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Abstract

In this paper, we propose a weakly supervised temporal action
localization method on untrimmed videos based on prototyp-
ical networks. We observe two challenges posed by weakly
supervision, namely action-background separation and action
relation construction. Unlike the previous method, we pro-
pose to achieve action-background separation only by the o-
riginal videos. To achieve this, a clustering loss is adopted to
separate actions from backgrounds and learn intra-compact
features, which helps in detecting complete action instances.
Besides, a similarity weighting module is devised to further
separate actions from backgrounds. To effectively identify ac-
tions, we propose to construct relations among actions for
prototype learning. A GCN-based prototype embedding mod-
ule is introduced to generate relational prototypes. Experi-
ments on THUMOS14 and ActivityNet1.2 datasets show that
our method outperforms the state-of-the-art methods.

Introduction
Temporal action localization in videos has been applied in
various fields (Sun et al. 2015; Sultani, Chen, and Shah
2018). This task aims to localize action instances from
untrimmed videos in the temporal dimension. Most existing
methods are trained in a fully supervised way where frame-
level annotations are provided. However, such a requiremen-
t of frame-level annotations does not well suit real-world
applications since densely annotating large-scale videos is
expensive and time-consuming. Moreover, accurate frame-
level annotation is challenging even for human beings, fur-
ther increases the difficulty of annotation.

To address these difficulties, weakly supervised meth-
ods (Wang et al. 2017a; Nguyen et al. 2018; Paul, Roy,
and Roy-Chowdhury 2018) have been developed with only
video-level labels, which are much easier to manually anno-
tate. Because of the lack of frame-level annotations, weak-
ly supervised methods may face two challenges. The first
challenge is how to distinguish actions from background-
s, i.e., action-background separation. To alleviate this prob-
lem, many existing methods leverage auxiliary information
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Figure 1: (a) Illustration of the prototypical network. It rep-
resents each class as a prototype, distance is employed as the
measure of similarity between feature and prototype. (b) We
employ a clustering loss for pushing the features of actions
to the corresponding prototypes. Although the hard back-
grounds, which are similar to actions, would be also pushed
to the prototype, it would not be as close as actions to the
prototype because of the dissimilarity.

such as temporal attention weights (Nguyen et al. 2018;
Yuan et al. 2019) and hope the temporal attention weights
could focus on the foreground of actions.

However, since weakly supervised methods are usually
built upon classifiers, there is a contradiction between clas-
sification and detection, that is classifiers always focus on
discriminative snippets but detectors should discover the w-
hole action instance without omission (Zhong et al. 2018).
To tackle this problem, some methods force the models to
focus on different parts of videos. Nevertheless, it is difficult
to accurately distinguish actions from backgrounds for both
classifier and attention module because of the complex back-
grounds, and thus degenerates the performance. Recently,
Liu et al. (Liu, Jiang, and Wang 2019) propose to use pseu-
do videos for further addressing this problem. They generate
pseudo videos by applying thresholding on the optical flow
intensity and label them with a background class. However,
this process is time-consuming and may over-segment some
frames of actions into the pseudo videos.

Actually, we argue that it’s unnecessary to force the model
to focus on different parts of the video. If we can make the
snippet-level features of the same action as similar as pos-
sible while separating actions from backgrounds, it’s natu-
ral that the snippets of the same action would have similar



scores of classification and thus detect complete action in-
stances. This motivates us to find a way that can learn intra-
compact representations and separate actions from back-
grounds only by the original videos.

Even we can achieve this well, one more problem we
have to consider, i.e., action-action separation. Most exist-
ing methods just use a simple classifier to deal with it. How-
ever, different from action recognition methods (Simonyan
and Zisserman 2014; Carreira and Zisserman 2017), which
deal with the trimmed videos with a single action, temporal
action localization is for videos where various actions may
occur. So how to explicitly capture the co-occurrence of ac-
tions and accurately distinguish them is another challenge.
Considering visual relationship has been well used for vari-
ous tasks (Wang et al. 2017b; Yang et al. 2018), a solution is
to consider the relationships between different actions.

It’s a good way to achieve our target by introducing pro-
totypical networks (Snell, Swersky, and Zemel 2017). As
shown in Fig.1(a), this model is design for classification,
which can be used for action-background and action-action
separation. Besides, it represents each action class as a pro-
totype, makes it possible to globally capture relations among
actions. Nevertheless, the original prototypical network on-
ly focuses on the separateness between categories without
considering relations, so it still faces the two challenges.

We thus propose a novel relational prototypical network.
To construct relations among actions for action-action sep-
aration, we first design a co-occurrence GCN with a co-
occurrence matrix, which is generated in a data-driven way.
Based on the co-occurrence GCN, a prototype embedding
module is devised for generating relational prototypes. In-
stead of regarding the prototypes as independent individu-
als, the learned prototypes are inter-dependent, thus can ef-
fectively assist our method in identifying actions. Follow-
ing the prototypical networks, the distance between feature
and prototype is employed as the measure of similarity. The
snippet-wise similarities are then pooled over time with tem-
poral attention into a video-level category similarity.

To separate actions from backgrounds and learn intra-
compact features, a clustering loss is adopted as shown in
Fig.1(b). The clustering loss can push the features of actions
to their corresponding prototypes and thus generates clus-
tered features, which can help in detecting complete action
instances. Meanwhile, the features of actions would be sep-
arated from those of backgrounds because of the dissimilar-
ity. Besides, we develop a post-processing module, namely
similarity weighting module for further filtering out back-
grounds. A prototype updating strategy is devised to enforce
the learned prototypes closer to the true cluster centers of a
video, ensuring the weights for similarity meaningful.

Our method outperforms the state-of-the-art methods on
two benchmark datasets THUMOS14 (Idrees et al. 2017)
and ActivityNet1.2 (Caba Heilbron et al. 2015), demonstrat-
ing the effectiveness of our method. In summary, our con-
tributions are three-fold: 1) A prototypical network is uti-
lized with a clustering loss for separating actions from back-
grounds. 2) A co-occurrence GCN based prototype embed-
ding module is proposed to explicitly capture relations a-
mong actions. 3) Our method obtains the state-of-the-art re-

sults on two important benchmarks of action localization.

Related Work
Fully supervised temporal action localization. Many re-
cent fully supervised methods (Yuan et al. 2016; Chao et
al. 2018) adopt a two-stage pipeline including proposal gen-
eration and classification. Namely, they first produce class-
agnostic proposals from videos and then classify each pro-
posal individually. For these methods, it is natural to im-
prove the quality of proposals (Lin et al. 2018) and learning
more robust and accurate classifiers (Shou et al. 2017; Zhao
et al. 2017). Besides, some other methods (Lea et al. 2017;
Yuan et al. 2017) focus on generating snippet-wise action la-
bels, and then use these labels to predict the temporal action
boundaries. But all these methods require frame-level anno-
tations for both proposal generation and classifier training.

Weakly supervised temporal action localization. To al-
leviate the requirement for frame-level annotations, Wang et
al. (Wang et al. 2017a) first propose to only use video-level
category labels for temporal action localization.

To address the challenge of action-background separa-
tion, some methods leverage attention mechanism (Nguyen
et al. 2018) or marginalized average aggregation (Yuan et al.
2019) to focus on discriminative snippets of actions and fuse
salient snippet-level features into a video-level feature which
is fed into a following classifier. However, there is a contra-
diction between classification and detection, which makes
these methods unable to capture complete action instances.
To deal with this problem, some methods force the models
to focus on different parts of videos by using masks (Singh
and Lee 2017), step-by-step erasion (Zhong et al. 2018) and
diversity loss (Liu, Jiang, and Wang 2019). Recently, Liu
et al. (Liu, Jiang, and Wang 2019) propose to utilize pseu-
do videos that are generated using static clips and labeled
with a new background class. Nevertheless, generating pseu-
do videos is time-consuming and may over-segment some
frames of actions into the pseudo videos.

As for the second challenge of action-action separation,
most existing methods only employ a simple classifier to
deal with it. The most relevant work is W-TALC (Paul, Roy,
and Roy-Chowdhury 2018), it uses a co-activity similarity
loss to enforce the feature similarity between instances of the
same class. However, it only considers the correlations be-
tween videos of the same action, ignoring the relationships
among actions. Moreover, the co-activity similarity loss on-
ly imposes a pair-wise constraint, which may be insufficient
in learning better representations.

Proposed Method
In this section, we elaborate on the proposed method as
shown in Fig.2. Before going into the details of our method,
let us define the notations and problem statement formally.

Problem definition. Let V = {vt}Lt=1 be a video with
variable temporal durations, where L denotes the tempo-
ral length. Assume that we have a set of N training videos
{Vi}Ni=1 which are denoted by the corresponding activity la-
bels {yi}Ni=1, where y ∈ Y = {0, 1}C is a C-dimensional
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Figure 2: The overview of our method. During training, the snippets are fed to the feature extraction module followed by
the feature embedding module for generating embedding features. Meanwhile, the prototype embedding module takes label
features as input and outputs relational prototypes. The distances between features and prototypes are employed as the measure
of similarity. The snippet-wise similarities are pooled over time with temporal attention into a video-level category similarity.
We impose two losses, i.e., action loss and clustering loss on it for learning separated and clustered representations. During
testing, we employ the similarity weighting module for further filtering out backgrounds.

binary vector indicates the presence/absence of actions. Dur-
ing test time, we wish to predict a set of action instances
{cj , sj , ej , qj}, where cj denotes the predicted action class,
sj and ej represents the start time and end time of the in-
stance, and qj shows the confidence score of the instance.

Relational Prototypical Network
Our Relational Prototypical Network (RPN) mainly consists
of six parts, namely feature extraction module, feature em-
bedding module, prototype embedding module, prototype
matching module, temporal attention module and similari-
ty weighting module, which are detailed as follows.

Feature extraction module. Following previous methods
(Nguyen et al. 2018; Liu, Jiang, and Wang 2019), we mainly
focus on two state-of-the-art frameworks, i.e., Untrimmed-
Net (Wang et al. 2017a) and I3D (Carreira and Zisserman
2017), for extracting high-level representations of motion
and appearance of the input video. Given an input video V ,
two snippet-wise features Xr ∈ RT×D and Xo ∈ RT×D
are extracted by the pre-trained feature extraction module,
where T denotes the number of snippets and D denotes the
dimension of features. Xr and Xo represent the RGB and
optical flow features respectively. For simplicity, we use X
to represent them in the rest of this paper. Note that, we do
not fine tune the feature extraction module during training.

Feature embedding module. Since our target is to sep-
arate one action from other action classes and complex
backgrounds, it is desired to utilize a task-specific mod-
ule, i.e., feature embedding module, for learning a new set

of features. We adopt a multi-layer temporal convolutional
network, which is interleaved with activation function and
dropout operation, to achieve this. The network can be for-
malized for the video feature X as follows:

Xe = F(X,Wemb) (1)
where F(·, ·) represents the embedding network, Wemb is
the corresponding parameters, Xe ∈ RT×E is the learned
embedding, and E is the dimension of embedded features.

Prototype embedding module. Prototypes are very im-
portant in our framework. They can be learned from the w-
hole dataset, and thus allows us to globally capture relation-
ships between action categories, rather than the pair-wise
fashion in W-TALC (Paul, Roy, and Roy-Chowdhury 2018).
When only considering action-action separation, prototypes
should be separated as far as possible. However, considering
the relations among actions, it is desired that the distances
of related prototypes are smaller than the ones of unrelated
prototypes, such that when one action occurs the related ac-
tion is likely to occur. In other words, the co-occurrence of
two related classes can be measured by the distance between
their prototypes in the embedded space. This motivates us to
find a way for capturing the relationships among actions.

In this paper, we propose a co-occurrence graph convolu-
tional network to achieve this. Our motivations are mainly
two-fold. First, graphs have been proven effective in repre-
senting relations. GCN propagates information along edges
of connected vertices, makes the actions within connected
components inter-dependent. Second, graph convolution op-
eration is actually a process of Laplacian smoothing (Li,



Han, and Wu 2018), we can benefit from its nature to push
the semantic-related prototypes closer. Now the problem is
how to construct an adjacency matrix A for graph convolu-
tion because no ground truth is given. Actually, the element
aij of matrix A can be viewed as the relation between the
i-th action and the j-th action. We thus denote the adjacency
matrix A as co-occurrence matrix in the rest of this paper.

Following the previous methods (Xue et al. 2011; Chen
et al. 2019), the co-occurrence matrix A ∈ RC×C can be
obtained as:

aij =
Ni∩j
Ni

(2)

where element aij is the weight assigned to the edge (i, j).
Ni∩j represents the number of co-occurrence of action i and
j, and Ni denotes the occurrence times of action i.

We add a self connection to the co-occurrence matrix, that
is, Â = A + IC . To represent the differences between ac-
tions, we utilize different weights for neighbor connection
and self connection as follows:

Hs+1 = σ(D̂−1(AHsW1 + HsW2)) (3)

where D̂ ∈ RC×C is the degree matrix defined as d̂ii =∑
j âij , and {W1,W2} are trainable parameters. σ(·) is the

activation function. Based on the co-occurrence matrix, a co-
occurrence GCN is employed to project the features from
label space (∈ RF ) to feature space (∈ RE) as follows:

P = G(L,A,Wg) (4)

where Wg are the trainable parameters, L = {li}Ci=1 are the
input features, and P = {pi}Ci=1 are the learned prototypes,
C is the number of categories.

Prototype matching module. Following the prototypical
network (Snell, Swersky, and Zemel 2017), distance is used
to measure the similarity between feature and prototype, the
classification thus turns into a process of prototype match-
ing. The class-wise similarity for each snippet is:

stj = −‖xte − pj‖22 (5)

where xte represents the embedding feature of the t-th snip-
pet, pj denotes the prototype corresponding to the j-th ac-
tion, and ‖·‖2 is L2-norm of vector. Then st is forwarded to
a softmax along the category dimension, yielding probabili-
ty distribution at each time location.

s̃tj = p(xte ∈ cj |xte) =
eγcstj∑C
k=1 e

γcstk
(6)

where γc is a hyper-parameter that control the hardness
of probability assignment. Similar with other methods (N-
guyen et al. 2018; Paul, Roy, and Roy-Chowdhury 2018;
Yuan et al. 2019), s̃t can be viewed as the Class Activation
Sequence (CAS) for localizing action instances.

Temporal attention module. Attention module is essen-
tial for addressing the weakly supervised task. The attention
module Φ(·, ·) produces class-agnostic attention weight λt
for each embedding feature xte as:

λt =
eΦ(xt

e,Watt)∑T
k=1 e

Φ(xk
e ,Watt)

(7)

where Watt are trainable parameters. According to the at-
tention weights, all the snippet-wise unnormalized scores st
are fused into a video-level score s̄ by a global weighted
average pooling. Then we perform a softmax along the cat-
egory dimension on it:

p = softmax(s̄) s̄ =
∑T

t=1
λtst (8)

where p ∈ RC is the class distribution for the whole video.
The classification loss is cross-entropy between the predict-
ed p and ground-truth, which can be represented as:

Lcls = −
∑C

i=1
ŷilogpi (9)

where ŷi is the element of the normalized ground-truth vec-
tor ŷ = y/

∑
c yc.

The prototype matching module can be viewed as a classi-
fier where the hyperplanes for classification are generated by
prototypes. However, it only focuses on the inter-class sep-
arateness, some hard backgrounds such as context snippets
(Liu, Jiang, and Wang 2019) may also have high classifica-
tion scores. Moreover, the temporal attention weights may
only focus on discriminative snippets, this makes the clas-
sifier unable to accurately classify the whole features of the
action and thus degenerates the detection performance. In
light of this, a clustering loss is adopted:

Lclu = −δ(
∑C

i=1
yi = 1)

∑C

i=1
yis̄i (10)

where δ(·) denotes a conditional expression which equals
to 1 when condition is true, otherwise 0. To avoid breaking
the inter-class separateness, it works when only one class
of action occurs. The clustering loss pushes the features of
actions to their corresponding prototypes, which can result
in intra-compact features. Although the hard backgrounds,
such as contexts would be also pushed to the prototype, it
would not be as close as actions to the prototype because of
the dissimilarity. Therefore, the features of actions would be
separated from those of backgrounds. Finally, we combine
the classification loss with the clustering loss as:

L = Lcls + αLclu (11)

where α is coefficient to control the extent of compactness.
Similarity weighting module. Based on the well learned

representations, which are clustered and separated, an effec-
tive way can be employed to weight the similarity s̃tj (refers
to Eq.6) for further filtering out backgrounds. Given the un-
normalized similarity stj (refers to Eq.5) of prototype pj
and embedded feature xte, we feed it to a softmax along the
temporal dimension:

ŝtj =
eγtstj∑T
t=1 e

γtstj
(12)

The final score for localization is ϕtj = ŝtj s̃tj .
Nevertheless, the prototypes are learned based on the w-

hole dataset, which may not fit in a specific video. Espe-
cially, for the case that multiple actions occur in a snippet,
the prototypes are not consistent with the cluster centers of



Algorithm 1 Prototype updating.
Input: pj : j-th prototype, {xte}Tt=1: embedded features,
n: iteration, k: number of selection, λ: moving rate

Output: ŝtj
n: updated scores

1: initialize p0
j = pj

2: for m← 1, 2, ..., n do
3: calculate similarity: smtj = −‖xte − pm−1

j ‖22
4: select top k: s̄mj , idx = topk(smj )

5: normalization: ŝtj
norm

= eγts̄
m
tj/

∑k
t=1 e

γts̄
m
tj

6: initialize new score: ŝj
m = zeros(smj )

7: scatter: ŝj
m = scatter(ŝj

norm, idx)

8: update: pmj = pm−1
j + λ

∑
t ŝtj

m
(xte − pm−1

j )
9: end for

10: calculate similarity: stj = −‖xte − pnj ‖22
11: normalization: ŝtj

n
= eγtstj/

∑T
t=1 e

γtstj

12: return ŝtj
n

features, this operation may degenerate the performance. To
address this problem, we propose a prototype updating s-
trategy to make the prototypes closer to the cluster centers
of a video, which is shown in Algorithm.1. The prototype
updating strategy based on a precondition that the prototype-
s are close to the cluster centers. We thus use the neighbor
features of the prototype to update itself. After updating, the
prototypes are closer to the cluster centers, results in mean-
ingful weighting scores. The final score can be turned into
ϕtj = ŝtj

n
s̃tj . Note that, the above operations should be

based on well-learned representations, so we only adopt it
during testing. We will analyze this in the experiment.

Experiments
Datasets
THUMOS14. We use the subset from THUMOS14 that
offers frame-level annotations for 20 classes. We train the
models on 200 untrimmed videos of the validation set and
evaluate it on 212 untrimmed videos from the test set.

ActivityNet1.2. This dataset covers 100 classes and has
4,819 videos for training, 2,383 for validation and 2,480 for
test. We use the training set to train our model and the vali-
dation set to evaluate.

Implementation Details
Our method is implemented with PyTorch (Paszke et al.
2017). During training, we loop through each video in the
current training batch and accumulate the gradient to deal
with variable video length. We use Adam (Kingma and Ba
2014) to optimize the model. The learning rates are set as
0.0001 for both datasets. The training procedure stops at
1000 epochs.

During testing, we utilize the learned model to localize
action instances. First, we reject the category whose class
probability pc is lower than 0.1. And we employ the proto-
type updating strategy with n = 2, k = 0.1∗T and λ = 0.1.
Then we localize action instances of category c on the final
CAS, i.e., ϕtc by a predefined threshold. Finally, we employ
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Figure 3: Top: Class-specific gain resulting from building
relations of actions. Performance differences between our
full model and the one with random initialization are shown.
Bottom: The learned embedding features (F *), prototypes
(P *) and updated prototypes (UP *).

non-maximum suppression among two-stream proposals to
remove highly overlapped proposals. More details are pro-
vided in the supplementary material.

Comparison with The State-of-the-art
We compare our method with state-of-the-art weakly super-
vised methods and several fully supervised ones, the result-
s are shown in Tab.1, Tab.2. On THUMOS14, our method
outperforms previous weakly supervised methods by a large
margin at all IoU thresholds and improves the average mAP
by 6.0%. Besides, our method even surpasses some fully su-
pervised methods at IoU 0.1 and 0.2. The gain is mainly
from high IoUs, indicating our method can produce more
complete instances. On ActivityNet1.2, our method also
outperforms existing weakly supervised methods by 0.9%.
These experiments verify the effectiveness of our method.

Ablation Studies
To evaluate the effectiveness of each component, we conduct
following ablation studies on the THUMOS14 dataset, the
results are shown in Tab.3. and Tab.4. More experimental
results like sensitivities of hyperparameters and the power of
learned features are reported in the supplementary material.

Prototype embedding module. Three experiments are
performed on the way of generating prototypes. In the first
experiment, we random initialize the prototypes, and in the
second experiment, we feed the label features to a fully con-
nected network. Results are shown in Tab.3. We can see that
the prototype embedding module with co-occurrence GCN
exceeds the random initialization and fully connected net-
work evidently, indicating the importance of capturing re-



Table 1: Detection performance comparisons over the THUMOS14 dataset. The column AVG indicates the average mAP at
IoU thresholds 0.1:0.1:0.5. UNT and I3D represent UntrimmedNet features and I3D features respectively.

Supervision Method AP @ IoU
0.1 0.2 0.3 0.4 0.5 0.6 0.7 AVG

Full S-CNN (Shou, Wang, and Chang 2016) 47.7 43.5 36.4 28.7 19.0 - 5.3 35.0
Full R-C3D (Xu, Das, and Saenko 2017) 54.5 51.5 44.8 35.6 28.9 - - 43.1
Full SSN (Zhao et al. 2017) 60.3 56.2 50.6 40.8 29.1 - - 47.4
Full TAL-Net (Chao et al. 2018) 59.8 57.1 53.2 48.5 42.8 33.8 20.8 52.3

Weak Hide-and-Seek (Singh and Lee 2017) 36.4 27.8 19.5 12.7 6.8 - - 20.6
Weak UntrimmedNet (Wang et al. 2017a) 44.4 37.7 28.2 21.1 13.7 - - 29.0
Weak Step-by-Step Erasion (Zhong et al. 2018) 45.8 39.0 31.1 22.5 15.9 - - 30.9
Weak STPN (UNT) (Nguyen et al. 2018) 45.3 38.8 31.1 23.5 16.2 9.8 5.1 31.0
Weak W-TALC (UNT) (Paul, Roy, and Roy-Chowdhury 2018) 49.0 42.8 32.0 26.0 18.8 - 6.2 33.7
Weak AutoLoc (UNT) (Shou et al. 2018) - - 35.8 29.0 21.2 13.4 5.8 -
Weak CMCS (UNT) (Liu, Jiang, and Wang 2019) 53.5 46.8 37.5 29.1 19.9 12.3 6.0 37.4
Weak Ours (UNT) 54.2 47.1 37.8 29.4 21.2 13.9 6.8 37.9
Weak STPN (I3D) (Nguyen et al. 2018) 52.0 44.7 35.5 25.8 16.9 9.9 4.3 35.0
Weak W-TALC (I3D) (Paul, Roy, and Roy-Chowdhury 2018) 55.2 49.6 40.1 31.1 22.8 - 7.6 39.8
Weak CMCS (I3D) (Liu, Jiang, and Wang 2019) 57.4 50.8 41.2 32.1 23.1 15.0 7.0 40.9
Weak MAAN (I3D) (Yuan et al. 2019) 59.8 50.8 41.1 30.6 20.3 12.0 6.9 40.5
Weak Ours (I3D) 62.3 57.0 48.2 37.2 27.9 16.7 8.1 46.5

Table 2: Results on ActivityNet1.2 validation set. The AVG
indicates the average mAP at IoU thresholds 0.5:0.05:0.95.

Method AP @ IoU
0.5 0.75 0.95 AVG

Step-by-Step Erasion 27.3 14.7 2.9 15.6
AutoLoc (U) 27.3 15.1 3.3 16.0
CMCS (U) 33.9 19.9 5.1 20.5
Ours (U) 37.0 21.1 5.2 22.0
W-TALC (I) 37.0 - - 18.0
CMCS (I) 36.8 22.0 5.6 22.4
Ours (I) 37.6 23.9 5.4 23.3

Table 3: Ablation study on prototype embedding module.
Methods Random Initialization FC GCN

AVG (0.1:0.5) 44.6 44.7 46.5

lations among actions. To attain an intuitive understanding
about this module, we demonstrate the class-specific gains
resulting from building relations of actions on THUMOS14
dataset. Performance differences (top-10) between our full
model and the one with random initialization are shown in
Fig.3(a). We can see that most of related actions, e.g., Cliff-
Diving and Diving, have gains when adopting the prototype
embedding module, demonstrating the effectiveness of our
method in capturing relations of actions. Moreover, we also
show the distances between prototypes in the supplemental
material for obtaining further insights into this module.

Clustering loss. As shown in Tab.4, the clustering loss
can benefit our framework a lot. By cooperating with this
loss, our method achieves 5.3% gain on average mAP. This

Table 4: Ablation study on THUMOS14. The column AVG
indicates the average mAP at IoU thresholds 0.1:0.1:0.5. Up
means the prototype updating strategy.

Method AP @ IoU

Lcls Lclu Ŝtj Up 0.1 0.3 0.5 AVG√
55.8 40.8 22.4 39.9√ √
60.6 46.9 26.3 45.2√ √
16.1 4.4 1.3 6.7√ √ √
61.3 47.2 27.0 45.7√ √ √ √
62.3 48.2 27.9 46.5

reveals the effectiveness of clustering loss in separating ac-
tions from backgrounds as well as learning intra-compact
representations. Besides, we find that the performance drops
significantly (from 39.9% to 6.7% on average mAP) when
using similarity weighting module without this loss. It in-
dicates that intra-compact representation is a premise that
makes the weights for similarity valid. To attain further in-
sights into this loss, we visualize the learned features, the
visualization is shown in the supplemental material.

Similarity weighting module. Several comparative ex-
periments are conducted to show the effectiveness of this
module. As shown in Tab.4, without this module, the average
mAP drops by 1.3% on THUMOS14. Moreover, the proto-
type updating strategy can further improve the performance
by 0.8% compared with only using the learned prototypes.
To attain further insight of the prototype updating strategy,
we visualize the embedding features, prototypes and updat-
ed prototypes by the t-SNE (Maaten and Hinton 2008) in
Fig.3(b). We can see that the updated prototypes are closer
to the true cluster centers of occurred actions in the video,
and so making the weights for similarity more meaningful.
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Figure 4: Three prediction examples. Top: Hammer Throw. Some hard backgrounds like celebration are removed after adopting
similarity weighting module. Middle: Diving and Cliff Diving. Our method can apply to videos occurring multi-actions. There
are some false positives like splash after diving. Bottom: Volleyball Spiking. Our method can deal with sparse action occurrence.
False positives which are highly similar with the annotations are filtered out after adopting similarity weighting module.

Qualitative Results
We visualize some examples of localized actions in Fig.4.
Examples are from THUMOS14 testing set using I3D fea-
tures. In the first example of Hammer Throw, our method
nearly pinpoints all the annotated actions. Moreover, the de-
tected instances are more accurate and less redundant after
adopting similarity weighing module. In the second exam-
ple of Diving and Cliff Diving, which is a video occurring
multiple actions, our method also achieves a promising re-
sult. Although there are some false positives, most of them
are common patterns of diving, such as the splash. The third
example is a sparse action, namely Volleyball Spiking. This
video has no shot change and all frames are highly similar.
In spite of this, our detection result is almost the same as the
ground-truth, demonstrating the robustness of our method.

Conclusion
In this paper, we have proposed a relation prototypical net-
work for weakly supervised temporal action localization. We
first identified two challenges posed by the weak supervi-

sion, namely action-background separation and action rela-
tion construction. To tackle the first challenge, a clustering
loss is adopted to separate actions from backgrounds and
learn intra-compact representations of actions. Meanwhile,
a similarity weighting module is introduced for further fil-
tering out backgrounds. To deal with the second challenge,
a co-occurrence GCN-based prototype embedding module is
proposed to generate relational prototypes. We have evalu-
ated our proposed approach on two benchmark datasets and
achieved state-of-the-art performance.
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