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Abstract: Compared with traditional navigation strategies in normal environments, the unmanned vehicles in battlefield 

environments require better navigation strategies. This research formulates the autonomous navigation in battlefield 

environments as a markov decision process (MDP) and introduces deep deterministic policy gradient (DDPG) to obtain the 

continuous control signal. Meanwhile, the curriculum learning is employed to increase utilization of samples in this research. 

Inspired by the biological mechanism, an improved hierarchical neural network is proposed to refine the input information, 

which plays a better role in coordinating the choice of agent’s behavior. Experimental results show that the models we proposed 

are able to acquire effective navigation strategies without knowing the whole information of environment. At the same time, it is 

proved that the hierarchical neural network and the curriculum learning are effective for improving efficiency of learning and 

generalization capability of models. 
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1 Introduction 

Technology is constantly changing the way people live. 

The unmanned combat system, a masterpiece of the new era, 

has gradually became the focus of military research in most 

countries due to the low casualty rate and low cost. The 

unmanned ground combat system is proposed later than the 

unmanned aerial combat system, and the research process is 

also slower in complex and dynamic environments or in 

emergencies. Nevertheless, the unmanned ground combat 

system has gained more attention and the investment has 

surged in recent years. As a fundamental problem of the 

unmanned combat system, autonomous navigation has been 

the most basic and important issue in military research. 

Autonomous vehicle navigation in battled environments is 

more complicated than in other environments. The vehicle 

not only needs to autonomously arrive the destination safely 

without colliding obstacles, but also to comply with dynamic 

constraints. In addition, it needs to response quickly when 

environments changed.  

Generally, navigation can be divided into two parts: global 

navigation and local navigation. The former uses completed 

environmental information to plan the optimal path, while 

the latter is hard to guarantee the planned path to be the 

optimal one owing to the incomplete information and 

dynamic environments. The commonly used algorithms of 

global navigation contain A*[1], Probabilistic Roadmaps 

(PRM)[2], Rapid-exploration Random Tree (RRT)[3], 

Genetic Algorithm (GA)[4]. Although the algorithms of 

global navigation can plan the optimal path of maps, they are 

not able to response to dynamic environments. Compared 

with global navigation, local navigation is more efficient and 

flexible in dynamic environments, which can avoid obstacles 

in real time and get to the destination even in new and unseen 

maps. Article Potential Field Method[5] and Fuzzy Logic 
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Method[6] are two famous methods of local navigation with 

advantages of simple and low calculation, but they still exist 

some problems, such as local oscillation, local optimum and 

inaccessibility of targets. 

Reinforcement learning (RL) is the problem that an agent 

learns behavior through trial-and-error interactions in a 

dynamic environment, so it provides a new approach for 

autonomous navigation in battled environments. RL is able 

to learn successful navigation policies and output end-to-end 

control sequences of vehicles by formulating the process of 

navigation as a Markov Decision Process (MDP). In recent 

years, deep learning (DL) has triggered the upsurge of 

artificial intelligence and promoted the development of RL. 

DL provides a rich representation with deep neural network 

enabling RL algorithms to break out the storage limit of 

Q-tables. As a result, the combination of DL and RL which 

calls deep reinforcement learning (DRL) enables the model 

to learn an effective navigation strategy in a complex 

environment. Many works about DRL in autonomous 

navigation have been studied. By utilizing the deep 

Q-network (DQN) algorithm, Minh et al. first achieved 

human-level success in many computer games and some of 

these games are related to navigation[7]. Target driven 

navigation[8] and successor features[9] are also added to RL 

to solve navigation problems. Chen et al. train agents to learn 

obstacles avoidance policies and path planning policies 

through off-line training[10]. 

The low efficiency of sample utilization and the low 

generalization capabilities of models have always been the 

main problems in DRL field. The former leads to the slow 

learning process, and the latter brings about the failure of 

navigation in new environments. The former can be solved 

with curriculum learning which gradually increases the 

complexity of the learning task by choosing more and more 

difficult examples for the training model[11]. In our task, 

curriculum learning is employed as our training method. As 

for the latter, many content works have been done to improve 

the generalization ability of models. The intrinsic curiosity 
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module (ICM) is employed to measure the novelty of the 

states by predicting the consequences of its own actions, 

which strengthens exploration in new environments[12]. The 

value iteration networks (VIN) learns to plan and predict 

outcomes and generalizes better to new and unseen 

domains[13]. Everett et al. add LSTM to predict other 

agents’ behavior and take single line laser as input[14]. Tai 

et al. take sparse laser range readings, the velocity of the 

robot and the relative target position as input, and applies 

DRL in mapless navigation successfully[15]. Similarly, the 

simple and essential state information is taken as input in our 

models. Compared with regarding the image as input, the 

single line laser uses less and intuitive information to 

describe the obstacles space, which means that the 

generalization ability can be improved with less training. 

Furthermore, the single line laser is easier to be acquired and 

the cost is lower. 

 

 
 

Fig.1: The visual analysis process 
 

For the navigation problem, giving priority to avoiding 

obstacles or to driving to the target directly is the choice that 

the unmanned vehicle needs to make at every moment.  How 

to balance these two behaviors is a key issue, because the 

unmanned vehicle needs to be secured safety and reaches the 

destination with a shorter path or a lower loss. Most works 

treat them as a whole, and some try to deal with them 

separately. Wang Z et al. used dueling network to process 

these two behaviors by splitting the Q-value of action into 

the value of state and the advantage of action[16]. In the field 

of biology, people commonly assumes that the process of 

object vision is in a single processing way. Contrary to this, 

Konen et al. found that the basic object information such as 

shape, size and viewpoint are represented sparately in two 

parallel and hierarchically organized neural systems[17]. As 

shown in Fig. 1, the color and shape of a sheep are identified 

by two sub-pathways. It is a good example to demonstrate 

that the visual system consists of many separate 

sub-pathways which analyze different aspects of the same 

retinal image. Although the final perception is a unified 

visual scene, it is normally done through a delicate 

coordination of a series of pathways in the visual system. 

Inspired by this, an improved hierarchical neural network is 

introduced to promote learning navigation strategies by 

further refining the input information in this paper.  

In the algorithm family of DRL, the original DQN is only 

used in tasks with a discrete action space. Deep deterministic 

policy gradient (DDPG) which bases on actor-critic 

architecture is proposed to solve continuous control 

problems[18]. Later, Minh et al. provides Asynchronous 

Advantage Actor-Critic (A3C) which optimizing the DRL 

with asynchronous gradient descent from parallel on-policy 

actor-learners[19]. Compared with DDPG, A3C needs 

several parallel simulation environments, which limits its 

extension to some specific simulation engine. Thus, we 

choose DDPG as our training algorithm to realize end-to-end 

control of agents. 

In this paper, the autonomous navigation in battlefield 

environments is formulated as an MDP and DDPG is 

introduced to obtain continuous control commands. 

Meanwhile, an improved hierarchical neural network 

inspired by a biological mechanism is proposed for aiding 

DRL agents to learn successful navigation policies in 

challenging environments and curriculum learning is applied 

to increase utilization of samples. Through a series of 

experiments in simulated environments, the results show that 

our models can learn continuous navigation strategies more 

effectively and has better generalization capabilities in 

unseen environments. 

2 Methods 

2.1 Background 

In this paper, the autonomous navigation in the battlefield 

environments is dealt in simulated environments, and the 

DDPG is used to train our models. The process of navigation 

is formulated as an MDP. At each step, the agent receives an 

observation of its current state ts  , takes a corresponding 

action ta , receives a reward tr  , and transits the current state 

ts  to the next state 1ts +  following the dynamic transition 

1( | , )t t tp s s a+ . 

2.2 DDPG 

To train the navigation policies, the DDPG algorithm 

which can output continuous control commands of agents is 

introduced. It is based on actor-critic architecture. The actor 

part selects action ta  according to the input state ts with a 

policy network ( | )u

t ta u s = . The critic part takes the 

action ta  and the state ts  as input to evaluate the quality of 

the action ta  with a value network ( , | )Q

t tQ s a  . 

The estimation value iy  at each step is calculated by a 

discount factor   according to the following equation: 

 ' '

1 1'( , '( | ) | )u Q

i i i iy r Q s u s  + += +   (1) 

where 'Q  and 'u  denote the previous values of Q  and 

u . 

Then the critic is updated by minimizing the loss L in 

equation (2) and the actor policy is updated by using sampled 

policy gradient as equation (3): 

 21
( ( , | ))Q
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The target network is updated as follows: 

 ' '(1 )Q Q Q    + −   (4) 

 ' '(1 )u u u    + −   (5) 

where Q  and u  denote the network parameters of the 

value network and the policy network. 



  

2.3 Improved Hierarchical Neural Network  

In order to improve the generalization ability of models, 

the improved hierarchical neural network is applied to the 

actor part to refine the input information. The input 

information is divided into two sub-modules and then 

concatenated and fed into fully connected lays for further 

processing. The two sub-modules are the obstacle avoidance 

module and the goal processing module. As shown in Fig. 2, 

the readings of laser l

ts  and the agent’s direction d

ts  are fed 

into the obstacle avoidance module. The goal information 
g

ts  and the direction information d

ts  are fed into the goal 

processing module. The outputs of the two models are then 

concatenated and fed into a fully connected network to 

output the continuous action sequence. Moreover, the laser 

readings l

ts  and the relative target position g

ts  differ greatly 

in dimension, which has a negative influence on behavior 

learning of agents. To reduce the influence of the input 

information, the number of output nodes of these two models 

is identical for making the model easier to learn. 

 
Fig. 2: Actor part network 

 

The obstacles avoidance module has two fully connected 

layers with 300 and 150 units respectively, each followed by 

ReLU nonlinearities. The goal processing module also has 

two fully connected layers with 200, 150 units respectively, 

each followed by ReLU nonlinearities. The module of fully 

connected layers contains 5 fully connected layers with 300, 

400, 300, 200, 200 units, each also followed by ReLU 

nonlinearities, and the last fully connected layer is followed 

by a tanh function. 

In the critic part, as shown in Fig. 3, the laser readings 
l

ts , 

the goal information g

ts , the agent’s direction d

ts , the 

agent’s action act and a constant b are merged together as an 

input vector. After 7 fully-connected neural network layers 

with 300, 400, 400, 400, 400, 300, 10 units with ReLU 

nonlinearities, the input vector is transferred to Q value. 

 
Fig. 3: Critic part network 

 

2.4 Reward Setting 

In addition to the appropriate algorithm and the network 

structure, the setting of reward function is also crucial for 

DRL. The relative target distance is easy to be measured via 

the GPS system or the base station positioning technology, 

so it is selected as a part of rewards. Our reward function is 

stated in equation (6). If the relative target distance 

1( )t td d −−   is smaller than last time, the agent gets a positive 

reward, otherwise, the agent gets a large negative reward. 

For avoiding minimum training in each episode, the agent 

gets a negative reward penaltyr  if the relative target distance is 

bigger than last time and the number of steps stepn   is much 

larger than what the agent needs needn  . A positive reward 

reachr   is arranged when the agent arrives at the target, and a 

negative reward collisionr  is arranged when the agent collides 

with an obstacle. 
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  (6) 
   Where td  is the current relative target distance, and 1td −  

is the last moment relative target distance. v  is the velocity of 

the agent and dt is time interval. 1 and 2 are 

hyper-parameters. 

3 Experiments  

3.1 Environments Setup 

The training procedure of our model is implemented in 

virtual environments. As shown in Fig. 4, two simulation 

environments with a size of 800*800 are constructed to show 

the influence of the training environment on the motion 

planner. Obstacles in Env-2 are more complicated and varied 

than Env-1. A red rectangular object with a few black lines 

denotes the agent equipped with a laser range sensor. The 

target is denoted by a green square object and can’t be 

rendered by the laser sensor. The red little square denotes the 

starting position of the agent. At the beginning of each 

episode, the pose and position of the agent, and the position 

of the target are initialized randomly in the whole map so that 

a collision-free path is guaranteed to exist between them. An 

episode is terminated when the agent either reaching the 

target, colliding with an obstacle, or after a maximum of 500 

steps during training and testing.  
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Fig. 4: Training and testing environments 
 

In addition to regarding the training environments Env-1 

and Env-2 as a part of the testing environments, two new and 

unseen environments are constructed to test the 

generalization capabilities of our models. As shown in Fig. 5, 

barrier-type obstacles and large-sized obstacles are added 

separately to Env-3 and Env-4, and none of these obstacles 

have appeared in the training environments.  

 

  
Env-3                                        Env-4 

 

Fig. 5: Testing environments 
 

The green lines in Fig. 4 and Fig. 5 are trajectories 

generated by the model which applies curriculum learning 

and the improved hierarchical neural network. 

3.2 Parameter Setup 

The input state ts  consists of 20-dimensional laser range 

readings 
l

ts  (with a maximum range of 150), a 

2-dimensional relative target distance
g

ts  

( target agentx x− , target agenty y− ) , and the direction of the 

agent
d

ts . At each step, the action of the agent is a continuous 

angle of rotation with a maximum angle of 6 degrees. The 

velocity tv  of the agent is 50 and the time interval td  is 0.1. 

In the training algorithm, the memory capacity is 7000 and 

the batch size is 32. the hyper-parameters  is 0.9 and   is 

0.01. Meanwhile, the critic part and the actor part have an                         

identical learning rate of 0.0003.  

The hyper-parameters regarding the reward function (6) 

are summarized in Table 1.  

Table 1: Hyper-Parameters of Reward Function 

Hyper-parameters Value 

needn   200 

penaltyr   -0.2 

collicionr   -1 

reachr   1 

1   -0.1 

2   -0.11 

 

3.3 Experiments and Evaluation 

Our models are implemented by a well-known 

open-source deep learning library Tensorflow and finetuned 

by the Adam optimizer. Meanwhile, they are trained in a 

single Intel Core i5-8400 CPU and each training of 20 

thousand episodes takes about 3 hours. 

In order to test the impact of network structure and 

training method on the learning ability and the generalization 

ability of the model, we design several experiments. 

Experiment1 uses the original network and the simple 

training method. In the original network, the inputs are fed 

into fully connected layers directly and are not processed by 

the obstacle avoidance module and the goal processing 

module. The simple training method means that the model is 

trained only in Env-2 with 40 thousand episodes. The 

starting position and the pose of the agent are initialized 

randomly in each episode, and the destination is also 

initialized randomly every 30 episodes; Experiment2 uses 

the improved hierarchical neural network and the simple 

training method. The structure of the improved hierarchical 

neural network is shown in Fig.2, in which the inputs are 

processed by two sub-models firstly and then are fed into 

fully connected layers. The simple training method is the 

same as Experiment1; Experiment3 uses the improved 

hierarchical neural network as the same as Experiment2, and 

the training method is curriculum learning that the model is 

first trained in Env-1 with 20 thousand episodes and then 

trained in Env-2 with the same number of episodes. The 

initialization of curriculum learning is the same as the 

initialization of the simple training method; Experiment4 

uses the improved hierarchical neural network as 

Experiment2, and the training method is curriculum learning 

liking Experiment3. 

 After trained, these models are tested in Env-1,2,3,4 with 

a fixed set of 500 random episodes. The success ratio of them  

 

Table 2: Testing Result 

Experiment Network  Structure Training  Method Env-1(%) Env-2(%) Env-3(%) Env-4(%) 

1 Original network Sample training 0 0 0 0 

2 
Improved hierarchical 

neural network 
Sample training 89.4 83.8 77.0 74.4 

3 Original network Curriculum learning 0 0 0 0 

4 
Improved hierarchical 

neural network 
Curriculum learning 93.1 86.8 84.5 75.3 



  

are shown in table2. From the test results, the following 

contents are known: 

⚫     Experiment1 and Experiment2, both of which use the 

original network, have not learned successful 

navigation strategies, so the agents of them have been 

spinning somewhere in all testing environments. 

However, Experiment2 and Experiment4 which use the 

improved hierarchical neural network have learned 

successful navigation strategies. This means that 

compared with the original network, the improved 

hierarchical neural network greatly enhances the ability 

of models to learn successful navigation strategies. 

⚫     Compared with Experiment2, Experiment4 uses the 

improved hierarchical neural network while using 

curriculum learning for training. As a result, 

Experiment4 has a higher success ratio in all testing 

environments than Experiment2. Especially in 

Env-1,2,3,  the success ratio has increased by at least 

three percentage points. This means that the training 

method of curriculum learning plays a positive role in 

improving the utilization of training samples and the 

generalization ability of models. 

⚫     Env-3 and Env-4 can test the generalization ability of 

models more powerfully because they are completely 

new and unseen to models.  The success ratios of the 

best experiment—Experiment4 are 84.5% and 75.4% 

in Env-3 and Env-4, which indicates that the model 

using the improved hierarchical neural network and 

curriculum learning not only learns successful 

navigation strategies, but also has a good generalization 

capability.  

To further test the generalization capabilities of the best 

model, a new environment which contains 20 obstacles with 

the size of 20*20 is generated randomly at each episode. We 

collect testing statistics on a fixed set of 1000 random 

episodes and the success ratio is 81.4%. Two random 

intercepted scenes are shown in Fig. 6. 

 

  
 

Fig. 6: Two randomly intercepted scenes 
 

The trajectories of the best model are shown as the green 

lines in Fig. 4,5,7. It is clear that the agent avoids obstacles 

smoothly and reaches the destination safely. Intuitively, the 

trajectories are nearly straight except the flexible parts 

caused by avoiding obstacles. Meanwhile, for the starting 

direction of agents is random, the primary section of some 

trajectories is curved where the agent adjusts its direction. At 

the same time, these trajectories are more in line with the 

actual driving trajectory of the vehicle owing to the limited 

steering angle and the continuous control signals. It is proved 

that the best model applying curriculum learning and the 

improved hierarchical neural network has learned a 

high-quality navigation strategy. 

4 Conclusions 

This paper focuses on autonomous navigation in the 

battlefield environments where the agent is expected to 

navigate to the destination without the whole knowledge of 

map. It takes sparse laser range readings, the direction of the 

agent and the relative target position as input and uses DDPG 

to obtain continuous control commands of agents. 

Meanwhile, the curriculum learning and an improved 

hierarchical neural network are introduced into the DDPG. 

The former is to accelerate the training rate and the latter is to 

improve the learning and generalization ability of models. 

Our models are trained in two environments and tested in 

four environments. Meanwhile, 1000 environments 

generated randomly with 20 obstacles are also used to test 

our best model, the results of experiments are satisfactory. 

As an innovation in this paper, the improved hierarchical 

neural network is crucial for improving DRL performance in 

tasks with challenging exploration requirements. The 

architecture of the network is similar to the neural system of 

object information in the human visual cortex. It consists of 

two sub-models, which analyze the different aspects of the 

same input knowledge. The experimental results show that 

the models using the network have a high success ratio and 

the trajectories are smooth while other models with the same 

learning rate have fallen into the local minimum. It is clear 

that the agents employing the network are able to reach the 

target successfully with high-quality trajectory and the 

improved hierarchical neural network has a better 

generalization capability in unseen and challenging 

environments. 

Several groups of experiments are also conducted to test 

the validity of curriculum learning. The models using 

curriculum learning have higher success ratios than the 

models without curriculum learning under the same 

conditions. Although the curriculum learning is less effective 

than the improved hierarchical neural network for lifting 

models, it is still a good method to improve the learning and 

generalization ability of the models. 

5 Discussion and Future Works 

According to the experimental results, the model with both 

the improved hierarchical neural network and curriculum 

learning has the highest success ratio, which has better 

sample efficiency and better generalization capabilities in 

unseen and challenging environments. As an innovation, the 

improved hierarchical neural network we propose is similar 

to the biological mechanism, which can be used to solve 

more problems in different fields. However, there are still 

some flaws in our works. Compared with the real battlefield 

environments, our simulation environments are too simple, 

and the navigation strategies learned by the models are not 

enough to meet the application requirements in the real war 

world.  

In future work, we will do some improvements on our 

models. On the one hand, we plan to further improve the 

hierarchical neural network and explore its application in 

other tasks. On the other hand, a better model needs to be 



  

designed to learn the navigation strategies which are suitable 

in the real war world. 
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