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Abstract—The two-stream ConvNets in action recognition al-
ways fuse the two streams’ predictions by the weighted averaging
scheme. This fusion way with fixed weights lacks of pertinence
to different action videos and always needs trial and error on
the validation set. In order to enhance the adaptability of two-
stream ConvNets, an end-to-end trainable gated fusion method,
namely gating ConvNet, is proposed in this paper based on the
MoE (Mixture of Experts) theory. The gating ConvNet takes the
combination of convolutional layers of the spatial and temporal
nets as input and outputs two fusion weights. To reduce the
over-fitting of gating ConvNet caused by the redundancy of
parameters, a new multi-task learning method is designed, which
jointly learns the gating fusion weights for the two streams and
learns the gating ConvNet for action classification. With the
proposed gated fusion method and multi-task learning approach,
competitive performance is achieved on the video action dataset
UCF101.

I. INTRODUCTION

Human action recognition is important for applications
of human-robot interaction, behavior analysis and surveil-
lance. Early works [1], [2], [20] utilized hand-crafted spatial-
temporal local descriptors and powerful encoding methods.
Inspired by the successes of deep learning for image classi-
fication [18], lots of works have explored deep convolutional
neural networks (CNN) [3], [4] for video classification and
achieved higher performance than hand-crafted methods re-
cently.

This paper mainly focuses on improving the performance
of the two-stream ConvNets [3], [4], [8], [9], [16], [25] in
action recognition. The two-stream ConvNets [3] contain the
spatial net and the temporal net, which take RGB frames
and consecutive optical flow stacks as inputs respectively. The
predictions of the two streams are always fused by evenly
averaging or weighted averaging [3], [4]. This fixed weight
fusion method cannot make the best use of the capacity of
the spatial and the temporal nets. Because each of them fires
on different aspects of videos: the spatial net focuses on the
appearance and scene contents of videos, while the temporal
one on the motion. Also, different video frames of the same
and the different classes contain different amount of spatial
and temporal cues. Fusing the predictions of the spatial and
the temporal nets with fixed weight may not capture the
contents of videos well and always needs trial and error on
the validation set. Some fusion methods [8], [9] have also
been proposed for the two-stream ConvNets, but they are not
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Fig. 1. Gated TSN: Newly added gating ConvNet are in orange color.
Its inputs are called feature snippets, where number 1©, 2©, 3© denote the
different segment level feature maps from the two streams. Each of feature
snippets is the combination of feature maps from the same layer of the spatial
and the temporal nets. There are two independent fully connected layers for
the gating ConvNet, one for learning the gating fusion weights for the two
streams, the other for the action classification of the gating ConvNet.

designed for fusing the predictions between the two streams.
The SCI (Sparsity Concentration Index) fusion [8] gives a
weighted score scheme according to the sparsity degrees of
the crop-level prediction. The SCI fusion in their work is used
to fuse the predictions of different crops from a single spatio-
temporal stream, while our work is for fusing the predictions
of the two streams. The conv fusion [9] also fuses the two
streams in feature level to get a spatio-temporal stream and a
temporal stream. But they fuse the predictions of the spatio-
temporal and temporal stream by evenly averaging.

Motivated by above observations, in this paper, an end-
to-end trainable gated fusion method is proposed to obtain
the adaptive fusion weights for the spatial and the temporal
nets in prediction level. We gain insights from the Mixture of
Experts (MoE) [10], which are usually consisted of a gating
network and more than two expert networks. Each expert
network is gated via a Softmax function of the gating network
[15] [13]. By gating on a number of experts, they aim to
adaptively combine a subset of networks to make prediction.
However, there are some differences between the above MoE
architectures and our work. Firstly, different from these MoE
methods with more than two experts, our work aims to best
utilize the spatial and the temporal nets of the two-stream
based action recognition methods. Secondly, the inputs for
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different experts in previous MoE methods are usually from
the same source or a small subset of the same source. While
our gating network takes the combination of convolutional
feature maps of the spatial and the temporal nets as inputs.
It is termed as gating ConvNet for it is mainly composed
of several convolutional layers. Our fusion method based on
the gating ConvNet is termed as gated fusion. Besides, a new
multi-task learning [3], [12] method is proposed, which jointly
learns the adaptive fusion weights for the two streams and
the gating ConvNet for action classification. Different from
the weighted averaging fusion with fixed weights, the gated
fusion is a sample specific fusion method because the gating
ConvNet makes a reasonable assignment in two fusion weights
for the spatial and the temporal nets adaptively according to
the properties of different video inputs.

The main contributions of this paper can be summarized
as follows: 1) An end-to-end trainable gated fusion method is
proposed for the two-stream ConvNets. 2) A new multi-task
learning method is designed, which jointly learns the gating
fusion weights for the two streams and the gating ConvNet
for action classification. With this approach, the performance
of our MoE is improved. 3) With our gated fusion method
and multi-task learning approach, competitive performance is
achieved on the video action dataset UCF101.

II. APPROACH

In this section, the framework of the gated fusion method
will be introduced. Then three aspects of learning the gating
ConvNet are detailed.

A. Gated Fusion for the two-stream ConvNets

The spatial and the temporal nets of TSN are selected to
act as two experts in our basic framework for their sim-
ple architectures and good performance in the two-stream
ConvNets. The reader can refer to [4] for more details of
TSN. Fig. 1 shows our gated TSN. It contains TSN and
gating ConvNet. The gating ConvNet takes the combination
of convolutional feature maps of the two streams as inputs.
Besides, it has two independent fully connected layers, one
for learning the gating fusion weights for the two streams
and the other for action classification. So they can work in a
multi-task learning manner. Through segmental consensus [4]
of the gating ConvNet, the video-level fusion weights and the
video-level gating ConvNet predictions for action recognition
are obtained. The gating ConvNet outputs the gating fusion
weights as follows

Gg = Hg(Gg(Fg(f1;Wg),Fg(f2;Wg), ...,Fg(fK ;Wg)))
(1)

where fk, k = 1, ...,K is the feature snippets generated
by the combination of feature maps of the spatial and the
temporal nets. K is number of segments. Fg(fk;Wg) is
the function representing the gating ConvNet with parameters
Wg which operates on the feature snippet fk. Gg aggregates
the frame level fusion weights to get the video-level fusion

weights. Average pooling is adopted for Gg . Hg is a ReLU
function ensuring the non-negativity of video-level fusion
weights. With the gated fusion method, adaptive weighted
function (2) of the two streams is obtained, where w1 and
w2 are the fusion weights outputted by the gating ConvNet
w1 = Gg1, w2 = Gg2. It is also worth noting that the
predictions of the two streams Grgb and Gflow are fused
before Softmax normalization [4], [23] in our gated fusion
method

Gadap = w1Grgb + w2Gflow (2)

where Gadap is the weighted prediction.
For the classification branch of the gating ConvNet, the

prediction function is defined as

Gc = Gc(Fc(f1;Wc),Fc(f2;Wc), ...,Fc(fK ;Wc)) (3)

where Fc(fk;Wc) is the function representing the gating
ConvNet with parameters Wc which operates on the feature
snippet fk. Note that Wc and Wg share parameters except
for the fully connected layers. Gc aggregates frame level
predictions into the video-level predictions. Average pooling is
adopted for Gc. The final loss function for the gating ConvNet
is

L = L(y,Gadap) + λL(y,Gc)

= −
C∑
i=1
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(
Gadapi
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) (4)

where C is the number of action classes and yi the ground
truth label of class i. L(y,Gadap) is the loss with respect to
the predictions of the two streams after gated fusion. L(y,Gc)
is the loss of the classification branch of the gating ConvNet. λ
is the loss weight for classification loss of the gating ConvNet.
Standard cross-entropy loss is employed for these two losses
respectively. In the back-propagation process, the gradients of
the gating ConvNet parameters W with respect to the loss can
be derived as
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B. Implementations of learning the gating ConvNet

Output activation function for the gating ConvNet. In
our MoE method with N = 2 experts (spatial and temporal
net), the outputs of gating ConvNet perform as the confidence
ratio between the two streams. To model gating outputs g
as a function of its inputs x, different functions could be
considered. ReLU

g(xi) = max(0, xi), i = 1, 2 (6)

is selected as the output activation function because of its non-
negativity and fast convergence speed [18]. It can perform the
same role as Softmax [10]

g(xi) =
exp(xi)∑N
i=1 exp(xi)

, i = 1, 2 (7)

ReLU could make sense as long as the two output fusion
weights g(xi), i = 1, 2 of the gating ConvNet do not become
zero together for a specific sample.

Inputs for the gated TSN. The inputs for the spatial and the
temporal nets of the gated TSN follow the original TSN, where
RGB frames and optical flow stacks are randomly sampled
from each of K segments of a video. Each group of RGB
frames and optical flow stack starts from the same point in
a video. The gating ConvNet in this paper takes the feature
maps of different layers of two streams with concatenation
fusion or conv fusion [9] as inputs. Concatenation fusion
ycat = f cat(xa,xb) stacks the two feature maps xa,xb

from the two streams at the same spatial locations i, j across
the feature channels d

ycati,j,2d = xai,j,d ycati,j,2d−1 = xbi,j,d (8)

where ycat ∈ RH×W×2D. Conv fusion
yconv = f conv(xa,xb) first stacks the two feature maps
xa,xb at the same spatial locations i, j across the feature
channels d as above equation (8) and subsequently convolves
the stacked data with a bank of filters f1×1 ∈ R1×1×2D×D

and biases b ∈ RD

yconv = ycat ∗ f1×1 + b (9)

where yconv ∈ RH×W×D. The filter f1×1 is used to reduce
the dimensionality of concatenation feature maps by a factor
of two and is able to model weighted combinations of the two
feature maps from two streams at the same spatial location.

Multi-Task Learning for the gating ConvNet. The gating
ConvNet takes the convolutional layers of BN-Inception [7]
after the above mentioned input fusion layer as its feature
extractor, followed by a dropout layer and two independent
fully connected layers. Note that the same feature extractor of
action classification is used for the gating ConvNet. However,
the dimension of classification output (101 for UCF101) is
much larger than the dimension of the gating fusion weights
(in the case of two-stream, 2). Thus, the gating ConvNet is
equipped with redundant degrees of freedom in its feature
extractor. Learning this task could be cumbersome [17] and

suffers from severe risk of over-fitting. To relieve over-fitting,
a action classification branch is added on top of the final con-
volutional layer of the gating ConvNet and it could behave as
a regularizer for the task of learning the gating fusion weights.
At this point, the gating ConvNet has two independent fully
connected layers, one for the gating fusion weights, the other
for the action classification. These two fully connected layers
share the same input layer (inception5b). It is expected that
joint learning of the fusion weights and classification could
improve the accuracy of our MoE.

III. EXPERIMENTS

A. Dataset and Implementation Details

Experiments are conducted on the standard action dataset:
UCF101 [11]. The UCF101 dataset contains 101 action
classes and 13,320 video clips. Three training/testing splits
are used for evaluation. All experiments are implemented
with Caffe [6] and one NVIDIA GTX TITAN X GPU is
used for training and testing. Codes will be available at
https://github.com/zhujiagang/gating-ConvNet-code.

Network Training. The TSN in our gated TSN adopts
training strategies including cross modality pre-training, partial
BN, dropout and data augmentation [4]. The number of the
snippets K is set to 3 for both TSN and gating ConvNet.
The loss weight λ is set to 0 when we only learn gating
fusion weights, and is set to 1 when we jointly learn gating
fusion weights and the gating ConvNet for classification. For
the gating ConvNet, the ImageNet pre-training is used and the
dropout ratio of dropout out layer is set to 0.8. The mini-batch
SGD algorithm is used to learn the network parameters. The
training procedures of the gated TSN mainly include three
stages: 1) Firstly the two streams of the TSN are trained; 2)
Then parameters of these two streams are fixed and we only
fine-tune the gating ConvNet for learning the gating fusion
weights; 3)When there is no more increase in accuracy, lastly
we do joint learning of the gating fusion weights and gating
ConvNet for action classification. Training the gating ConvNet
consumes much more memory than training the spatial and
temporal nets respectively, so a smaller batch size is needed
(set to 4) than the first training stage (set to 32). L2 norm of
gradients is clipped at 40 and momentum term is set to 0.9. For
training the gating ConvNet, the learning rate is initialized as
0.001 and decreases to 0.0001 when there is no more increase
in accuracy. The model is selected by early stopping. Optical
flows are extracted by the TVL1 optical flow algorithm [24].
RGB frames and optical flows are extracted from videos in
advance.

Network Testing. For each video during testing, 25 RGB
frames and optical flow stacks are sampled. Meanwhile, the
crops of 4 corner and 1 center, and their horizontal flippings
are obtained from sampled frames. Each pair of RGB frame
and optical flow stack starts from the same point in a video.
For each pair of them, the gated fusion for the spatial and
temporal net is applied. All predictions of crops in a video
are averaged to get a video-level result.
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TABLE I
ACCURACY (%) OF THE GATED TSN WITH SOFTMAX AND RELU AS THE

OUTPUT ACTIVATION FUNCTION OF THE GATING CONVNET
RESPECTIVELY ON THE UCF101 (SPLIT 1).

Input for gating ConvNet Softmax ReLU
Conv fusion

of inception4e
94.05 94.11

Concatenation fusion
of inception4e

93.97 93.96

TABLE II
ACCURACY (%) OF THE GATED TSN WHEN DIFFERENT INPUT LAYERS

WITH CONCATENATION OR CONV FUSION ARE USED FOR THE INPUTS OF
THE GATING CONVNET ON THE UCF101 (SPLIT 1).

Input layer for
gating ConvNet

concatenation fusion conv fusion

conv1 93.97 93.96
conv2 93.91 93.54

inception3c 93.93 93.89
inception4e 93.96 94.11
inception5b 93.89 93.87

B. Ablation Studies

ReLU or Softmax. For the output activation function of
the gating ConvNet, two activation functions are explored:
Softmax and ReLU. Feature maps with concatenation fusion
or conv fusion [9] of inception4e from two streams are taken
as the inputs of the gating ConvNet. As shown in Table I, the
gating ConvNet with ReLU is comparable to that with Softmax
in the accuracy of the gated TSN. It can been seen that ReLU
could perform the same role as Softmax when used as the
final gating activation function. It is also found that the gating
ConvNet with ReLU as the final activation function converges
faster than that with Softmax. This complies with the fact
that ReLU could have faster training speed than saturating
nonlinearities when used as the layer activation function [18].
In later experiments, ReLU is adopted for the gating output
activation function.

Different input layers and ways of fusing these layers.
Each pair of convolutional layers of the two streams (conv1,
conv2, inception3c, inception4e, inception5b) with concate-
nation or conv fusion is chosen for each experiment. The
performance of different input layers for the gating ConvNet is
summarized in Table II. While different fusion methods (conv,
concatenation) and different input layers perform slightly
different, the inception4e as the input layer of the gating
ConvNet with conv fusion gets the highest accuracy. This
is different from the previous work about two-stream feature
fusion [9], where the fusion of the highest convolutional layers
after ReLU gains the best result.

Different network architectures. To test the generality
of our gated fusion for the two-stream ConvNets in action
recognition, we also do experiments on different network
architectures including CaffeNet [6] and VGG16 [5]. Two

TABLE III
COMPARISON OF THE ACCURACY (%) AMONG DIFFERENT FUSION

METHODS FOR DIFFERENT NETWORK ARCHITECTURES AND DIFFERENT
TWO-STREAM METHODS ON THE UCF101 (SPLIT 1).

Architectures gated fusion weighted ave SCI
CaffeNet (two-stream) 71.80 71.75 71.34
VGG16 (two-stream) 78.94 78.82 77.61

CaffeNet (TSN) 74.93 74.55 70.86
VGG16 (TSN) 88.02 87.95 85.00

BN-Inception (TSN) 94.11 93.81 93.96

kinds of two-stream based methods, namely the original two-
stream ConvNets [3] and TSN [4] are implemented with these
architectures. The number of the snippets K during training is
set to 3 for TSN and 1 for the original two-stream ConvNets.
Different fusion methods such as weighted averaging fusion
with fixed weight, fusion based on SCI (Sparsity Concentration
Index) [8] and our gated fusion method are used for all
these networks. Results are summarized in Table III. For
weighted averaging fusion, the predictions of the two streams
before Softmax normalization are fused and the best weight
is selected with grid search on the validation set for each
experiment. As the method in [8] with SCI fusion has only
one stream, in our two-stream method with SCI fusion, average
fusion is added in stream level after its crop level probability
fusion. For the spatial and the temporal nets with CaffeNet
and VGG16, it is found that these two networks suffer from
severe over-fitting in UCF101 due to the limited training data.
The gated fusion can not do better than the weighted averaging
fusion in already over-fitting expert networks [13]. To reduce
the over-fitting of the CaffeNet and VGG16 in the two-stream
ConvNets, all their fully connected layers are removed. Then
the training schemes of the original two-stream and TSN
are followed to get the final spatial and temporal models.
As shown in Table III, the gated fusion always performs
the best in different architectures and different two-stream
methods, which shows the advantage of assigning the gating
fusion weights for the two streams. The SCI fusion performs
comparably well with the weighted averaging fusion.

Multi-task learning for the gating ConvNet. Further,
a different fully connected layer for action classification is
added on top of the last convolutional layer of the gating
ConvNet. The network is fine-tuned on the previous trained
gating ConvNet by jointly learning the gating fusion weights
and the action classification. As shown in Table IV, after
adding a classification branch, the accuracy of the gated TSN
increases by 0.08%, 0.36% and 0.7% on the three splits of
UCF101 respectively. So, it can be concluded that learning the
gating fusion weights could benefit from learning the gating
ConvNet for action classification.

C. Comparison with the State of the Art

After above analysis of the gating ConvNet, final experi-
ments on all three splits of UCF101 are implemented with
our proposed methods. Mean average accuracy on three test
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TABLE IV
ACCURACY (%) OF THE GATED TSN WHEN THE GATING CONVNET DOES

JOINT LEARNING OF ACTION CLASSIFICATION AND LEARNING THE
GATING FUSION WEIGHTS ON THE UCF101 (THREE SPLITS).

UCF101 split gated fusion +gating ConvNet classification
split 1 94.11 94.19
split 2 94.12 94.48
split 3 94.14 94.84

TABLE V
COMPARISON OF THE ACCURACY (%) OF OUR GATED TSN WITH OTHER

STATE-OF-THE-ART METHODS.

Methods UCF101
IDT 85.9

MoFAP 88.3
Two-stream ConvNet 88.0

C3D (3 nets) 85.2
FstCN 88.1
LTC 91.7

ST-ResNet 93.4
TSN(2 modalities) 94.0
TSN(3 modalities) 94.2
Gated TSN(ours) 94.5

DOVF 94.9
TLE 95.6

sets of UCF101 is calculated as the final result. As shown in
Table V, the gated TSN are compared with both traditional
approaches [2], [20] and deep learning methods [3], [4], [21],
[22], [25]–[27]. It is noted that our gated TSN only employs
2 modalities (RGB frame and optical flow stacks) as inputs
and improves upon the original TSN with 2 modalities by
0.5%. It even exceeds the TSN with 3 modalities by 0.3%.
This improvement demonstrates that the weighted averaging
fusion with fixed weight could not fully exploit the capacity of
the two streams on different samples, even with three streams,
while the TSN with our gated fusion method could improve
performance by adaptively assigning the fusion weights to
different streams.

D. Network Visualization

In Fig. 2, the distributions of the fusion weights for the gated
TSN with and without our multi-task learning are displayed,
corresponding histograms of the fusion weights for the spatial
net are followed. None of the coordinate of the points on the
first two subplots is zero, implying that the gating ConvNet
has learnt that combining the spatial and the temporal nets
is better than that only with single network or no network.
With our multi-task learning, the output points of the gating
ConvNet distribute more sparsely than that without multi-task
learning. It could also be observed in the last subplot that the
fusion weights for the spatial net range from 0.4 to 0.7. It
is more wider than that without multi-task learning, whose
fusion weights for the spatial net are mostly centered between

0.5 and 0.65. This may account for the 0.36% increase of
the accuracy on UCF101 split2 in Table IV. With our joint
learning method, an adaptive selection space is expanded for
assigning the fusion weights for the two streams with more
variations according to the current inputs.

Finally, some examples of the classification results of the
gated TSN and the weighted averaging fusion are shown and
compared in Fig. 3. In the first three subplots of Fig. 3, the
spatial stream always has high confidence for the ground truth
label, while the temporal stream has high confidence for the
incorrect class. In these cases, the higher fusion weights for
the temporal stream than the spatial one may weaken the
confidence to the ground truth, may even lead to prediction
failures just as shown in these three examples. Our gated
fusion assigns the spatial stream higher weights than the
temporal one in all these three cases, which gives correct
predictions with higher confidence, and proves it has learned
that the spatial stream should be trusted more in these cases. It
is also noticed that in the fourth subplot of Fig. 3, the ground
truth label, namely MoppingFloor, is not predicted into the
top-5 by both the two streams, but after both fusion methods,
it appears again. Fusing the predictions of the two streams
with our gated fusion brings the result to be true by giving
higher weights to the spatial stream than the temporal one.

IV. CONCLUSION

In this work, an end-to-end trainable gated fusion method is
proposed for the two-stream ConvNets in action recognition.
Besides, it is shown that our joint learning of the gating fusion
weights for the two streams and learning the gating ConvNet
for action classification is helpful in improving the accuracy
of the gated TSN. Our techniques in this work could also be
extended to the semantic segmentation domain, where multi-
stream deep neural networks are employed [17].
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methods and their fusion weights (confidence ratio) in the bottom of the figure by different fusion method are also displayed correspondingly.
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