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Abstract

Accurate sclera segmentation is critical for successful s-

clera recognition. However, studies on sclera segmentation

algorithms are still limited in the literature. In this paper,

we propose a novel sclera segmentation method based on

the improved U-Net model, named as ScleraSegNet. We

perform in-depth analysis regarding the structure of U-Net

model, and propose to embed an attention module into the

central bottleneck part between the contracting path and the

expansive path of U-Net to strengthen the ability of learn-

ing discriminative representations. We compare differen-

t attention modules and find that channel-wise attention is

the most effective in improving the performance of the seg-

mentation network. Besides, we evaluate the effectiveness

of data augmentation process in improving the generaliza-

tion ability of the segmentation network. Experiment result-

s show that the best performing configuration of the pro-

posed method achieves state-of-the-art performance with

F-measure values of 91.43%, 89.54% on UBIRIS.v2 and

MICHE, respectively.

1. Introduction

Sclera is the white outer layer of the eyeball surrounding

the iris. The blood vessel structure of sclera is unique to

each person, hence it could be used for identification [23].

Sclera recognition is initially acted as a supportive recog-

nition technology for iris recognition, especially when in

off-angle or off-axis eye gaze [8], iris information fusion

with sclera can increase the applicability of iris biometrics.

Recently, sclera has begun to be widely studied as a stand-

alone biometric trait [1, 11]. A complete sclera recognition
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Figure 1. The first column shows the sclera images from differ-

ent datasets. The second column displays the sclera segmentation

ground truths manually labeled by [14]. By applying the improved

U-Net with CBAM [20], our approach achieves high accuracy seg-

mentation results across multiple datasets, as illustrated in the third

column. The fourth column shows the segmentation errors in com-

parison with the ground truths where green and red pixels repre-

sent the false positives and false negative pixels, respectively.

process often consists of five steps: sclera image acquisi-

tion, sclera segmentation, sclera vessel feature extraction,

template matching and decision [23]. As in the preprocess-

ing stage, sclera segmentation has a great impact on the ac-

curacy of sclera recognition. Incorrect sclera segmentation

could either cause identity-related information contained in

blood vessels to be lost or introduce other distractive tex-

tures such as eyelids and eyelashes, both damaging the ac-



curacy of sclera recognition [14].

In order to encourage the development of advanced s-

clera segmentation algorithms, four competitions have been

held in main biometric conferences including BTAS, ICB,

IJCB until now [3, 4, 5, 6]. In the initial exploration of scle-

ra segmentation, many traditional segmentation algorithms,

such as pixel clustering or handcrafted feature descriptors

with SVM classifiers, are employed to complete the task.

With the development of deep learning, Fully Convolution-

al Network (FCN) based segmentation algorithms become

the mainstream and achieve state-of-the-art performance on

sclera segmentation. Most of existing FCN based sclera

segmentation methods directly apply off-the-shelf semantic

segmentation models, e.g., SegNet [2], RefineNet [12], to

sclera image segmentation, by simply changing the number

of segmentation classes from N to 2 (sclera area vs. back-

ground). In addition, Lucio et al. [14] propose two new

segmentation methods based on Fully Connected Network

and Generative Adversarial Network, respectively. Their

methods are divided into two steps: the first is periocular

region detection for narrowing the segmentation range, and

the second is performing sclera segmentation in the detected

patch. Although their best performing method outperforms

SegNet, it is not an end-to-end solution and also has high

computational complexity.

In this paper, we propose a new method, named Scle-

raSegNet, for sclera segmentation. The proposed method

is based on U-Net [17], a simple yet effective semantic

segmentation model. Instead of simply applying the orig-

inal U-Net to sclera, we made a significant improvement

by embedding attention mechanism. Attention mechanism

helps U-Net extract more discriminative features for allevi-

ating the interference of noise, hence the improved U-Net

achieves high accuracy segmentation results across multi-

ple sclera datasets, as illustrated in Figure 1. Besides, an

in-depth analysis of training process and experimental re-

sults is provided. The main contributions of this paper are

summarized as follows: 1) We improve the original U-Net

model with attention mechanism and evaluate the effective-

ness of attention mechanism in improving the performance

of the segmentation network; 2) We evaluate the effective-

ness of data augmentation in improving the generalization

ability of the segmentation network; 3) We perform exten-

sive experiments and demonstrate that the proposed method

obtains a leading performance on multiple datasets.

The rest of this paper is organized as follows. In Sec-

tion 2, the proposed method and training/testing process are

described in detail. Section 3 presents experiment result-

s and detailed analysis. Finally, we conclude our paper in

Section 4.

2. Technical details

The proposed ScleraSegNet is built based on U-Net [17].

However, compared to the original U-Net, we introduce

an attention module in the central bottleneck part between

the contracting path and the expansive path to learn more

discriminative features for separating sclera and non-sclera

pixels. We firstly introduce the architecture of the Scle-

raSegNet in Section 2.1. Then, architectures of bottleneck

equipped with different attention modules are described in

Section 2.2 in detail. Finally, we present the training and

testing process of ScleraSegNet in Section 2.3.

2.1. Structure of ScleraSegNet
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Figure 2. Overview of the framework of ScleraSegNet. The num-

ber of channels is annotated at the lower left of each box. Best

viewed in color.

The network architecture of ScleraSegNet is illustrated

in Figure 2, which consists of a contracting path and a sym-

metric expansive path. The contracting path adopts VGG16
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with fully connected layeres discarded as the encoder. The

encoder consists of a series of convolutional units, each in-

cludes a sequence of one convolutional layer, one batch nor-

malization layer and one ReLU activation layer. After each

convolutional unit, a 2 × 2 max pooling layer with stride 2

is adopted for downsampling. As the network goes deep-

er, the number of channels gradually increases while the

size of feature maps gradually decreases. To recover the

spatial information lost in pooling layers of the contract-

ing path and meanwhile reduce the number of channels, the

expansive path adopts a series of bilinear upsampling oper-

ations, followed by two 3 × 3 convolutional units. Then,

high resolution features from the contracting path and the

upsampled output from the expansive path are concatenated

via skip connections for more precise localization. Besides,

the central bottleneck part between the contracting path and

the expansive path could encode the most powerful and dis-

criminative semantic features. Finally, a 1×1 convolutional

layer and a sigmoid activation function are used to output

the probability map of sclera segmentation, which has the

same size as the original input.

2.2. Bottleneck architecture

As discussed in the former section, there is a central bot-

tleneck part (highlighted in pink in Figure 2) between the

contracting path and the expansive path. In the original U-

Net [17], the bottleneck part consists of several convolu-

tional units, which contain high-level semantic information

collected from the contracting path, and these representative

semantic information is then propagated to the later expan-

sive path. Therefore, the bottleneck part has a far-reaching

influence on the final predicted segmentation mask.

In general, informative features in the bottleneck part

could be decomposed spatial-wise or channel-wise. Spatial-

wise features encode the most important location informa-

tion associated with the segmentation object, while channel-

wise features focus on the semantic categories about the

segmentation object [15, 20]. In order to enable the bottle-

neck part to extract more representative features and make

the network focus on the most important information, sever-

al necessary steps are adopted, including re-estimating the

spatial distribution of feature maps and adaptively recali-

brating channel-wise feature responses.

In the following section, we will introduce four types of

attention modules, which are embedded in the bottleneck

part to achieve the goal mentioned above. As a baseline, we

also introduce the bottleneck part of the original U-Net. The

detailed bottleneck architectures are illustrated in Figure 3.

Figure 3 (a) shows the baseline architecture. More

specifically, for the give input feature map, a 2×2 max pool-

ing operation with stride 2 is firstly applied to downsample

the size for further feature extraction. Then, the pooled fea-

ture map is split into two parts, one is followed by a bilin-

ear interpolation operation and two convolutional units, the

other is an identity mapping. Finally, these two parts are

combined together by channel-wise concatenation.

Other bottleneck architectures we concern differ in type-

s of embedded attention modules, which are illustrated

in Figure 3 (b), (c), (d) and (e). Although detailed composi-

tions of these bottleneck networks are different, they share

the same overall architecture. To be speciifc, given the input

feature map F ∈ R512×H×W , a 3 × 3 max pooling oper-

ation with stride 1 is firstly applied to F to get the refined

feature map P ∈ R512×H×W which keeps the feature size

unchanged, then the final discriminative feature map F ′ is

computed as:

F ′ = P ⊕ {P ⊗M(P )} (1)

where M(P ) ∈ R512×H×W is the inferred 3D attention

map, and ⊗ and ⊕ represents element-wise multiplication

and channel-wise concatenation, respectively. From the e-

quation, we see that pooled feature map is adaptively updat-

ed via pixel-wise multiplication with the 3D attention map.

Besides, the original pooled feature map is also stored via

concatenation with the updated ones to keep other valuable

information in the original input signal. Such design makes

the original feature further refined and more discriminative.

In addition, the only difference among all mentioned bot-

tleneck architectures is the specific architecture of M(P ),
which is further introduced and compared in the following

sections.

2.2.1 Channel attention module

Channel Attention Module (CAM) is firstly introduced in

the SENet [9], then developed in BAM [15]. It is expect-

ed to adaptively recalibrate channel-wise feature respons-

es by explicitly modeling interdependencies between chan-

nels. Channel attention module contains a squeeze block,

which takes global average pooling on the feature map P to

produce a channel vector Fc, then followed by a excitation

block, which uses a multi-layer perceptron (MLP) with one

hidden layer to estimate attention across channel from the

channel vector Fc. More precisely, given the pooled feature

map P , the channel attention module is computed as:

M(P ) = σ(Mc(P ))

= σ(MLP(GAP(P )))

= σ(W1(W0(GAP(P )) + b0) + b1)

(2)

where W0 ∈ R256×512, b0 ∈ R256, W1 ∈ R512×256, b1 ∈
R512, GAP is global average pooling along the spatial axis,

σ is a sigmoid function which normalizes the output range

of Mc(P ) to [0, 1]. Note that the initially produced channel

attention map M(P ) ∈ R512×1 needs to be broadcasted

along the spatial dimension to match with the dimension of

the original input, i.e., R512×H×W .
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Figure 3. Different bottleneck architectures: (a) simple feature concatenation from U-Net [17]; (b) channel attention module (CAM)

from [9]; (c) spatial attention module (SAM) from [15]; (d) parallel channel attention and spatial attention module (BAM) from [15]; (e)

Sequential channel attention and spatial attention module (CBAM) from [20]. GAP and GMP represent global average pooling and global

max pooling, respectively.

2.2.2 Spatial attention module

Spatial Attention Module (SAM) is introduced in

BAM [15]. It is expected to learn a spatial attention

map to emphasize or suppress features in different spa-

tial locations. Mathematically, the function of SAM is

formulated as:

M(P ) = σ(Ms(P ))

= σ(f1×1(F 3×3

d=4
(F 3×3

d=4
(F 1×1(P )))))

(3)

More specifically, the channel dimension of feature P ∈
R512×H×W is reduced to 256 using a 1× 1 convolution u-

nit F 1×1. Then two 3× 3 dilated convolutions (F 3×3

d=4
) with

dilation value of 4 are applied to enlarge the receptive fields

for effectively leveraging contextual information. Finally,

the feature map is compressed into Ms(P ) ∈ R1×H×W us-

ing a single 1 × 1 convolution operation (f1×1). Besides,

we also use a sigmoid function (σ) to normalize the output

range to [0, 1]. Note that the initially produced spatial atten-

tion map M(P ) ∈ R1×H×W needs to be replicated by 512

times along the channel dimension to match the dimension

of the original input, i.e., R512×H×W .

2.2.3 Parallel channel attention and spatial attention

module

Recently, Park et al. propose Bottleneck Attention Module

(BAM) [15], a parallel integration of channel attention mod-

ule and spatial attention module. For the given pooled fea-

ture map P ∈ RC×H×W , BAM infers a 3D attention map

M(P ) ∈ RC×H×W as follows:

M(P ) = σ(Mc(P ) +Ms(P )) (4)

where Mc(P ) and Ms(P ) are described as in Section 2.2.1

and Section 2.2.2, respectively. Note that outputs of both

branches are resized to R512×H×W before addition.

2.2.4 Sequential channel attention and spatial atten-

tion module

Different from BAM, Woo et al. propose Convolutional

Block Attention Module (CBAM) [20], a sequential con-

nection of channel attention module and spatial attention

module. The channel attention module of CBAM adds

max-pooled features in addition to average-pooled features,

hence the new channel attention module is computed as:

Mc(P ) = σ(MLP(GAP(P )) + MLP(GMP(P )))

= σ(W1(W0(GAP(P ))) +W1(W0(GMP(P ))))

(5)

where GMP is global max pooling along the spatial axis.

Given the channel attention map, the channel attention

process is computed as:

P ′ = Mc(P )⊗ P (6)
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The spatial attention module, following the channel at-

tention module, aggregates average-pooled features and

max-pooled features along the channel axis, which could

be formulated as follows:

Ms(P
′) = σ(f7×7(GAPc(P

′)⊕ GMPc(P
′))) (7)

where GAPc(P
′) and GMPc(P

′) represent global average

pooling and global max pooling along the channel axis, re-

spectively. We first apply global averag pooling and global

max pooling operations along the channel axis and concate-

nate them to generate an efficient feature descriptor. Then,

a 7 × 7 convolution operation with padding size of 3 fol-

lowed by a sigmoid function are applied on the concate-

nated feature descriptor to generate a spatial attention map

Ms(P
′) ∈ RH×W .

The final spatial attention process is computed as:

P ′′ = Ms(P
′)⊗ P ′ (8)

Note that same as Section 2.2.1 and Section 2.2.2, during

the element-wise multiplication of Equation (6) and Equa-

tion (8), the attention map is firstly broadcasted or copied

accordingly.

2.3. Network training and testing

Since sclera segmentation could be regarded as a pixel-

wise binary classification task, a binary cross-entropy loss

function is used for training.

Once the model is trained, it takes an eye image of arbi-

trarily size as input and outputs a probability map of sclera

of the same size as the original input image. To generate

the final segmentation result, we need to threshold the pre-

dicted probability map to get a binary mask using a certain

threshold. More specifically, for those pixels of the proba-

bility above the selected threshold, the corresponding pixels

of the binary mask are assigned to 1, otherwise the corre-

sponding pixels are assigned to 0.

3. Experiments

3.1. Datasets

In this section, we present detailed descriptions of three

datasets used in our experiments: UBIRIS.v2 [16], MICHE-

I [7] and MASD.v1 [6]. Among these datasets, UBIRIS.v2

and MICHE-I are used to train and evaluate the proposed

model. Inspired by [14], each of them is divided into three

subsets, where 40% of the images are used for training, 20%

for validation, and 40% for testing. MASD.v1 is not used

for model training or fine-tuning, but directly for testing.

Detailed information of these datasets are summarized in

Table 1.

UBIRIS.v2 [16] was originally developed for iris recog-

nition in less constrained conditions. The dataset consists of

Dataset Resolution
No. of

training

No. of

testing

No. of

validation

UBIRIS.v2 400× 300 120 120 60

MICHE-I Various 400 400 200

MICHE-GS4 Various 133 133 67

MICHE-IP5 Various 138 138 68

MICHE-GT2 640× 480 129 129 65

MASD.v1 Various N/A 119 N/A

Table 1. Summary of the datasets used in this work. Each of these

is a subset of the corresponding original database.

11,102 images from 261 subjects. The ground-truth sclera

segmentation masks are manually labeled by [14].

MICHE-I [7] was originally developed for mobile iris

recognition. Images in MICHE-I were captured by three

mobile devices: iPhone5(IP5), Samsung Galaxy S4(GS4),

and Samsung Galaxy Tab2(GT2) (1262, 1297 and 632 im-

ages, respectively) in uncontrolled conditions. Same as U-

BIRIS.v2, the ground-truth sclera segmentation masks are

also manually labeled by [14].

MASD.v1 [6] was collected for sclera segmentation

benchmarking competition(SSBC). For each eye, images of

4 gaze angles (looking straight, left, right and up) are cap-

tured. In SSBC 2015, a subset of 120 sclera images and

corresponding ground-truth masks were provided to the a-

cademic community. However, there were only 119 images

with ground truths available from the organizers of the com-

petition. Since the amount of images in the dataset is small,

they are only used for testing.

3.2. Evaluation metrics

To quantitatively evaluate the proposed method, preci-

sion(P), recall (R) and F-measure(F) are computed in a

pixel-wise comparison manner between the ground truth

and the predicted binary mask image. Among the above

metrics, precision measures the percentage of correctly re-

trieved sclera pixels. Recall gives the percentage of sclera

pixels in the ground truth which are correctly retrieved. F-

measure is defined as the harmonic mean of precision and

recall to balance the two metrics.

Besides the fixed P/R/F values due to the fixed thresh-

old, the complete precision-recall curves (PR-curve) could

be generated by varying the decision threshold to evaluate

the overall segmentation performance. In this context, the

F-measure is obtained under the optimal threshold over the

whole dataset.

3.3. Implementation Details

The proposed architecture is implemented based on the

openly available caffe [10] framework and initialized by us-

ing the VGG-16 model pretrained on ImageNet [18]. Other

hyper-parameters and corresponding values are: optimiza-

tion method: stochastic gradient descent(SGD), mini-batch
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Figure 4. Average precision-recall curves generated by U-Net and the improved U-Nets with different attention modules on six datasets.

size (4), base learning rate (10−3), learning rate adjustmen-

t method: ”poly” policy with power set to 0.9, momen-

tum (0.9), weight decay (0.0005), and maximal iteration

(30000).

During the experiments, we augment the training dataset

by randomly resizing (0.5, 0.75, 1, 1.25, 1.5), transla-

tion (x,y [-30,30]), rotation ([-60,60]), blurring (mean filter,

gaussian blur, median blur, bilateral filter, box blur), hori-

zontal flipping, and cropping (321 × 321 as input size) on

the fly.

3.4. Experimental results

3.4.1 Evaluation of different attention modules

In this section, we evaluate the segmentation performance

of the proposed ScleraSegNet. Firstly, we implement the

original U-Net model as the baseline model. Then, four

types of improved U-Nets equipped with different attention

modules are compared with the baseline model. With the

exception of the network structure, all other aspects of the

network are the same, such as data augmentation and train-

ing process, as introduced in Section 3.3. Besides, all the

models are trained on UBIRIS.v2 and MICHE-I as well as

three subsets of the MICHE-I, then tested on the them. As

for MASD.v1, we directly use it to test the model trained on

UBIRIS.v2, as UBIRIS.v2 is similar with MASD.v1 in illu-

mination, noise distribution, and the position and proportion

of periocular region occupying the whole of image, etc.

PR-curve and F-measure are the evaluation metrics used

to compare the performance of segmentation algorithms,

and results are shown in Figure 4. As can be seen, the

proposed improved U-Nets with different attention modules

outperform the baseline model with a significant margin on

MICHE-I, MICHE-GS4, MICHE-IP5, MICHE-GT2, and

MASD.v1. For UBIRIS.v2, there is very little difference

on PR-curves and F-measure values obtained by the base-

line model and its improvements. The reason for the large

performance gap on UBIRIS.v2 and MICHE may be that

the images in UBIRIS.v2 are relatively concentrated, i.e.,

containing only the periocular region, while for MICHE,

we need to enhance the feature expression ability of the o-

riginal U-Net to suppress the influence of other facial parts,

such as nose, ears, forehead, cheeks, etc. The final experi-

ment results validate the effectiveness of proposed attention

modules on improving the performance of the original U-

Net. The results on MASD.v1 further suggest that attention

modules also benefit the generalization ability of the origi-

nal U-net.

It is worth noting that, although the improved U-Nets

with different attention modules show similar PR-curves

and F-measure values on UBIRIS.v2 and MICHE-I as well

as their subsets, they output completely different segmen-

tation results on MASD.v1. The improved U-Net with

6



CBAM achieves the best segmentation performance with

the F-measure value of 83.77%, followed by CAM, BAM

and SAM, achieving F-measure values of 82.55%, 80.67%,

77.78%, respectively. More careful observation suggests

that channel-wise attention is more important than spatial-

wise attention for the accuracy of segmentation tasks, and

this is why many other segmentation networks, such as [21,

22], also adopt channel attention modules to improve the

performance of the network.

3.4.2 Evaluation of the effectiveness of data augmenta-

tion

Data augmentation is a simple yet effective way to enrich

training data for accelerating the network to converge and

helping the network avoid over-fitting. Besides, we have

further demonstrated that data augmentation also improves

the generalization ability of the network. We use the orig-

inal U-Net as the experiment model (The results obtained

using the improved U-Net are also similar) and train U-Net

with and without data augmentation on UBIRIS.v2 dataset.

Then, we test the trained model to the MASD.v1 dataset.

The experiment results are illustrated in Figure 5. From the

result, we could conclude that the U-Net trained with data

augmentation significantly outperforms that trained without

data augmentation by a large margin of 27.97% under the

F-measure. As we do not train or fine tune the model on

MASD.v1 dataset, such a large performance gain demon-

strates the effectiveness of data augmentation in improving

the generalization ability of the network.
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Figure 5. Average precision-recall curves generated by U-Net on

MASD.v1 dataset. The U-Net is trained on UBIRIS.v2 dataset

with and without data augmentation, respectively.

3.4.3 Comparison with other methods

We also compare the proposed method with the best per-

forming sclera segmentation algorithm in [14], i.e., FCN.

In fact, FCN is the segmentation part of Multinet [19] and

adopts the similar network structure as the earliest FCN8

in [13]. Table 2 lists a summary of Recall, Precision, and

F-measure, for the original U-Net, the proposed improved

U-Nets with different attention modules, and FCN. Here,

we empirically set the threshold to 0.5 to get the final binary

mask for simplicity. Better threshold could be obtained by

cross validation on the validation set. Results show that in

all the datasets except UBIRIS.v2, original U-Net does not

outperform FCN for F-measure, but the proposed improved

U-Nets with attention modules consistently outperform FC-

N with larger mean values and smaller or comparable stan-

dard deviations for F-measure. Besides, the improved U-

Net also outperforms FCN considerably in terms of Recall

and Precision values in most cases. In summary, the im-

proved U-Net with CBAM achieves a leading segmentation

performance in most settings, which is consistent with the

conclusion drawn in Section 3.4.1. Besides, the improved

U-Net with CBAM also has a high segmentation efficiency.

For a 400×300×3 input image, it takes merely 0.05 second

on a NVIDIA TITAN Xp GPU with 12GB memory.

Dataset Method Recall % Precision % F-measure %

UBIRIS

.v2

FCN[14] 87.31(06.68) 88.45(06.98) 87.48(03.90)

U-Net[17] 90.51(06.53) 91.81(05.05) 90.89(03.77)

SAM 91.14(05.66) 91.77(04.78) 91.25(03.32)

CAM 91.13(06.04) 91.58(04.79) 91.13(03.52)

BAM 91.24(06.20) 92.11(04.76) 91.43(03.75)

CBAM 91.42(06.38) 91.59(05.03) 91.26(04.09)

MICHE

-I

FCN[14] 87.59(11.28) 89.90(09.82) 88.32(09.80)

U-Net[17] 86.05(09.67) 90.60(05.98) 87.83(06.56)

SAM 87.87(07.90) 91.91(05.80) 89.53(05.33)

CAM 87.85(08.44) 90.81(07.15) 88.90(06.14)

BAM 87.34(08.56) 92.24(05.16) 89.37(05.49)

CBAM 88.11(08.26) 91.71(05.42) 89.54(05.37)

MICHE

-GS4

FCN[14] 88.24(12.03) 88.65(10.62) 88.12(10.56)

U-Net[17] 86.65(08.98) 90.42(09.71) 87.87(07.80)

SAM 90.24(06.17) 91.12(06.46) 90.45(04.87)

CAM 90.14(07.30) 90.40(08.53) 89.86(06.64)

BAM 89.05(07.44) 91.73(07.93) 89.95(06.28)

CBAM 88.71(07.46) 91.82(06.90) 89.90(05.59)

MICHE

-IP5

FCN[14] 87.51(11.61) 89.32(05.22) 87.80(08.24)

U-Net[17] 84.77(08.72) 91.67(05.00) 87.73(05.30)

SAM 86.15(07.44) 92.61(05.47) 88.95(04.64)

CAM 87.16(07.00) 92.10(05.73) 89.28(04.63)

BAM 86.69(06.67) 92.26(05.10) 89.16(04.19)

CBAM 86.32(07.80) 92.76(04.56) 89.13(04.62)

MICHE

-GT2

FCN[14] 87.86(12.23) 88.50(12.68) 87.94(11.59)

U-Net[17] 86.28(09.99) 90.47(05.97) 87.89(06.81)

SAM 88.20(09.06) 91.09(05.47) 89.29(06.16)

CAM 88.81(09.16) 90.06(05.94) 89.07(06.43)

BAM 88.69(09.24) 90.48(05.63) 89.24(06.40)

CBAM 89.07(09.27) 90.38(05.93) 89.34(06.51)

Table 2. Performance comparison between FCN[14] and the pro-

posed models. The values in parentheses represent standard devi-

ations. F-measure is considered as the prior measure for ranking

the methods.
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4. Conclusions

This paper introduces a improved U-Net model, namely

ScleraSegNet, for accurate sclera segmentation in an end-

to-end manner. The improved U-Net model is combined

with different attention modules and could be trained using

effective data augmentation techniques. Extensive experi-

ments are carried out on three public datasets, and results

show the proposed model is able to accurately segment the

sclera region with high robustness.
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