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Dependency-based graph convolutional networks (DepGCNs) are proven helpful for text representation to

handle many natural language tasks. Almost all previous models are trained with cross-entropy (CE) loss,

which maximizes the posterior likelihood directly. However, the contribution of dependency structures is

not well considered by CE loss. As a result, the performance improvement gained by using the structure

information can be narrow due to the failure in learning to rely on this structure information. To face the

challenge, we propose the novel structurally comparative hinge (SCH) loss function for DepGCNs. SCH loss

aims at enlarging the margin gained by structural representations over non-structural ones. From the per-

spective of information theory, this is equivalent to improving the conditional mutual information of model

decision and structure information given text. Our experimental results on both English and Chinese datasets

show that by substituting SCH loss for CE loss on various tasks, for both induced structures and structures

from an external parser, performance is improved without additional learnable parameters. Furthermore, the

extent to which certain types of examples rely on the dependency structure can be measured directly by the

learned margin, which results in better interpretability. In addition, through detailed analysis, we show that

this structure margin has a positive correlation with task performance and structure induction of DepGCNs,

and SCH loss can help model focus more on the shortest dependency path between entities. We achieve the

new state-of-the-art results on TACRED, IMDB, and Zh. Literature datasets, even compared with ensemble

and BERT baselines.
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1 INTRODUCTION

Text representations, which are derived by mapping text into dense real-valued vectors that rep-

resent their semantics, have received much attention, playing a critical role in many applications

such as relation extraction (RE) [13], sentiment analysis [43], and sentence similarity [5].

Four categories of models for constructing text representations are predominant. First, recurrent

neural networks (RNNs) encode texts word by word in sequential order [17, 35]. Second, convo-

lutional neural networks (CNNs) generate text representation by applying convolution operation

on receptive fields from different levels [11, 21]. Third, recursive neural networks (RecNNs) em-

bed a sentence recursively along its parsing tree [46, 60] in a bottom-up fashion. Fourth, graph

convolutional networks (GCNs), which we focus on in this work, map sentences into their repre-

sentations by propagating information from base representations generated by RNN or CNN along

edges in a graph structure, which is usually a dependency parsing tree [2, 32, 58]. Dependency-

based graph convolutional networks (DepGCNs) can construct high-quality text representations

efficiently. Further concerns about acquiring dependency structures of sentences at low cost pave

the way for structure induction [1, 3].

Among almost all previous studies, cross-entropy (CE) loss is adopted unquestionably to train

DepGCNs, which is equivalent tomaximizing the posterior likelihood over training data. However,

CE loss does not take the contribution from structure information into consideration, and thus the

model is not aware of learning to rely on the structure information for prediction in some cases.

As a result, DepGCNs are likely to overfit some superficial cues. For instance, Figure 1 shows

the examples of dependency-edge saliency for DepGCNs trained with different loss functions,

illustrating how much each dependency edge contributes to the model decision [24]. As shown at

the top of Figure 1, it is easy for DepGCNs trained with CE loss to recognize the examples from

relation type per:parent wrongly as type per:children, due to overfitting the word mother (marked

by red dashed lines). Note that the correct understanding should be the parent of SUBJ-PERSON

is OBJ-PERSON but the reverse relation predicted by the model.

In this article, we propose a novel structurally comparative hinge (SCH) loss function to solve

the problem caused by CE loss. SCH loss is defined by adding gained margin from the struc-

tural representation over the non-structural one to the commonly used CE loss, which aims at

improving the correlation between model decision and structure information the given text (i.e.,

conditional mutual information). Trainedwith SCH loss, DepGCNs are forced to rely on the depen-

dency structures for making predictions. This lead to better generalization on hard cases shown in

Figure 1. More specifically, DepGCNs trained with SCH loss focus on the shortest dependency path

(marked by the green dashed lines in Figure 1) between entities, as well as the key words his and

mother, indicating that the model considers the dependency between the key elements rather than

makes a decision once seeing an attractor word. SCH loss can also provide a measure indicating

structure awareness (i.e., to what extent the structure information is needed) for certain examples

by checking the margin gained. We conduct experiments on three tasks consisting of RE, doc-

ument classification (DC), and paraphrase identification (PI) for both English and Chinese, with

DepGCNs whose dependency structures are derived from induction or an external parser. Exper-

imental results show that noticeable improvements are obtained by using SCH loss instead of CE

loss, especially in RE. And further analysis is carried out on the structure-awareness measure and

how SCH loss helps to model text.

Our contributions are twofold:

• We propose a novel SCH loss function as a substitute for CE loss. We show that the SCH

loss can consistently improve the quality of dependency-based text representations for two

sources of dependency structures.
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Fig. 1. Examples of DepGCNs trained with CE loss and proposed SCH loss. The examples are from the

RE dataset TACRED. SUBJ-PERSON and OBJ-PERSON represent subject and object, respectively. The gold

relation indicates that the parent of SUBJ-PERSON is OBJ-PERSON. The directed lines show the unlabeled

dependency structures. The color of a certain edge indicates to what extent the edge’s existence influences

the decision, calculated by the derivative of the posterior with respect to that edge.

• We define a measure of structure awareness by a component of SCH loss. We show that this

measure reflects to what extent one example relies on its structure information and has a

positive correlation with structure induction.

2 BACKGROUND: DEPGCNS

Wenow describe GCNs of Kipf andWelling [22], whose input graphs are dependency structures [2,

3], and its commonly used loss function.

2.1 Graph Convolutional Network

A GCN is a multi-layer neural network that operates directly on a graph, encoding information

about the neighborhood of a node as a real-valued vector. In each GCN layer, information flows

along edges of the graph gathering messages from neighbors. With k layers, a node receives in-

formation from neighbors at most k hops away.

Formally, consider a graph G = (V,E), where V is a set of n nodes and E is a set of edges.

In our case, G is a dependency structure of a sentence, a node represents a word of it, and an

edge is a dependency arc. For a given text x containing n words, each word is viewed as a node,

and let ht
(j ) ∈ Rd (t = 0, 1, . . . ,n − 1) be the feature vectors for these words (nodes) at layer j

(j = 0, 1, . . . , l ). h(0)
t ’s are base input features for GCN, and as the best choice for text representation

shown in previous work, they are derived from a bidirectional LSTM (BiLSTM) [18]:

−→
ht = LSTMf (xt ,

−→
ht−1), (1)

←−
ht = LSTMb (xt ,

←−
ht+1), (2)
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Fig. 2. Dependency-based graph convolutional networks. The left end of the figure shows the two different

sources of dependency structures, marked by two different colors. The right end of the figure illustrates

the proposed SCH loss, as the combination of structure margin and the CE loss from the non-structural

representations.

h
(0)
t =

−→
ht ⊕

←−
ht , (3)

where LSTMf and LSTMb are forward and backward LSTM functions, respectively; ⊕ is a con-

catenation operation; and xt is the word embedding of t-th word in a sentence x . At the j-th
(j = 1, 2, . . . , l ) layer of a stacked GCN, the update function of node v’s feature is as follows:

h
(j+1)
v = ρ ���

∑
u ∈N (v )

W (j )
dir(u,v )

h
(j )
u + b

(j )
dir(u,v )

��� , (4)

whereN (v ) is the set of adjacent nodes ofv ; the superscript j is the layer index; ρ is an activation

function (e.g., ReLU); dir(u, v) is the directionality of the edge connecting u and v ; andW (j )
dir(u,v )

∈
Rd×d , b(j )

dir(u,v )
∈ Rd are learnable parameters for the j-th-layer GCN. Note that the edge labels are

ignored because little improvement can be gained by using them.

To down-weight the contribution of individual edges, a gating mechanism [26] is adopted as

follows:

д(j )u,v = σ
(
h
(j )
u · ŵ(j )

dir(u,v )
+ b̂ (j )

dir(u,v)

)
, (5)

h
(j+1)
v = ρ ���

∑
u ∈N (v )

д(j )u,v

(
W (j )

dir(u,v )
h
(j )
u + b

(j )
dir(u,v )

)��� , (6)

where the scalar дu,v is the gate for dir(u,v ), ŵ(j )
dir(u,v )

∈ Rd , b̂ (j )
dir(u,v)

are learnable parameters for

the gate, and σ is the sigmoid function.

To derive a text embedding s
(j ) ∈ Rd at a certain layer j, a max-pooling is applied over the set

of node features {h(j )
t }n−1t=0 .

2.2 Dependency-Based Graph Convolutional Network

In this work, we consider the case where the input graphs of GCNs are dependency structures. We

name these kinds of models DepGCNs. We note the adjacent matrix form of the graphs as A. The
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whole architecture of DepGCNs is shown in Figure 2. We next introduce two sources of graph A,
namely from an external parser and from induction.

2.2.1 Dependency Structures from an External Parser. As a common choice, one can utilize

an external dependency parser P (A|x) to sample the graph matrix A from it. In addition, the

dependency structures are directly input to the DepGCNs. We call this case DepGCN-Ex. The il-

lustration for this structure source is shown in Figure 2, marked with red color.

2.2.2 Dependency Structures from Induction. One can also parameterize an inner parser Pϕ (A|x)
to induce dependency structures and provide the GCN with these induced structures. To induce

dependency structures, we apply structured self-attention to the representations from the base

BiLSTM layer [3, 28]. We call DepGCN with induced structures DepGCN-In.

More specifically, the raw directed correlation between each pair of words is first modeled by

self-attention scores:

αi j =
1√
d
·
(
Wqh

(0)
i

)T (
Wkh

(0)
j

)
. (7)

Then, this directed correlation is summed among a candidate dependency tree A and normalized

to parameterize the distribution of dependency trees given a sentence x :

Pϕ (A|x) = Pϕ (A0,A1, . . . ,An−1 |x) = exp(
∑

i αi,Ai )

Z (A|x) , (8)

where the random variables Aj ’s indicate the head of word j and Z (A|x) is the partition function

over all possible head combinations. As the last step of inferring a dependency tree from this dis-

tribution, the joint distribution is marginalized by the matrix-tree theorem [23] and the inference

is done by independent samplings:

Aj ∼ Pϕ (Aj |x) =
∑

Aj , j�i

Pϕ (A0,A1, . . . ,An−1 |x). (9)

The illustration for this structure source is shown in Figure 2, marked with dark yellow. The

adjacent matrix is plotted as a heat map, as the induced adjacent matrix is in the form of soft

distributions over head positions.

2.3 Loss Function

Among almost all previous studies, CE loss is adopted to train DepGCNs. For a certain task dataset

D = {(xi ,yi )}N−1i=0 and the text representations s
(j ) at layer j, we note the gold label as y and

Pθ (y |x ) = Pθ (y |s(j ) ) as the prediction distribution. Then the CE loss at layer j is

L(j )
CE
(θ ) = −E(x,y )∼D [log Pθ (y |x )]. (10)

By minimizing CE loss, the posterior likelihood over the dataset is maximized.

However, CE loss does not emphasize the contribution from mining structure information (i.e.,

structure awareness). As a consequence, when trained with CE loss, the advantage of this structure

information can be small, and the model is at the risk of overfitting to some superficial cues.

3 SCH LOSS

To measure structure awareness and further encourage the DepGCNs to fully utilize the structure

information, we propose SCH loss as a substitute for the commonly used CE loss.
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3.1 Derivation of SCH Loss

Formally, note Pθ (y |x ,A) and Pθ (y |x ) as the task-specific posterior predicted by the model given

textx with andwithout structure informationA, respectively. In the case of DepGCNs, Pθ (y |x ,A) =
Pθ (y |s(l ) ) and Pθ (y |x ) = Pθ (y |s(0) ), as only GCN layers above the base BiLSTM layer explicitly

model the structure information.

We start from the mutual information between the structure information A and the model de-

cision y given the text x :

I (y;A|x ) = E(x,y )∼D,A∼P (A |x )
[
log

P (y,A|x )
P (A|x )P (y |x )

]
= E(x,y )∼D,A∼P (A |x )[log P (y |x ,A) − log P (y |x )].

Improving this conditional mutual information is actually forcing the model to correlate its deci-

sion to the structure information, thus being structure aware. We define the difference between

the log-likelihood of the two posteriors as the measure of structure awarenessm, named structure

margin:

m = log Pθ (y |x ,A) − log Pθ (y |x )
= log Pθ (y |s(l ) ) − log Pθ (y |s(0) ).

Tomaximize the conditional mutual information, we can encourage themodel to enlarge the struc-

ture margin by minimizing the hinge loss overm1:

Lhinge (θ ) = E(x,y )∼D [max (0,δ −m)], (11)

where δ > 0 is a threshold value. Due to the definition of m, this is equivalent to requiring the

conditional mutual information I (y;A|x ) to be large enough.

3.2 Practical Issue

In practical usage, the model can cheat to minimize Lhinge by degrading log Pθ (y |x ), which results

in intractable training procedure.2 To deal with this issue, we add the CE loss over Pθ (y |x ) to
prevent this from happening:

LSCH (θ ) = L(0)
CE
(θ ) + Lhinge (θ ). (12)

We call LSCH SCH loss.

By extending the SCH loss formula, we can derive the following:

LSCH (θ ) = L(0)
CE
(θ ) + Lhinge (θ )

= −E(x,y )∼D [− log Pθ (y |x ) +max (0,δ −m)]

= −
{−E[log Pθ (y |x )], ˜m > δ
δ − E[log Pθ (y |x ,A)], ˜m ≤ δ

.

This means that if the structure margin m is large enough, the referred baseline Pθ (y |x ) is im-

proved; otherwise, the structural representation is not powerful enough, and Pθ (y |x ,A) should be
improved until it is larger than the non-structural baseline Pθ (y |x ).

By minimizing SCH loss for DepGCNs, the structure margin is enlarged to be large enough,

and harder cases like the one in Figure 1 that highly rely on the structure information can be well

dealt with. In addition, as a natural choice, by comparing the structure margin one can examine

which examples from certain tasks need structure information the most. Similar ideas appear in

1For simplicity, we omit the notation of the variables insidem and the sampling procedure of A.
2We observe that the loss does not decrease at all when simply minimizing Lhinge.
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Table 1. Experimental Settings

Task Dataset de dh Embedding Fixed Optimizer Drop. Lr. δ

RE
TACRED 300 200 glove.840B.300d False SGD 0.5 1.0 1.4

Zh. Literature 300 200 sgns.literature.char False SGD 0.5 1.0 1.0

DC
IMDB 300 100 glove.840B.300d True Adadelta 0.5 1.0 1.0

IFeng 100 100 — True Adam 0.5 0.001 0.3

PI
QQP 300 100 glove.840B.300d False Adam 0.1 0.001 0.4

LCQMC 300 100 sgns.zhihu.word True Adam 0.1 0.001 0.5

de , dh, sizes of word embedding and hidden states, respectively; Fixed, whether the embedding weight is fixed

without tuning; Drop., dropout ratio; Lr., learning rate; δ, hyper-parameter for SCH.

document-level neural machine translation [20], where context-based representations at different

levels are encouraged to gain a large margin over representations constructed without modeling

context. In fact, besides DepGCNs, SCH loss can be applied to other models that rely on structure

information such as TreeLSTM [46].

4 EXPERIMENT

We evaluate the proposed SCH loss function for DepGCNs on three tasks: RE, DC, and PI. Since

the effectiveness of using dependency structures for RE has been reported in many previous stud-

ies (e.g., [29, 54]), RE is a highly suitable evaluation task for our proposedmethod. Considering that

structure information can provide gradient shortcuts for the training process of neural network

models and then help the model capture the long-term dependencies [28, 40], we are interested in

evaluating the models on the DC task to check whether SCH loss can help model long documents

better. As a sanity check, we also experiment on PI datasets built on short user queries to show that

using SCH loss would not lead to a performance drop when the structure information is shallow.

For each task, four models are compared:

• DepGCN-Ex: DepGCN whose dependency structures are from an external parser.

• DepGCN-In: DepGCN whose dependency structures are from induction.

• DepGCN-En + SCH: DepGCN-Ex with SCH loss.

• DepGCN-In + SCH: DepGCN-In with SCH loss.

• BiLSTM: Bidirectional LSTM model.

We use the dependency parser supported by spaCy [19] for English and Stanford CoreNLP [31]

for Chinese if without supervision. δ is tuned based on the validation performance, and other

hyper-parameters for our models are set based on previous state-of-the-art models. The detailed

experimental settings are shown in Table 1. Glove word embeddings [36] and SGNS word embed-

dings [25] are adopted for English and Chinese datasets, respectively. For all datasets, two-layer

GCNs are adopted with a residual connection [15], and edge dropout is applied with drop ratio

equal to 0.2. Since the size of some datasets is small, the validation results can deviate from the

test ones. We thus apply model averaging [52] over five best models on the validation data to

obtain stable results.

4.1 Relation Extraction

RE is a task of predicting the relation type between the subject and the object entities in a sentence.

We evaluate our SCH loss on the TACRED dataset [59] and the Zh. Literature dataset [53], whose

statistics are shown in Table 2. Examples in TACRED are built over newswire and web text, and

ones in Zh. Literature are obtained over Chinese literature articles from the web. Part-of-speech
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Table 2. Dataset Overview

Task Eval. Dataset Lang. #class #train #valid. #test Ave. Len.

RE F1
TACRED EN 42 68,124 226,31 155,09 36.4

Zh. Literature ZH 9 13,462 1,347 1,675 52.0

DC Acc.
IMDB EN 10 67,426 8,381 9,112 379.5

IFeng ZH 5 719,995 79,999 50,000 49.5

PI Acc.
QQP EN 2 384,348 10,000 10,000 12.7

LCQMC ZH 2 238,766 8,802 12,500 6.8

Eval., evaluation metric; Lang., dataset language; Ave. Len., averaged length of the text with respect to words.

Table 3. Results (%) on the TACRED Dataset

Model Precision Recall F1
Tree-LSTM (Tai et al. [46]) 66.0 59.2 62.4

C-GCN (Zhang et al. [58]) 69.9 63.3 66.4

BERT-LSTM-base (Shi and Lin [41]) 73.3 63.10 67.8

C-CGN ensemble (Zhang et al. [58]) 71.3 65.4 68.2
BiLSTM 72.6 62.5 67.2

DepGCN-In 67.5 66.3 66.9

DepGCN-In + SCH 70.1(+2.6) 66.4 68.3(+1.4)
DepGCN-Ex 67.1 67.5 67.3

DepGCN-Ex + SCH 69.3(+2.2) 67.5 68.4(+1.1)

The top set shows the performance reported in the previous work, including a state-of-the-art result

from an ensemble model. The bottom set shows our results. Bold marks the highest number among each

model set. Parentheses indicate the performance gain by using SCH loss over CE loss.

(POS) tags, named entity (NE) types, and dependency structures are provided within TACRED, and

we use the Stanford CoreNLP toolkit to derive these features for Zh. Literature.

Following Zhang et al. [58], 30-D embeddings for POS tags and NE types are appended to the

word embeddings. After constructing the text embedding s
(j ) ’s, subject and object representa-

tions s
(j )
subj

and s
(j )
obj

at layer j are extracted from {h(j )
t }n−1t=0 among the given positions indicating

the entities. In addition, the posterior for an input example is given by a Softmax layer over the

concatenated representation s
(j )
subj
⊕ s

(j ) ⊕ s
(j )
obj

:

Pθ
(
y |s(j )

)
= Softmax

(
WRE (s

(j )
subj
⊕ s

(j ) ⊕ s
(j )
obj

) + bRE
)
. (13)

For the Chinese dataset Zh. Literature, both character and word representations are used, with

word embeddings appended to the character ones. Characters forming the same word share de-

pendency edges, POS tags, and NE types.

The result for TACRED is shown in Table 3.We observe that our proposed SCH loss can improve

performance of DepGCNs by 1.4 F1 at most and further make DepGCN-Ex become the new state-

of-the-art model. To our surprise, DepGCN-Ex trained with our proposed SCH loss can achieve

better F1, even compared with an ensemble model and the model fine tuned on BERT [8], which

is 5.6 times the size of DepGCN-Ex in terms of the number of parameters. Comparing DepGCN-

In + SCH with DepGCN-Ex, we can find that SCH loss helps narrow the gap caused by lack of

strong structure supervision. DepGCNs trained with CE loss, however, have little advantage over

the BiLSTM baseline and are even worse when the dependency structure is from induction. The

result for Zh. Literature is given in Table 4. Similar observations can be found for this dataset,
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Table 4. Results (%) on the Zh. Literature Dataset

Model Precision Recall F1
DepNN (Liu et al. [29]) — — 55.2

BRCNN (Cai et al. [4]) — — 55.6

SR-BRCNN (Wen et al. [53]) — — 65.9
BiLSTM 70.2 67.2 68.3

DepGCN-In 72.7 69.7 70.4

DepGCN-In + SCH 72.9(+0.2) 70.7(+1.0) 71.5(+1.1)
DepGCN-Ex 71.6 69.4 69.7

DepGCN-Ex + SCH 74.2(+2.6) 70.8(+1.4) 71.7(+2.0)

Table 5. Results (%) on the DC Task

Model IMDB Ifeng

LSTM gated RNN (Tang et al. [47]) 45.3 —

Structured Attention (Liu and Lapata [28]) 49.2 —

Hierarchical Attention (Yang et al. [55]) 49.4 —

fastText (Sun et al. [44]) — 83.7

S.C. (Sun et al. [44]) — 84.4
BiLSTM 45.6 84.7
DepGCN-In 46.9 84.5

DepGCN-In + SCH 47.1(+0.2) 84.6(+0.1)
DepGCN-Ex 50.1 84.6

DepGCN-Ex + SCH 51.4(+1.2) 84.7(+0.1)

where SCH loss can both remarkably increase the F1 scores of DepGCN-In and DepGCN-Ex. New

state-of-the-art performance is also achieved.

4.2 Document Classification

In the DC task, a document consisting of multiple sentences is input to the model, and a cor-

responding class label is predicted. For this task, we conduct experiments on the IMDB review

dataset [9] and Ifeng news dataset [57]. Examples from the IMDB dataset are randomly crawled

movie reviews, with the rating scores to be the class labels. The Ifeng news dataset is constructed by

crawling all news from the year 2006 to the year 2016 from the Chinese news website ifeng.com.3

The class labels of Ifeng news are five topic classes, including mainland China politics, interna-

tional news, Taiwan-Hong Kong-Macau politics, military news, and society news. The statistics of

these two datasets are shown in Table 2.

In our experiments, a document is viewed as a sequence without sentence splitters. For both

datasets, only word tokenization is adopted. After generating text representation s
(j ) by the mod-

els, this representation is input to a multi-layer perceptron to decode labels. The experimental

results of the two datasets are shown in Table 5 in terms of accuracy. Note that all of the com-

pared baselines use sentence-document hierarchical architecture. On the IMDB dataset, we find

that our proposed SCH loss can improve the performance of DepGCNs by 1.2 at most in terms of

accuracy, which is the new state-of-the-art result outperforming the previous best model by 2.0

3www.ifeng.com.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 19, No. 4, Article 58. Publication date: May 2020.

www.ifeng.com


58:10 K. Wang et al.

Table 6. Results (%) on the PI Task

Model QQP LCQCM

L.D.C (Wang et al. [51]) 85.6 —

BiMPM (Wang et al. [50]) 88.2 83.4
DIIN (Gong et al. [12]) 89.1 —

BiLSTM 87.8 81.7

DepGCN-In 88.1 82.6

DepGCN-In + SCH 88.4(+0.3) 82.9(+0.3)
DepGCN-Ex 87.9 83.0

DepGCN-Ex + SCH 88.0(+0.1) 83.1(+0.1)

accuracy. Compared with the (structured) attention models, the dependency parses from an exter-

nal parser are much more effective, indicating the crucial role of modeling dependency structures

for document-level text representations. On the Ifeng news dataset, the improvement is relatively

small. Since the topics of the Ifeng news dataset are closely related to some keywords, the structure

information is not crucial. Table 5 shows that applying CNN models S.C. on transformed images

from the texts can also achieve similar performance of our BiLSTM model. This comparison can

also support the idea that this Ifeng news dataset relies more on bag-of-words information.

4.3 Paraphrase Identification

The PI task requires models to classify whether a pair of sentences are similar. We experiment

on the dataset QQP4 and LCQCM [27]. Example pairs from QQP are collected from user queries

on the Quora website. In addition, LCQCM is constructed using user queries in different domains

from Baidu Knows. Information about these two datasets is given in Table 2.

We simply use the sentence embedding s to represent a sentence. Denoting the sentence embed-

dings of a given pair as s1, s2 ∈ Rd , the features of a sentence pair is computed as s1 ⊕ s2 ⊕ |s1 −
s2 | ⊕ (s1 ⊗ s2) ∈ R4d . These features are then used to predict the class label via a Softmax layer.

The results are shown in Table 6. We find for both datasets that SCH loss can slightly improve the

performance of DepGCNs. Note that the baselines apply intensive matching between token-pair

representations, which is expensive in terms of computation. Since the examples from this dataset

are simple search queries with short sentence length (12.7 and 6.8, respectively), the advantage

of the dependency structure is not obvious. We can also find that SCH loss can help DepGCN-In

more than DepGCN-Ex. Since the user queries are formed freely without strict syntax, the more

flexible way of dependency induction is more suitable for this task.

5 ANALYSIS

In this section, we are interested in three questions: (1) What is the relation between structure

margin (defined in Section 3) and task performance? (2) How does SCH loss help modeling text?

and (3) What is the relation between structure margin and dependency induction? Since great

performance is achieved and the gold parses are provided in TACRED, we carry out analysis on

its test set.

5.1 Structure Margin vs. Task Performance

To answer the first question, we visualize the distribution of structure margin conditioned on

the correct or incorrect predictions for DepGCN-Ex. The visualization is shown in Figure 3(a).

4https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs.
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Fig. 3. Distributions of structure margin conditioned on correct or incorrect predictions from the models

trained with SCH loss (a) and CE loss (b). Blue and red dot lines indicate the median of the structure margin

for the correct and incorrect predictions, respectively. The text in green indicates the overlapping area.

We can observe that the distribution conditioned on the correct predictions is in the shape of

concentrated Gaussian and that the shape of the one conditioned on the incorrect predictions is

skew-Gaussian. Thus, the median value of the structure margin is used as the general indicator.

The median conditioned on the correct predictions is larger than that conditioned on incorrect

ones, which implies that structuremargin has a positive correlationwith task performance. To gain

more insight into the role of SCH loss for enlarging the structuremargin, we plot the distribution of

structure margin5 for DepGCN trained with CE loss in Figure 3(b). We can find that for both cases

in Figure 3(a) and (b), the shapes of the distributions are similar, especially for the ones conditioned

on the correct predictions. Obvious distinctions appear when the distributions conditioned on the

incorrect predictions are compared: for Figure 3(a), the distribution is sharper and has less area of

distribution overlapping than that in Figure 3(b). This implies that the structure margin is a good

indicator for separating easy examples from hard ones, and SCH loss helps the model to deal with

the hard cases by fully utilizing the structure information. In addition, the model trained with CE

loss has missed many chances for this kind of situation.

Besides the preceding general analysis, we are interested in investigating the influence on spe-

cific classes. Thus, we also plot the box plots of the structure margins from correct predictions ver-

sus model performance gaps over different class sets. The result is shown in Figure 4. In this figure,

three models are compared: the base model BiLSTM, DepGCN-Ex with CE loss, and DepGCN-Ex

with SCH loss. We can find that in most cases, indicated by the red and orange x-ticks, large struc-

ture margins (i.e., nearly equal or larger than the mean level) correspond to large performance

gain for DepGCN-Ex + SCH compared with non-structural representation model BiLSTM. In turn,

when the performance margin gained by DepGCN-Ex + SCH over the other two models is small

or none at all, the structure margin is usually below the mean level, indicated by green x-ticks.

These findings also support that structure margin is positively related to task performance, which

is as expected since minimizing SCH loss is in theory equivalent to maximizing the conditional

mutual information of structure information and model decision. This can be intuitively explained

as follows: hard cases that strongly rely on the structure information are assigned larger structure

margins and can be better handled by DepGCNs trained with SCH loss, and in reverse, for the

examples that do not rely on the structure information, the structure margins are low and the

advantage of SCH loss is not obvious.

5For fair comparison, we assign the same examples the same structure margin.
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Fig. 4. Box plots for structure margins of correct predictions from different classes. Bars below each box plot

indicate the number of examples from its class. The mapping between relation class and its index is listed

at the right side of the figure. The blue dashed line shows the average of structure margins from the correct

predictions by DepGCN-Ex + SCH.

Fig. 5. Confusion matrices for the three models.

5.2 How Does SCH Loss Help Modeling Text?

We next investigate how SCH helps in understanding text. Since significant performance gain

appears in relation 7 per:countries_of_residence and 11 per:parents and the structure margin is also

large (indicated by red x-ticks in Figure 4), we start from these two relation types. We plot in

Figure 5 the confusion matrices of DepGCN-Ex + SCH, DepGCN-Ex, and BiLSTM. As shown in

Figure 5, DepGCN-Ex and BiLSTM tend to classify the examples from per:parents as per:siblings

or per:children, and it is harder to recognize the relation per:countries_of_residence for them. To

gain more insight, four examples that are predicted correctly by DepGCN-Ex + SCH are shown in

Table 7. The examples for relation per:countries_of_residence shows that this relation is expressed
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Table 7. Four Examples That Are Correctly Predicted by DepGCN-Ex + SCH on TACRED

Relation DepGCN-Ex BiLSTM Text

per:countries_

of_residence

no_relation no_relation . . . discuss the fate of SUBJ-PERSON SUBJ-PERSON jailed
in OBJ-COUNTRY for nearly 11 months on suspicion
of spying . . .

no_relation no_relation SUBJ-PERSON SUBJ-PERSON was sentenced to hang in
OBJ-COUNTRY ’s central province of Punjab . . . after being
found guilty of insulting the Prophet Mohammed.

per:parents

per:siblings per:children SUBJ-PERSON SUBJ-PERSON SUBJ-PERSON had been on
safari in South Africa with his brother Enzo, 11, mother
OBJ-PERSON . . .

no_relation per:children . . . SUBJ-PERSON had been on safari in South Africa with his
mother Trudy, 41, father OBJ-PERSON . . .

Fig. 6. Averaged gradient ratio of the posterior allocated on certain dependency types of edges on the short-

est dependency path between entities. Dashed lines indicate the mean value of the gradient ratio for each

model. On the right side is the mapping between the dependency type and its index, and the corresponding

frequency of the dependency type on the shortest dependency path/in the whole test set.

implictly, and reasoning along the dependency is needed. For relation per:parents, topic words such

as brother andmother show up in high frequency (0.43 and 0.18, respectively), and models without

sufficient use of dependency structures are easily distracted by these words.

Given the preceding observations and Figure 1, we further make the hypothesis that SCHTo

verify this hypothesis, we calculate the dependency-edge saliency for all examples as we do in

Figure 1, and we report the averaged gradient ratio of posterior allocated on the shortest depen-

dency paths between entities. The result is shown in Figure 6. We can find that in general, more

gradient is allocated on the shortest dependency path by DepGCN trained with SCH loss than CE

loss. This supports the idea that SCH loss forces DepGCNs to pay more attention to the key depen-

dency paths and rely on them to make decisions. Specifically, there are more gradients allocated

on the dependency types compound, nsubj, appos, conj, and dobj (indicated by the red x-ticks in

Figure 6) for the model trained with SCH than with CE loss, which are high-frequency types on
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Fig. 7. Scatter plot for structure margin vs. UAS of the induced trees from DepGCN-In+SCH (a) and the

improvement ratio of UAS over the case of CE loss (b). The purple dashed lines indicate the mean value.

the shortest dependency paths. In turn, DepGCNs trained with CE loss rely on the key dependency

path less and are easy to overfit some superficial features.

We also analyze the cases when all models cannot differentiate relations and find that the

wrong predictions concentrate on predicting examples from org:founded_by as org:top_members/

employees and predicting examples from per:origin as per:countries_of_residence. The distinctions

within these relation pairs are indeed hard to resolve, as these concepts heavily overlap with each

other and a much larger range of context is needed for making precise predictions, which is usu-

ally not provided by the TACRED dataset. For example, people who found a company can also be

its top members or employees, and we cannot verify whether a resident from a country is born

in a particular country or not until we have read the mention about the birthplace. As the defi-

ciency of the SCH loss, we find that there are four examples from relation per:parents wrongly

predicted as per:other_family (correctly predicted by the other models), in which low-frequency

words stepmother and stepfather appear instead of mother and father. However, these sparse word

features never appear in the relation class per:other_family, indicating that using SCH loss may ex-

cessively focus on the structure information and slightly ignore the importance of learning some

word representations.

5.3 Structure Margin vs. Dependency Induction

To answer the second question, we record both the structure margin and the corresponding un-

labeled attachment score (UAS) of the induced parsing tree for each given text. The scatter plot

between UAS and structure margins for DepGCN-In + SCH is shown in Figure 7(a). We find when

the structure margin increases, the maximum of possible UAS also increases, but the variance is

large. This implies that the structure margin has a weak positive relation with the performance

of dependency induction. We also calculate the improvement ratio of UAS for DepGCN-In + SCH

over the model trained with CE loss. The scatter plot of the result is shown in Figure 7(b). We can

observe that only when the structure margin is large enough can the improvement ratio be high.

This observation implies that when the example strongly relies on the structure information, the

quality of the induced tree should be high for better understanding of it. The mean value of the

improvement ratio of UAS is 1.27, indicating that SCH loss can help tree induction.

We also analyze the accuracy of different dependency types of the induced trees generated

by DepGCN-In + SCH and Dep-GCN-In. For better understanding, we also include a random-

branching baseline in this analysis. The result is shown in Figure 8. In general, the figure shows

that there is bias on dependency types for both models. Specifically, both models perform better
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Fig. 8. Accuracy of different dependency types of induced trees generated by DepGCN-In+SCH, DepGCN-

In, and the random-branching baseline. On the right side is the mapping between the dependency type and

its index, and the corresponding frequency of the dependency type on the shortest dependency path/in the

whole test set.

than random branching on some high-frequency dependency types on the shortest dependency

paths, such as appos, compound, and nsubj and conj (indicated by the red x-ticks). In addition, for

some low-frequency dependency types on the shortest dependency paths, such as cop, det, advmod,

mark, and aux (indicated by the green x-ticks in Figure 8), both models perform worse than the

random level. For most of the dependency types well captured by both models, the model trained

with SCH loss performs better. This observation also supports that SCH loss helps the model to

induce trees of higher quality. However, for a few dependency types, such as dobj and nmod, which

are also high-frequency on the shortest dependency paths, the induction performance is relatively

low for both models. This observation is also reflected in Figure 6 for the case external parsers,

where the same dependency types are not well focused on. We assume that this is a potential

obstacle for better task performance, and we leave this for future work.

6 RELATEDWORK

Recently, incorporating syntactic structures in neural network models to better encoding text

has enjoyed great interest. We here introduce two types of related work: (1) utilizing syntactic

structures in different ways and (2) investigating the role of syntactic structures for neural text

representation.

6.1 Utilizing Syntactic Structures

One of the most simple ways of incorporating syntactic structures into neural text representations

is embedding them together with words as additional input features [39, 49]. Another convenient

way is to distill syntactic knowledge into contextualized word representations through multi-task

learning, viewing syntactic parsing as an auxiliary task [45, 56]. These two approaches do not

consider modeling syntactic connections (i.e., edges in a parsing tree) and thus cannot benefit

from gradient shortcuts guided by the syntactic structures [7]. As a result, long-term dependency

problem appears.

To model the syntactic connections directly, one of the most popular and attractive approaches

is to use tree-structured RecNNs [10, 33, 43, 46] on top of RNN layers to represent text into vectors.
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Although this approach matches the intuitions of semantic composition, the recursive construc-

tion process is hard to parallelize, resulting in bad efficiency. GCN models [22], however, run on

graph structures in a highly parallel way and model the dependency relation much better in many

previous works [2, 14, 32, 58].

As the shortcoming of utilizing syntactic structures from external parsers or manual labeling,

the cost in terms of time complexity and money is high and the flexibility of the structures is

low. Thus, representing text with induced syntactic structures is a hot topic [1, 6, 28, 34]. These

models usually involve parameterizing dependency relation with attention scores and composing

constituents with discrete optimization methods such as Reinforce and Gumbel-Softmax [30].

6.2 Investigating the Importance of Syntactic Structures

As shown in many previous studies, neural text representations have already been syntax aware,

as syntactic knowledge can be probed in these representations [37, 38, 42, 48]. Thus, to what ex-

tent explicitly modeling syntactic structures improves the quality of neural text representations

remains unclear. However, little attention has been paid to exploring syntactic contribution or

structure awareness for these models on NLP tasks. He et al. [16] add noise at different levels

to examine how much syntax contributes to dependency-feature-based neural SRL systems. This

approach is only used as a diagnostic evaluator, without improving the modeling performance

of dependency-based text representations. Instead, our proposed loss method can both interpret

sample-level structure awareness and boosting the representation quality.

7 CONCLUSION

This article proposes a margin-based loss function—SCH loss—for improving the structure aware-

ness of dependency-based text representations. Equivalent to maximizing the conditional mutual

information of the structure information and the model decision given a text, SCH loss is for-

mulated as enlarging the structure margin between structural representations and non-structural

ones. One can also interpret to what extent understanding one example relies on its structure in-

formation by this margin value. Experiments on both English and Chinese datasets show that SCH

loss can enhance text representation quality of dependency-based GCNs with induced structures

or external structures. Detailed analysis is also conducted to show how the structure awareness is

correlated with task performance and induced structures, and the models trained with SCH loss

tend to focus more on the shortest dependent path between entities. It is our hope that this work

inspires more research on evaluating and improving structure awareness of text representation

models.
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