
Learning Evasion Strategy in Pursuit-Evasion by
Deep Q-network

Jiagang Zhu∗†, Wei Zou∗‡, Zheng Zhu∗†
∗Institute of Automation, Chinese Academy of Sciences, Beijing, China

†University of Chinese Academy of Sciences, Beijing, China
‡TianJin Intelligent Tech.Institute of CASIA Co., Ltd

Email: zhujiagang2015@ia.ac.cn, wei.zou@ia.ac.cn, zhuzheng2014@ia.ac.cn

Abstract—This paper presents an approach for learning the
evasion strategy for the evader in pursuit-evasion against the
pursuers with Deep Q-network (DQN). To give the immediate
reward to the agent, we handcraft a reward function, which
considers both the evader escaping from being surrounded by
the pursuers and keeping distance from the pursuers. This is
a combination of the artificial potential field method with deep
reinforcement learning. Our learned evasion strategy is verified
by a series of experiments in three different game scenarios. The
training stability and the value function are analyzed respectively.
The three learned agents are compared with a random agent and
a repulsive agent. We show the effectiveness of our method.

I. INTRODUCTION

Deep reinforcement learning (DRL) [8] which combines
deep learning and reinforcement learning has been developed
rapidly in recent years. It has been applied to robotic motion
control [18], video prediction [19] and complex games, such as
chess [16] and Go [10], [28]. Deep Q-network (DQN) [1][2]
is one of the most famous methods of deep reinforcement
learning. It showed the ability of achieving human experts in
several games of Atari 2600. Compared with the conventional
reinforcement learning by handcrafted features for state rep-
resentation, DQN is an end-to-end way of learning the action
policy directly from the high-dimensional image data by using
Convolutional Neural Network (CNN) [3].

In this research, we apply DQN to pursuit-evasion games.
Specifically, we aim to strengthen the evasion strategy of the
evader by DQN, which is rarely addressed in previous works
of pursuit-evasion, where most of works focus on designing
the pursuit strategies.

In pursuit-evasion, a number of pursuers attempt to chase
another set of evaders. Researches on pursuit-evasion can be
roughly divided into three categories: path planning [1], [2],
multi-robot coordination [3]–[5] and game theory [6], [7]. In
path planning, an efficient hunting trajectory is determined to
catch the evader with the knowledge about the targets and the
surroundings [1], [2]. In multi-robot coordination, the pursuers
try to capture or enclose the evaders by forming a reasonable
and efficient troop formation [3]–[5]. Researches on game
theory between groups of robots focus on analyzing their
hunting or evasion strategies and placing these two groups
on the reciprocal position [6], [7].

A number of methods based on reinforcement learning are
proposed for pursuit-evasion games, such as fuzzy reinforce-

ment learning [22], [23], [26], [27], multi-agent reinforcement
learning [14], [25], policy gradient [24], deep Q-network [14]
[24]. The most closely related works to ours are [27] and
[14]. [27] explored the use of a fuzzy Q-learning for the
evader strategy learning in the game of guarding territory.
[14] proposed multi-agent Deep Q-Network (MADQN), which
represents the global state by a image-like tensor for arbitrary
number of pursuer agents. The evaders in [14] move in the
direction that takes them furthest from the closest pursuer.
Different from above two works, we consider using Deep Q-
network for the end-to-end learning of the evasion strategy of
the single evader agent directly from high-dimensional visual
information. Moreover, a reward function considering both
the evader escaping from being surrounded by the pursuers
and keeping distance from the pursuers is handcrafted to give
the immediate reward to the agent. This is a combination of
the artificial potential field method with deep reinforcement
learning. The effectiveness of our learned evasion strategy is
verified by a series of experiments.

This paper is organized as follows. Section II introduces
the method of learning the evasion strategy in pursuit-evasion.
Section III presents the game settings for the latter experi-
ments. Section IV shows the learning results and gives detailed
analysis. Conclusions are given in Section V.

II. METHODS

In this section, Deep Q-network is firstly introduced. Then
how to incorporate the artificial potential field method into the
reward function is described.

A. Deep Q-network

Fig. 1 shows the architecture of the system. In reinforcement
learning, the agent interacts with an environment E at each
time-step t by observing a state st, selecting an action at,
receiving a reward rt and transitioning to a new state st+1.
Deep Q-Networks (DQN) combines convolutional neural net-
work (CNN) [15] with Q-learning. DQN solves the training
instability of Q-learning in two ways. First, it uses experience
replay which stores the experience et = (st, at, rt, st+1) into a
replay memory Mt = {e1, ..., et} at each time-step t during an
agent’s interaction with the environment. Second, it maintains
two separate Q-networks: Q(s, a; θ) and Q(s, a; θ−) with the
current parameters θ and the old parameters θ− respectively.

2018 24th International Conference on Pattern Recognition (ICPR)
Beijing, China, August 20-24, 2018

978-1-5386-3788-3/18/$31.00 ©2018 IEEE 67

Fig. 1. Overall architecture of the system.

The current parameters θ are updated at every update iteration
i to minimize the mean-squared Bellman error by optimizing
the loss function,

L(θi) = E[(r + γmax
a′

Q(s′, a′; θ−i)−Q(s, a; θi))
2] (1)

For each sample (s, a, r, s′)∼U(M) which is sampled uni-
formly from the replay memory M , the current parameters θ
are updated at each update i by stochastic gradient descent.
The model weights at each iteration are adjusted by performing
(2)

θi+1 = θi + αOθL(θi) (2)

Finally, the Q-network selects one action at each time-
step t by following ε-greedy policy. A convolutional neural
network is taken for the Q-network. The input to the CNN
consists of an 84×84×4 image. The first hidden layer has 32
filters of 8×8 with stride 4 with the input image. The second
hidden layer has 64 filters of 4×4 with stride 2. The third
convolutional layer has 64 filters of 3×3 with stride 1. This is
followed by the final hidden layer, which is a fully-connected
linear layer with 512 nodes. Each hidden layer is followed by a
rectifier nonlinearity [15]. The output layer is a fully-connected
linear layer with a single output for each valid action. The
number of valid action is 5.

B. Reward Function

Training with reinforcement learning requires designing an
appropriate reward function. Hence for the evader agent in our
pursuit-evasion game, a reward function is designed, which
aims to improve the evasion strategy of the evader by giving
reward to the evader agent at each time-step. In order to
maximize the distance between the evader and all the pursuers,
and the existing time of the evader in one game episode, a
reward function is defined as follows

rt =

1 if surounded and action is appropriate

1 if not surrounded and

distmin > D and thrt < thrt−1

−1 if distmin < D/2

0 otherwise
(3)

where rt is the immediate reward provided at time-step t.
Suppose the evader and the i-th pursuer’s position are (xe, ye)
and (xip, y

i
p) respectively, then the evader is regarded being

surrounded if both mini=1,...,m x
i
p < xe < maxi=1,...,m x

i
p

and mini=1,...,m y
i
p < ye < maxi=1,...,m y

i
p are true, where m

is the number of pursuers.
The action’s appropriateness in (3) is evaluated by the

artificial potential field method. As shown in (4), ~Frep(q
i
p)

is the repulsive force generated from the i-th pursuer to
the evader, where ρ(qip) is the Euclidean distance between
the evader and the i-th pursuer, ρ0 is the threshold distance
that defines whether there exists repulsive force between the

evader and pursuers. ~ni =
[
xe−xip
ρ(qip)

,
ye−yip
ρ(qip)

]T
is the direc-

tion of the repulsive force ~Frep(q
i
p), where i = 1, ...,m.

Similarly, ~Frep(q
j
b) is the repulsive force exerted from the

j-th boundary to the evader, where distance is the minimal
Euclidean distance between the evader and each of boundaries,
where j = 1, ..., 4, each corresponds to left, right, up, down
boundary of the environment. As shown in (5), ~FR is the
sum over the repulsive forces on the evader exerted from m

pursuers (
m∑
i=1

~Frep(q
i
p)) and four boundaries (

4∑
j=1

~Frep(q
j
b))of

the environment. βF = arctan(Fy/Fx) is the direction of ~FR.
Action is appropriate when the moving direction of the evader
satisfies βe ∈ [βF − π/4, βF + π/4]

~Frep(q
i
p) =

 η

[
1

ρ(qip)
− 1

ρ0

]
1

ρ2(qip)
~ni ρ(qip) ≤ ρ0

0 ρ(qip) > ρ0

(4)

~FR =

m∑
i=1

~Frep(q
i
p) +

4∑
j=1

~Frep(q
j
b) = [Fx, Fy]

T (5)

In (3), distmin = mini=1,...,m ρ(q
i
p) is the minimal Eu-

clidean distance between the evader and the pursuers at time-
step t. The evader is captured when distmin < thres. It means
the distance between the evader and any one pursuer is less
than a threshold, which is the end of one episode. D is the
distance that defines whether the evader is safe or not and
whether the agent should be rewarded or not. thrt in (3) could
be detailed into (6). It is the assessment of the threat to the
evader exerted by all the pursuers and boundaries, which is the
sum over thrpt and thrbt. They are all denoted by Euclidean
distance in Gaussian kernel function.

thrpt∝
m∑
i=1

e−
(xe−xip)

2+(ye−yip)
2

2σ2

thrbt∝e−
(xe−x

left
b

)2

2σ2 + e−
(xe−x

right
b

)2

2σ2

+ e−
(ye−y

up
b

)2

2σ2 + e−
(ye−ydownb)2

2σ2

thrt =thrpt + thrbt

(6)

68

where xleftb , xrightb and yupb , ydownb are the horizontal coordi-
nates of left, right boundary and the vertical coordinates of
up, down boundary of square map respectively.

It is noticed that there are two cases when the agent receives
a positive reward 1 from reward function (3). One case is the
evader takes the appropriate action when it is surrounded by
the pursuers. This intuition guides the evader into escaping
from being enclosed. The other is that the current threat thrt
is smaller than the threat of last time-step threat thrt−1 when
their minimal distance is larger than D, implying the evader
should move further than the last time-step even if it is safe
temporarily. This reward function is a union of escaping from
being surrounded and keeping distance. It is handcrafted to
give immediate reward rt to the agent at each time-step t, thus
improving the evasion strategy of the evader step by step.

III. GAME SETTINGS

A. Environment

As shown in Fig. 2(a), the environment of pursuit-evasion is
represented by an image with width and length being w pixels
and l pixels respectively. Each of the pursuers and the evader
has a size of n×n pixels. For the easy learning of the network,
the gray scale of the environment is set as gray1 = 0, while
the pursuers are gray2 = 200, the evader is gray3 = 100. At
each time-step t, the pixels representing the pursuers and the
evader will sequentially move in the image according to their
separate strategies. In Fig. 1, a tuple of consecutive F frames
will be fed into the Q-network to derive the speed, direction,
or other hidden complex characteristics.

(a)

(b)

Fig. 2. Environment setting of pursuit-evasion. Best viewed in color.

The evader is defined to possess 5 legal actions: keeping
still, moving left, moving right, moving up and moving down.
All the pursuers can drive straight towards the evader with
a constant speed of 2 pixels per second, while the evader is
quicker with a speed of 3 pixels per second if it is not still.
Fig. 2(b) shows an evader could choose one available action

from left, up, right and still when it is in the cell 4 confronting
the boundary cell 7.

B. Formation Strategies of Pursuers

Three formation strategies are designed for the pursuers
in latter experiments. In Formation1, four pursuers form a
square shape, in which each of the pursuers occupy one
corner. During chasing, each of the four pursuers keep fixed
position relative to other pursuers. In Formation2, each of the
pursuers chase the evader by itself without communicating
with other pursuers. Formation3 is shown in Fig. 3 with its
three typical states. In S1 (left), the pursuers separate into two
equal parts, the pursuers which are closer to the evader keep on
chasing, while the other part firstly moves to the center of the
environment. Then in S2 (middle), the other part reaches the
center and in S3 (right) two parts chase the evader together.
Formation3 could make the surrounding scope much bigger
than Formation1 and Formation2.

S1 S3S2

Fig. 3. Three typical states of Formation3. Note that for illustration, the white
cross star and white square denote the evader and the pursuer respectively.
During training, each of them is one square pixel. Best viewed in color.

C. Game Scenarios

Three different and representative game settings Gi, i =
1, 2, 3 are carefully designed, considering the difficulty and
generalization. The settings vary in the number of the pursuers,
the formation strategy of the pursuers, the initial position of
the pursuers and the evader, which are reported both in Fig. 4
and Table I.

(a) (b) (c)

Fig. 4. Top row from left to right each represents G1, G2, G3 respectively,
in which the red point is pursuer and the gray point is evader. Bottom row
are the real initial game states correspondingly. Best viewed in color.

In Fig. 4(a), the gray dots are the initial positions of the
evader for training, while the black dots for testing. In Fig.
4(b) and 4(c), the grid map areas are the initial positions of
the pursuers for training and black areas for testing. During
testing period, our way is similar to [12], whose agent was ran
from each of 100 starting points which were sampled from a

69

TABLE I
THREE DIFFERENT GAME SETTINGS FOR PURSUIT-EVASION GAMES.

Initial position
of evader

Initial position
of pursuers

Number
of

pursuers

Formation
strategy

of pursuers

G1
random one from
four of a circle

distributed in
the center square

4-8 Formation1

G2
average positions

of pursuers
distributed in

the outside of circle
4-8 Formation2

G3
average positions

of pursuers
distributed in

the outside of circle
4-8 Formation3

human professional’s game play. In latter experiments, these
testing positions and areas are the held-out states for testing
how well the evader agent generalizes.

IV. EXPERIMENTS

Experiments are implemented using Torch7 on a PC with
an Intel Xeon(R) CPU E5-2620 (2.4 GHz), 47 GB RAM,
single Nvidia GTX 1080 GPU (8GB). Each of the evader
agents is trained in three different games respectively for 5
million steps about two days. Each agent is trained for 5
runs in the corresponding game. The behavior policy during
training is ε-greedy policy with ε annealed linearly from 1.0
to 0.1 over the first one million training steps, and fixed
at 0.1 thereafter. In all experiments, we use the RMSProp
algorithm [11] with minibatch size 32 and a replay memory
of 1 million most recent frames. D is set to 4 pixels. Three
Learned agent i, i=1,...,3 for the final evaluation are obtained
after the training is finished. Code and models will be available
at https://github.com/zhujiagang/pursuit-evasion-code.

A. Training and Stability

During training, each of agents is periodically evaluated
over the held-out set of states every 50,000 steps for 50,000
validation steps by running an ε-greedy policy with ε=0.05.
We use three evaluating metrics, which are the average of the
action-value Q, the average total reward per episode and the
average number of steps per episode respectively. The average
of the action-value Q is the average over the maximum Q giv-

en the legal actions in validation states, 1
n

n∑
i=1

max
a

Q∗(si, a; θ),

where n is the number of validation steps, 50,000.
As shown in the leftmost curves of each subfigure of Fig. 5,

the average of the action-value Q fluctuates at the beginning
of training, even being negative. The reason is the insufficient
training and null op starts [12] in which a random number
of frames were skipped by repeatedly taking the null or do
nothing action before giving control to the agent in order to
ensure the variation in the initial conditions. The action-value
Q provides an estimation of how much discounted reward the
agent can obtain by following its policy from any given states.
In the two rightmost curves of each subfigure, the average
total reward per episode and the average number of steps
per episode are quite noisy. It is due to the small changes

(a)

(b)

0 50 100
-20

0

20

40

60

80

Training epochs
0 50 100

0

10000

20000

30000

40000

50000

60000

Training epochs
0 50 100

0

10000

20000

30000

40000

50000

60000

Training epochs

(c)

Fig. 5. Training curves of G1, G2, G3. The plots (black) are averaged over
five runs (blue) for different seeds with fixed hyperparameters.

of weights of Q-network which defines behavior policy can
lead to large changes in the distribution of states which the
evader agent can visit.

B. Value Function Analysis

Four typical testing frames are extracted and shown in Fig.
6, while the corresponding values of the learned action-value
function are listed in Table II.

F50 F100 F420 F900

Fig. 6. Four testing frames in G3. From left to right, they are the 50th, 100th
,420th , 900th frame respectively in one testing experiment. Best viewed in
color.

TABLE II
ACTION VALUE OF FIVE ACTIONS OF FOUR DIFFERENT STATES. NOTE

THAT EACH OF HIGHEST VALUES (BOLDFACED) IN FOUR ROWS
CORRESPONDS TO MOST APPROPRIATE ACTION THAT THE EVADER

SHOULD TAKE IN NEXT STEP.

Frame still right up left down
F50 54.63 53.02 55.11 56.56 53.95

F100 64.84 66.92 61.56 62.25 67.05
F420 81.61 82.23 81.29 80.92 81.87
F900 66.18 66.36 67.04 66.95 66.08

As shown in Fig. 6, the most promising action choice in
F50 for the evader is moving left, next choice is moving up.
The action value of the left in Table II is the biggest, then
follows action up, right is the smallest among the five actions.

70

As shown in Table II, all the action values of F420 are larger
than the other three states’. DQN predicts high state value
when the evader is far away from the pursuers because it has
learned that the evader will not be captured in a short time.

C. Comparison Among Agents

A random agent and a repulsive agent are devised for com-
parison in this subsection. The random agent chooses action
uniformly from the 5 legal actions. While the repulsive agent
follows the artificial potential field method, it selects actions
according to ar = argmina |θF − θa|, when a = 1, 2, 3, 4,
θa = 0, π/2, π, 3π/2 respectively. The three learned agents are
compared with these two agents in two metrics, surrounded
steps and captured times. Surrounded steps is the total step
number when (4) is true in whole testing steps. Captured times
is the total step number when (5) is true in whole testing steps.
The testing for each agent in each game is run over the held-
out set of states for 100,000 steps. The results are averaged
over five runs.

The results are shown in Table III and IV respectively. All
the agents tend to have increasing larger surrounded steps
from G1 to G3 because of the increasing difficulties. Learned
agent 1, 2 have worse performance in all three games than
the repulsive agent. The reason is that Learned agent 1, 2
are trained in G1, G2 respectively. They are games with the
simple formation strategy. Learned agent 3 which is trained
in games with Formation3 has better performance than the
repulsive agent in all three games. Especially in G3, the best
learned agent outperforms the repulsive agent by 18.342 in
surrounded steps and 0.638 in captured times respectively,
showing the advantage of combining the artificial potential
field method with deep reinforcement learning. Because of
more complex and representative samples for training, Learned
agent 3 becomes the best agent: it has the least surrounded
steps and captured times in all games, which demonstrates that
the learned agent could generalize well across different games.
Experiments show that the learned agent for the evader can be
more effective and robust than the repulsive agent method in
different games.

TABLE III
COMPARISON OF THREE LEARNED AGENTS WITH A RANDOM AGENT AND

A REPULSIVE AGENT IN surrounded steps (%) IN THREE GAMES IN 100,000
TESTING STEPS. THE SMALLEST VALUES IN EACH COLUMN ARE

BOLDFACED.

Agent G1 G2 G3
Random agent 0.030 99.755 99.804

Repulsive agent 0 0.077 20.287
Learned agent 1 0 5.376 23.090
Learned agent 2 0 0.131 51.974
Learned agent 3 0 0.028 1.945

D. Reward Function Analysis

To illustrate the importance of designing reward function,
a different function without considering the evader being

TABLE IV
COMPARISON OF THREE LEARNED AGENT WITH A RANDOM AGENT AND A

REPULSIVE AGENT IN captured times (%) IN THREE GAMES IN 100,000
TESTING STEPS. THE SMALLEST VALUES IN EACH COLUMN ARE

BOLDFACED.

Agent G1 G2 G3
Random agent 9.612 6.142 6.086

Repulsive agent 0.001 0.003 0.685
Learned agent 1 0.001 0.264 1.044
Learned agent 2 0.061 0.004 2.172
Learned agent 3 0 0 0.047

surrounded by the pursuers is also designed. That is

rt =

1 if distmin > D and thrt < thrt−1

−1 if distmin < D/2

0 otherwise

(7)

The three agents with reward function (7) are trained from
scratch and tested exactly the same as the former three learned
agents with reward function (3). Each of agents is trained and
tested in G1, G2, G3 respectively. As shown in Fig. 7, each
of the former agents Learned agent i, i=1,...,3 considering the
surrounded case in reward function has less surrounded steps
and captured times than those not considering the surrounded
case. Incorporating the artificial potential field into reward
function helps the learned agent escape from being surrounded,
thus suffering a lower risk of being captured.

1 2 3
0

1000

2000

3000

4000

Game

With surrounded case

Without surrounded case

1 2 3
0

20

40

60

80

100

Game

With surrounded case

Without surrounded case

Fig. 7. Comparison between three former learned agents (dark blue) and
three learned agents without considering the surrounded case (dark red) in
reward function in surrounded steps and captured times. Each of agents is
trained and tested in G1, G2, G3 respectively. Best viewed in color.

E. Network Visualization

We use a visualization technique, t-SNE [13] to verify
the representations learned by the DQN in the last hidden
layer to game states experienced after running in G3 for
5,000 steps, which is shown in Fig. 8. Note that this agent
was trained with reward function (3). The two-dimensional
points are colored according to the state value V , which is
the maximum expected reward of a state, max

a
Q∗(s, a; θ)

predicted by DQN. The state value ranges from the dark red
(highest V) to the dark blue (lowest V). The red point has
a larger state value than the yellow, green and blue points. It

71

means that the state of red point has less threats posed by the
pursuers and boundaries. The nine frames corresponding to
nine points which represent three different state value ranges,
low (top left), middle (left), high (bottom) are selected and the
numbers beside those frames are their index in 5,000 frames
respectively. DQN predicts high state value when the evader
is far away from the pursuers (bottom, F3533, F4199, F3522)
because it has learned that the evader will not be captured in
a short time. Top left frames F303, F287, F77 are assigned
lower state value because the evader is surrounded by the
pursuers. The frames F1146, F2331, F955 have moderate state
value because the pursuers are taking separate formation but
the evader still gets a possible road to escape.

Fig. 8. Two-dimensional t-SNE embedding of the representations in the last
hidden layer assigned by DQN to game states experienced after running in
G3 for 5,000 steps. Best viewed in color.

V. CONCLUSION

In this work we introduce an approach for learning the
evasion strategy for the evader in pursuit-evasion against the
pursuers with Deep Q-network. A reward function considering
both the evader escaping from being surrounded by the pur-
suers and keeping distance from the pursuers is handcrafted
to give the immediate reward to the agent to improve the
evasion strategy step by step. In the three designed games, our
learned agents achieve better performance in surrounded steps
and captured times than a random agent and a repulsive agent,
showing the advantage of combining the artificial potential
field method with deep reinforcement learning. The future
directions would include extending this work into multi-agent
setting with multiple evaders and pursuers.

ACKNOWLEDGMENT

This work is supported in part by the National High
Technology Research and Development Program of China
under Grant No.2015AA042307, the National Natural Sci-
ence Foundation of China under Grant No.61773374, and
in part by Project of Development In Tianjin for Scientific
Research Institutes Supported By Tianjin government under
Grant No.16PTYJGX00050.

REFERENCES

[1] S. Rodriguez et al, Toward realistic pursuit-evasion using a roadmap-
based approach. In 2011 IEEE International Conference on Robotics and
Automation, pp. 1738–1745, 2011.

[2] L. Shen Hin, T. Furukawa, G. Dissanayake and H. F. Durrant-Whyte,
A time-optimal control strategy for pursuit-evasion games problems. In
2004 IEEE International Conference on Robotics and Automation, vol. 4,
pp. 3962–3967, 2004.

[3] B. Even, P. Alexey, G. Reza, Formation control of underactuated marine
vehicles with communication constraints. Control of Marine, vol. 50,
no. 3, pp. 455–461,2006.

[4] M. Ji and M. Egerstedt, Distributed Formation Control While Preserving
Connectedness. In Proceedings of the 45th IEEE Conference on Decision
and Control, pp. 5962–5967, 2006.

[5] L. Barnes, M. Fields and K. Valavanis, Unmanned ground vehicle
swarm formation control using potential fields. In 2007 Mediterranean
Conference on Control and Automation, pp. 1–8, 2007.

[6] H. Daniel et al, Muti-Robot control system for pursuit-evasion problem.
Journal of electrical engineering, vol. 60, no. 3, pp. 143–148, 2009.

[7] H. Timothy , H. Geoffrey, V. Isler, Search and pursuit-evasion in mobile
robotics. Autonomous Robots, vol. 31, no. 10, pp. 299–316, 2011.

[8] V. Mnih et al, Human-level control through deep reinforcement learning.
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[9] V. Mnih et al, Playing atari with deep reinforcement learning. arXiv
preprint, arXiv:1312.5602, 2013.

[10] D. Silver et al, Mastering the game of Go with deep neural networks
and tree search. Nature, vol. 529, pp. 484–489, 2016.

[11] T. Tieleman, G. Hinton, Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural Networks
for Machine Learning, 4, 2012.

[12] A. Nair et al, Massively Parallel Methods for Deep Reinforcement
Learning. arXiv preprint, arXiv:1507.04296, 2015.

[13] L. V. D. Maaten, G. Hinton, Visualizing high-dimensional data using
t-SNE. Journal of Machine Learning Research, vol. 9, no. 2, pp. 2579-
C2605, 2008.

[14] M. Egorov, Multi-Agent Deep Reinforcement Learning.
http://cs231n.stanford.edu/reports/2016/pdfs/122 Report.pdf. 2016.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification
with deep convolutional neural networks. In Advances in Neural Informa-
tion Processing Systems, 2012.

[16] M. Lai, Giraffe: Using Deep Reinforcement Learning to Play Chess,
arXiv preprint, arXiv:1509.01549, 2015.

[17] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, Prioritized Experience
Replay, arXiv preprint, arXiv:1511.05952, 2015.

[18] F. Zhang, J. Leitner, M. Milford, B. Upcroft, and P. Corke, Towards
Vision-Based Deep Reinforcement Learning for Robotic Motion Control,
arXiv preprint, arXiv:1511.03791, 2015.

[19] J. Oh, X. Guo, H. Lee, R. Lewis, and S. Singh, Action-Conditional
Video Prediction using Deep Networks in Atari Games, arXiv preprint,
arXiv:1507.08750, 2015.

[20] V. Mnih et al, Asynchronous Methods for Deep Reinforcement Learning,
arXiv preprint, arXiv:1602.01783, 2016.

[21] H. van Hasselt, A. Guez, and D. Silver, Deep reinforcement learning
with double q-learning, arXiv preprint, arXiv:1509.06461, 2015.

[22] E. Camci, E. Kayacan. Game of Drones: UAV Pursuit-Evasion Game
With Type-2 Fuzzy Logic Controllers Tuned by Reinforcement Learning.
IEEE International Conference on Fuzzy Systems, pp. 618–625, 2016.

[23] M. D. Awheda, H. M. Schwartz. A Fuzzy Reinforcement Learning
Algorithm Using a Predictor for Pursuit-Evasion Games. Annual IEEE
Systems Conference, pp. 1–8, 2016.

[24] J. K. Gupta, M. Egorov, M. Kochenderfer. Cooperative Multi-agent
Control Using Deep Reinforcement Learning. Autonomous Agents and
Multiagent Systems, pp. 66–83, 2017.

[25] C. Undeger, F. Polat. Multi-agent real-time pursuit. Autonomous Agents
and Multi-Agent Systems, vol. 21, no. 1, pp. 69–107, 2010.

[26] M. D. Awheda, H. M. Schwartz. A Decentralized Fuzzy Learning
Algorithm for Pursuit-Evasion Differential Games with Superior Evaders.
Journal of Intelligent and Robotic Systems, vol. 83, no. 1, pp. 35–53, 2016.

[27] H. Raslan, H. Schwartz, S. Givigi. A Learning Invader for the Guarding a
Territory Game. Journal of Intelligent and Robotic Systems, vol. 83, no. 1,
pp. 55–70, 2016.

[28] D. Silver et al, Mastering the game of Go without human knowledge.
Nature, vol. 550, pp. 354–359, 2017.

72

