning

are not enough biologically plausible, and generally require a

derivable cost function and a constant supervisory signal.

Besides supervised learning principle, reward-modulated

Hebbian learning [4], [12] is another effective rule for training

RNNs. This method is inspired by the modulation effects of

dopamine on synaptic plasticity in neuroscience, where the

changes of synaptic weights depend not only on the activities

of pre-synaptic and post-synaptic neurons, but also on the

reward or punishment signals [28]. In contrast with supervised

learning rules, this is more biologically plausible. For training

process, employing the node-perturbation method [29], [30]

to estimate gradient has been demonstrated effective to train

the RNNs in reward-modulated Hebbian learning [4], [31].

From reinforcement learning perspective in this paper, a novel

reward-modulated Hebbian learning rule is proposed to train

the RNN with sparse and delayed rewards for flexible decision

tasks.

III. METHOD

A. Network Architecture

How to train a biological recurrent neural network to

generate different patterns just by one-time reinforcement of

reward after each trial is an interesting question. To fulfil

a wide range of temporal and spatiotemporal tasks usually

requires encoding time in the dynamic changes in the pat-

tern of activity of neurons. Population of neurons could be

considered as an important way to encode information for

neural computations, where the activities of neurons at any

given time can be projected to a point in a high-dimensional

space. These points could form a network trajectory over

time, which can be visualized by principal component analysis

of the activities of neurons. Clearly, the advantage of such

computing is to encode time into the trajectory so that it

can deal with temporal and spatiotemporal process. In this

paper, a fully connected recurrent neural network of neurons

in applied, and each of them is a leaky integrator. In this

model, the membrane potential of each neuron follows first

order differential equations.

τ ẋi = −xi +
N∑
j=1

W rec
ij rj +

Nin∑
k=1

W in
ik uk +

√
2τσ2

recξi (1)

ri = tanh(xi) (2)

zl =
N∑
i=1

W out
li ri (3)

where τ is the time constant of neuron activation, xi is the

neurons membrane potential, W rec
ij is the synaptic weight from

neuron j to neuron i, W in
ik is the weight from input current

uk to neuron i, W out
li is the readout weight, rj is the firing

rate of the neuron j, zl is the output of the readout unit l.
The recurrent noise has been supposed to yield to normal

distribution with zero mean and
√

2τσ2
rec variance [23]. These

noises are actually used to estimate the policy gradient [26]

in order to produce exploratory variation in the output of

network. If noises are set to zero, the network wont have the

learning ability.
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B. Reward-modulated Hebbian learning Rule

A neural network of N neurons is trained from episode

to episode, where each episode consists of T time steps. At

the end of each episode, a reinforcement reward based on the

performance is delivered to the network.

Fig. 1. The structure of the neural network.

According to episodic REINFORCE theory [11], each

synaptic weight W rec
ij is modified as

�W rec
ij = η(R−Rb)

T∑
t=1

erecij (t) (4)

where η is a learning rate, Rb is the baseline of reinforcement,

eij(t) represents the characteristic eligibility for weight W rec
ij

at time step t. The baseline Rb is an adaptive estimate of

upcoming reward based on past experience, so that R−Rb rep-

resents the reward prediction error signal. A simple approach

to compute the baseline is to maintain a running average of

actual rewards [32]. So at the nth episode, the reinforcement

baseline is updated by

Rb(n) = αrRb(n− 1) + (1− αr)R(n) (5)

where 0 < αr ≤ 1. The characteristic eligibility eij(t)
represents a potential synaptic weight change accumulated

by synapse from neuron j to neuron i. Define G(ρ) =
Pr{z = ρ|W rec}, then the characteristic eligibility is eij =
∂ lnGi/∂W

rec
ij which is used to estimate the decent direction.

However, in the first order differential equation above, it is

difficult to get the derivative of weight W rec
ij from readout

units. To solve this problem, one method is to implement

derivation based on the machine learning library, such as

theano [23]. Another method is to estimate the eligibility trace

[12] as

erecij (t) = S(xi(t)− x̄i(t))rj(t− 1) (6)

where S is a supralinear function, for example S(x) = x3, for

amplifying the large deviations and suppressing small ones to

learn from delayed, time-sparse rewards.

In this paper, we propose that not only recurrent weights

W rec are modified during learning, but also input weights W in

and output weights W out should be adjusted to maximize the

rewards. Similar to the description above, input weight W in

is changed according to the following equation:

�W in
ik = η(R−Rb)

T∑
t=1

einik (t) (7)

Algorithm 1 Reward-modulated Hebbian Learning Rule.

Initialize:
Initialize a recurrent neural network.

Training:
1: for i = 1 to Ntrial do
2: for t = 1 to T do
3: Compute the output of network zt = net.step(ut);
4: end for
5: return z = [z1, z2, ..., zT ];
6: Compute the response of network y = Sys(z);
7: Compute the reward of this trial R = Rew(y, ytarget)

based on an objective function;

8: Update the weight of network net.update(R).
9: end for

where the characteristic eligibility for input weight W in
ij at

time step t is:

einik (t) = S(xi(t)− x̄i(t))uk(t− 1) (8)

The update of the output weigh W out is achieved following

a process similar to the methods above, except for the com-

putation of the eligibility trace. The reason is that there is a

linear relationship between z and r.

�W out
li = η(R−Rb)

T∑
t=1

eoutli (t) (9)

where the eligibility trace for input weight W out
li is inspired

by the work of [23]:

eoutli (t) = (zl(t)− z̄l(t))ri(t− 1) (10)

To train the RNN, an objective function that includes not

only the error but also some regulation terms is defined.

Generally, the error can be measured by computing the error

sum of squares of the differences between the target and actual

results. The regulation terms are designed to encourage sparse

weights or minimize the activation energy. The objective

function is further described in the experiment section. To

learn cognitive and motor control tasks, the reward-modulated

hebbian learning rule includes several important steps. The

algorithm is shown as Algorithm 1.

IV. EXPERIMENT

To evaluate the effectiveness and efficiency of the new

proposed algorithm, the new learning rule is applied to train

a recurrent neural network in two tasks: (1) the center-

out reaching task and (2) delayed nonmatch-to-sample task,

respectively. The first task is designed to test the ability of

motor pattern generation and control; while the second task is

to test working memory and flexible decision making.

A. Center-Out Reaching Task

The classic task for studying voluntary decision making

and motor control is the ”center-out reaching task”, where

a monkey moves its hand from a central location to target
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Fig. 2. The center-out reaching task.

points on a circle around the starting position. An experiment

is designed where a two-link robotic manipulator arm can

change its pose in order to make the end point of link reach

the indicated target point from central starting point. In this

experiment, there are eight possible target points surrounding

the starting point as shown in Fig. 2. Let p = (x, y) denote

the position of the end of link. Letting l1 and l2 be the length

of the two links, we have{
ẋ = −(l1s1 + l2s12)θ̇1 − l2s12θ̇2

ẏ = −(l1c1 + l2c12)θ̇1 − l2c12θ̇2
(11)

where si = sin θi, sij = sin(θ1+ θ2), and similarly for ci and

cij . Then we let the output of network be the input of system

as zi = �θi.
After maintaining fixation on the central location for 50 ms,

the robotic manipulator arm executes a movement from current

position to target point within 100 ms. For this task, a recurrent

neural network with 200 units is trained, and the weights of

network are updated by reward-modulated Hebbian learning

rule at the end of each trial. During training, every trial consists

of eight sub-trials, in which the network randomly receives

an input to indicate one of eight possible target positions.

Moreover, the robotic arm move to point y under the control of

a sequence of readout signals at each trial is assumed, and the

target point is defined as ytarget. Then the objective function

is defined as

L =
1

d

d∑
i

|yi − ytargeti |+ λ

TN

T∑
j=1

N∑
i=1

|rij | (12)

R = −L (13)

where d = 2 is the dimension of the coordinates of the point,

λ is the parameter of regularization term, rij represents the

fire rate of neuron i time step j.

As we know, a good choice of initialization parameters can

decrease the learning time. In the experiments, each element

in the recurrent weight W rec is set to zero with probability

1 − p, and the remaining fraction is initialized to non-zero

values drawn from a Gaussian distribution with zero mean and

variance g/(pN) [17]. For the input weight W in and output

weight W out, they are initialized with a uniform distribution

over a small range. In addition, the membrane potential xi

of each neuron i is initialized with uniform noise in a small

range at the start of every episode. Parameters of the recurrent

neural networks are shown in TABLE I in detail.

TABLE I
PARAMETERS OF THE RECURRENT NEURAL NETWORK

Parameter Symbol Default Value

Learning rate of input and recurrent weight ηrec, ηin 0.5
Learning rate of output weight ηout 0.01
Spectral radius of recurrent weight g 1.1
Probability of recurrent weight p 0.5
Number of neurons N 200
Number of input units Nin 9
Number of output units Nout 2
Unit time constant τ 30ms
Time step �t 1ms
Standard deviation for recurrent noise σrec 0.15
Filter factor of reward αr 0.33
Parameter of regularization term λ 0.1

Results are shown in Fig.4. As we can see, performance

improves with increasing trials, and error reaches a low value

after about 1000 trials. The proposed method can obtain a

higher accuracy quickly in contrast with the original one. After

training, one hundred test trials are performed to investigate

the trajectories of motion and errors between end point and

target position (Fig.3). In summary, the training is sufficient

and the network is able to reproduce the corresponding trajec-

tories with great accuracy in response to different inputs. The

robotic arm is able to correctly reach the corresponding target

according to the input signal.

Fig. 3. Trajectory of motion after training.

To visualize the influence of the training process in the

recurrent neural network, first three principal components of

the firing rates of neuron population are extracted, based on

the five trials for the eight targets both before (Fig.5) and

after training (Fig.6). It is clear that training can change

the trajectories in the state space for each sequence, and

similar characteristics between different movements can be

well captured.
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Fig. 4. The change of cost during training.

Fig. 5. Principal components of neurons activities before training.

Fig. 6. Principal components of neurons activities after training.

After 4000 trials training, 100 test trials are carried out to

evaluate the performance. The mean of total errors is 0.106±
0.045. The errors of reaching the eight target points are shown

in TABLE II.

TABLE II
THE ERRORS OF REACHING EIGHT TARGET POINTS

Point Original Method Proposed Method

1 0.126± 0.054 0.117± 0.025
2 0.123± 0.054 0.133± 0.078
3 0.137± 0.076 0.097± 0.059
4 0.121± 0.040 0.094± 0.027
5 0.112± 0.048 0.097± 0.036
6 0.124± 0.059 0.093± 0.047
7 0.137± 0.051 0.082± 0.031
8 0.125± 0.048 0.138± 0.053

B. Delayed Nonmatch-to-Sample Task

The delayed nonmatch-to-sample task is widely used to test

working memory for learned associations in animals. Typical-

ly, the animal (such as rats or monkeys) is presented with a

sample stimulus and a comparison stimulus, but there is a short

delay between them. In the nonmatching paradigm, the animal

gets reward if it selects the nonmatch stimulus. Moreover, by

changing the length of the delay, people can study how long

the animal can retain information in its working memory. Here,

the reward-modulated hebbian learning rule is employed to

train the population of neurons to finish this task with great

accuracy.

In the experiment, a simple delay nonmatch-to sample task

is designed following the work [12]. It can be considered a

timed XOR problem, in which if the two successive stimuli are

identical, the output of network should be -1, and otherwise

the network should output 1. Each trial is set to 1 second long,

and the first input is lasting for 200 ms, then second input is

also lasting for 200 ms after a 200 ms delay. Response of the

network is determined by the activities of neurons over last

200 ms. Moreover, the objective function is defined as

L =
1

Teval

Teval∑
t=1

|yt − ytargett | (14)

R = −L (15)

The cost change curve is shown in Fig.7. It is clear that

the network is able to respond to different inputs correctly

with higher accuracy when the number of training trials is

increasing. After 4000 training trials, 100 test trials are carried

out to evaluate the performance, and the precision can reach

99.5±0.4%. In Fig.7, the blue line represents the model where

only internal recurrent weights are adjusted, and the green line

is the newly proposed model. Clearly, changing all the weights

with newly proposed learning rule can increase the speed of

learning.

In this task, there are four cases in total. In each case, the

activities of output neuron and two other neurons are drawn

in Fig.8. Clearly, the activities of the output neuron is able to

make correct decision based on past delayed stimulus during

last 200ms. At the same time, the traces of other neurons still

remain highly dynamical.

V. CONCLUSION

In this paper, inspired by the modulation of human emotions

on the learning process of cognition, motion control and

decision making, a novel reward-modulated Hebbian learning

rule is developed to train a recurrent neural network. Based

on the REINFORCE class of algorithms, the new algorithm

changes not only the internal recurrent weights but also the

input connected weights and readout weights by a delayed

reinforcement signal. This method combines liquid computing

theory and node-perturbation Hebbian learning to train the

weights of each layer, which allows for further parameters tun-

ing to improve performance. To evaluate the effectiveness and

efficiency, this new learning rule is applied to train a recurrent
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Fig. 7. The change of cost in original and proposed method.

Fig. 8. The activities of output neuron and two other neurons.

neural network in (1) the center-out reaching and (2) delayed

nonmatch-to-sample task, respectively. In the first task, the

model is able to control a two-link robotic manipulator arm to

finish a center-out task with eight target points successfully,

and eventually reproduces the corresponding trajectory in

response to different inputs with a high accuracy. In the second

task, the network is trained to do the delayed nonmatch-to-

sample task. After training, the activities of output neuron

are able to make correct decision based on past delayed

stimulus, which indicates that this model has the ability to

fulfill working-memory tasks. Comparing with the model

where only internal recurrent weights are adjusted, the new

proposed algorithm can increase the speed of learning. In the

future, it is interesting to analyze the relationship between the

new proposed method and traditional reinforcement learning.
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